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Abstract—Detection of water-body boundary is vital for 
cartography, environmental study, designing sustainability 
program etc. LiDAR-based remote sensing algorithms can 
provide practical solutions of water surface mapping for large 
areas. Geophysical properties of water and optical properties of 
laser returns from water surface can simultaneously be exploited 
for water-body detection and hydro breakline generation using 
LiDAR technology. Therefore, a new algorithm is proposed 
utilizing these optical and physical properties such as high 
absorption rate, specular reflection and local flatness as key 
characteristics of water surface. It is observed that these key 
features help successfully detect water-bodies in both rural and 
complex urban scene. Quantitative analysis shows that for 
different datasets, the overall accuracy of detection varies from 
98.45% to 99.94% when compared to manual detection. Results 
for a very large-scale data, of around 𝟓𝟓𝟓 𝒌𝒎𝟐 in size, is also 
reported. From careful visual inspection on large areas, it is clear 
that the proposed method correctly detects water-bodies of 
different sizes and shapes e.g. rivers, small river branches, lakes, 
ponds, reservoirs etc. Therefore, the proposed method is a fast 
and reliable tool for hydro-breakline generation from large scale 
LiDAR dataset.  

Index Terms— LiDAR, Water-body, River detection 

I. INTRODUCTION 
water-body is defined as any physiographical feature 
containing water, which includes a pond, lake, reservoir, 

river sea etc. Mapping water features plays a vital role to plan 
any sustainability program of aquatic ecosystems and other 
environmental studies. Traditional water-body boundary 
extraction approaches involve manual estimation from high 
resolution imagery and on-site survey, which are usually 
limited, due practical reasons to only large sized water-bodies 
for a small selected area. Light detection and ranging (LiDAR) 
is a top-notch remote sensing technology popularly employed 
for high resolution earth surface mapping and feature 
extraction. LiDAR system derives the distance of targeted 
points from a laser source by emitting laser pulses and 
analyzing the reflected return. Therefore, the LiDAR system 
provides highly accurate as well as dense co-registered 
elevation and intensity information of the targeted surface. 
However, the size of this high-density point cloud is huge and 
which makes manual classification difficult and expensive. 
Automated or at least semi-automated classification or feature 
extraction algorithms are therefore desired.  

Extracting water-body boundaries and hydro break line 
generation are especially important. Therefore, several results 
have been reported on automated, semi-automated hydro-
breakline generation from LiDAR point cloud for different 

types of water-body related areas. 
 
Most of the literature covers hydro-breakline generation in 

coastal areas, where only few results were reported for river 
and standing water-bodies detection. Early model-based 
approaches used historic shoreline and examined cross-shore 
LiDAR elevation profile to detect sudden change of elevation 
[1, 2]. Later, LiDAR return intensity, data density, historical 
borders, orthoimages were introduced for water-surface 
mapping algorithm development [3-6]. In recent years, two 
new algorithms were proposed for in-land water body 
detection, which were demonstrated on standing water bodies 
and still work remained for river and coastal areas [7, 8]. 

In our proposed algorithm, geometric and optical properties 
of a water-body were translated to useful features, which 
decide its expansion or “growth” from a small seed. A new 
edge detection method called angular filtering was also 
proposed to extract sharp local change of elevation. Seed 
based methods only analyze potential areas around selected 
seeds, which make it suitable for large-scale implementation. 
Quantitative results are shown for two datasets, where ground 
truth is available. Qualitative performance is shown for very 
large-scale data as detected water-body polygons overlaid on 
satellite images. Superior accuracy and significantly low 
computational time are key factors of the proposed method 
which enable very large scale practical application. The 
proposed algorithm does not require orthoimages, historical 
boundaries etc. 

II. BACKGROUND  

A. Angular filtering for edge detection 
Local elevation change is a useful property for different 

feature extraction schemes from rasterized LiDAR data. In 
general, a water-land interface shows noticeable elevation 
gradient in comparison to the water surface. Furthermore, 
elevation gradient is low for natural features such as fields, 
rolling hills etc. and high for man-made features such as 
building, tower, dam, bridge etc. Therefore, distinguishing 
different levels of low elevation change is more useful than 
distinguishing high elevation changes, when natural features 
detection is the main concern. In angular filtering [9], 
elevation changes were non-linearly mapped to an angle using 
tangent function as shown in equation 01. As shown in Fig.01 
(left), lower elevation changes were mapped to larger angle 
domain in compare to higher elevation change mapping. In 
short, using this nonlinear transformation, we group less 
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important higher gradient in a small angular range and provide 
emphasis on lower gradient values.  

For a targeted LiDAR block, 𝑛 neighboring tiers were 
selected for angle calculation as shown in Fig.01. Red pixel is 
the targeted block; yellow and green blocks are first and 
second tier neighbors respectively, where n=2. Maximum 
angular difference was considered as the angular filter value 
for the targeted pixel.  
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Fig. 01.  (Left) Arctangent mapping of elevation change to angle . (Right) The 
targeted block (red), first and second tier neighbor for angular filtering 
(yellow and green). 

B. Motivation and hypothesis 
In this section, we perform a heuristic assessment of the 

LiDAR return characteristics of water bodies in order to 
develop a set of hypotheses to detect them.  Water surface 
shows different characteristics than other land and man-made 
features. Specular reflection is prominent from the water 
surface, which leads to low return density and drop-outs. 
Drop-out indicates that no LiDAR pulses are returned to the 
receiver because of total specular reflection or total 
absorption, and due to smaller number of returns, data density 
can be lower too. At infrared range, water surfaces show high 
absorption rate which lead to very low intensity return in 
general.  Thus, it can be safely assumed that at least a small 
part of the water surface has very low intensity and/or drop-
outs. Two examples are shown in Fig.02. LiDAR drop-out 
areas are shown in orange on RGB image for two sample 
water-bodies. Therefore, those drop-out regions can be 
considered as the seed to detect the corresponding water-
bodies. 

 

 
Fig. 02.  LiDAR return drop-out areas (orange) are ovalaid on RGB images 
for two smaple water-bodies. It can be safely assumed that all water-bodies 
have at least a small very low intensity and/or drop-out region.  

   Once, a seed is used to get started with a water body, in 

general very few significant observations were made in 
LiDAR intensity from water surface. Because of high 
absorption rate at near infrared range, LiDAR returns are 
significantly absorbed by water, which leads to very low 
intensity return. On the other hand, specular reflection may be 
received by the LiDAR scanner, when scan angle is small. 
These specular receptions have very high intensity value. 
Therefore, LiDAR returns from water surfaces are more likely 
to have very low (absorption) or very high intensity (specular). 
Intensity image for two sample water-bodies are shown in 
Fig.03. Blue to red indicates lower to higher intensity. 
Intensity of drop-out areas are considered are in very low 
range. It is clear from Fig.03 that water-bodies mainly have 
very low intensity and only small part may show very high 
intensity due to specular reflection. Therefore, significant 
differences in the intensity probability density function (PDF) 
for water surface returns can be exploited for algorithm 
development. 

 
Fig. 03.  Intensity map of two sample water-bodies. Blue to red means lower 
to higher intesity. Water-bodies mainly have very low intensity returns and 
occatinal very high intensity return due to specular refelction. 

  From the elevation point of view, water surface is 
comparably flatter than other topographic features. 
Furthermore, water to land interface has higher change of 
local elevation. Therefore, it can be expected that angular 
filtering value, |𝜃| will be higher around water-land interface. 
Angular filtering mapping are shown in Fig.04 for same 
sample water-bodies. Red color to blue indicates 0 to 90 
degrees respectively. It is clear from Fig.05 that water-land 
interface has higher absolute angle filtering value.    

 
Fig. 04.  Angular filtering of two sample water-bodies. Blue is 90 and red is 0. 
Close to zero angles indicates local flatness. Flatness is significantly changed 
at water-body boundaries. 

III. PROPOSED ALGORITHM 
An inland water-body boundary detection method for very 

large scale areas is targeted in this paper. LiDAR return 
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properties from water surfaces were utilized to develop a 
computationally fast algorithm. As described in the previous 
section, three hypotheses were made to design this algorithm. 
a) At least a small portion of any water-body has LiDAR 
return drop-outs due to specular reflection. b) LiDAR return 
intensity is more likely to be very low (high absorption) or 
very high (specular return). c) Local change of gradient is 
higher in water-land interface than water surface. These three 
key characteristics were designed to address inland water-
bodies.  The whole process flow of the algorithm is shown in 
Fig.05. Detailed procedure for the each of the working blocks 
is given below. 

  

A. Rasterization phase 
For a large scale dataset, working with point cloud costs 

computational power and time. Rasterization of the point 
cloud quantizes the irregular point cloud to a regular gridded 
image-like data. From a point cloud, three different rasters 
were produced for 2𝑚 × 2𝑚 blocks. This small block size 
ensures low spatial quantization errors due to rasterization. 
Minimum elevation, maximum elevation, return counts and 
average intensity were used for rasterization. Vegetation 
height model (VHL) was generated. Finally, a drop-out raster 
was also produced from drop-out blocks. Vegetation blocks 
and sharp edge blocks generally have multiple return counts in 
LiDAR data.  

B. Processing phase 
Both intensity and drop-out rasters were combined to 

generate seeds. A connected component analysis was 
performed on intensity and drop-out rasters to extract all 
connected blocks which have very low intensity or drop-outs. 
If more than a significant set of connected blocks has no 
LiDAR return or very low intensity, then that set was defined 
as a seed.  Angular filtering was also performed on the 
elevation raster to extract local change of elevation profile. 
Planar surfaces have near zero angle value, whereas rough 
areas show angle values closer to 90 degrees. A vegetation 
height model (VHM) was created to distinguish tall trees, 
using the technique introduced by Antonarakis et al [3]. 
 

C. Iteration Phase 
The iteration phase started with the largest seed generated in 
processing phase. Seeds were considered as a small portion of 
a water surface and the area around the seed was included in 
that particular water-body, if elevation and intensity features 
support the hypothesis. At first, the angular filtering threshold 
𝜃𝑇was selected as a very small value. Pixels with angular 
filtering value less than 𝜃𝑇 were added with the seed. Now, the 
grown area should include more low intensity or drop-out 
regions if seed was surrounded by water. Therefore, CDF of 
the new region should be higher or at least follow it. 

 
Fig. 05.  Algorithomic flow-chart of the proposed water surface detection method. 
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A Kolmogorov-Smirnov (KS) test was performed to check 
the similarity of these two PDFs. The KS test was one-sided 
because if the new CDF was higher that the one from the 
previous iteration then the added region is also considered as 
water. If the one sided KS test passed the hypothesis of similar 
PDF then 𝜃𝑇was increased for next iteration. When, 𝜃𝑇was 
increased beyond the water-land interface value, a large land 
area would be included with the previous region. This 
condition is equivalent to virtual “flooding”. At “flooding” 
condition, the CDF will be significantly changed, which 
would lead to a failed KS test. When the KS test fails for a 
seed, the previous boundary was restored as resultant break-
line for that specific water-body. 

 
The same procedures were followed for the next seed. It 

may happen that a seed can flood another unprocessed seed or 
a previously detected boundary. In that case, these regions 
were merged to represent a single water-body. Only blocks 
with single return count was useful if low elevation vegetation 
area around water-bodies were needed to be excluded. This 
case can be varied according to user needs for any particular 
project. The whole iteration phase continued until all seeds 
were processed. 

 
The whole iteration phase for a single seed is illustrated in 

Fig.06. The detection process started with the largest seed 
from the left side of the water body, which is indicated as dark 
red. Angular filtering threshold 𝜃𝑇was changed iteratively and 
new regions were added with the seed. Therefore, the CDF 
was also changing during iteration. Added regions and 
corresponding CDFs are shown in the same color at Fig.06. It 
is clear from Fig.06 that the CDF shape was same or similar 
before flooding. At flooding condition, all blue pixels were 
added and the CDF drastically changed its shape. Therefore, 
boundaries of water surfaces were saved just before the 
flooding condition. It can be seen that water boundary 
detected after the final iteration was matched with the 
corresponding satellite image as shown in Fig.02.     

 

 
Fig. 06.  Change of intensity CDF in every iteration (Left). Added region in 
each iteration (Right). Added areas shown going from red to blue.   

IV. RESULTS 
Quantitative results will be presented for two datasets, 

Nebraska and Oklahoma dataset. The overall accuracy (ACC), 
Specificity (SPC) and Sensitivity (SEN) were derived as 

quantitative performance measure from a confusion matrix. 
Simple coefficient values of performance measure may not 
fully provide information about the classification performance. 
Therefore, a detected map was also overlaid on the satellite 
images to present a qualitative performance measure.  

 
In Fig.07, manually detected border and detected water-

body polygons from Nebraska dataset are overlaid on the 
satellite image. Detected water-body boundaries can be seen to 
be visually matched with manually detected break-lines, 
except for a few small mismatches. The small island and a 
small water-body in that island were also detected correctly. 
From overlapping areas, it was observed that a 7.02 𝑘𝑚2water 
surface was detected correctly; a 0.077 𝑘𝑚2 area was missed 
and a 0.24 𝑘𝑚2area was misclassified as a water-surface in 
the 20.345 𝑘𝑚2study area.  Therefore, it can be noted that the 
qualitative detection performance is satisfactory with the 
quantitative overall accuracy at  98.45 %, sensitivity at 
 96.71 %, and specificity at 99.41 %.  

 

   
Fig. 07.  Detected water-body overlaid on satelite image for Nebraska dataset. 
Manually detected border (Yellow lines) and Algorithm detected water-body 
(Blue semi-transparent polygon). 

From the Oklahoma dataset, manual break-lines are available 
for water-bodies larger than 2 acres and rivers wider than 100 
feet. In Fig.08, it is seen that the borders of all seven water-
bodies are matched with the manual detection. The proposed 
method is able to detect small water-bodies and narrow rivers. 
In this case, a minimum size was given as constraint to 
measure quantitative results because manual detection was 
available only for large water-bodies. From overlapping areas, 
it was observed that 0.845𝑘𝑚2 water surface was detected 
correctly; 0.012 𝑘𝑚2 areas were missed and 0.01 𝑘𝑚2areas 
were misclassified as water-surfaces in total of 
39.06 𝑘𝑚2study area.   The numbers for this dataset are: 
overall accuracy 99.94 %, sensitivity 98.60 %, 
specificity 99.97 %.   
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Fig. 08.  Seven main water-bodies in Oklahoma dataset. Manually detected 
border (Red lines) and Algorithm detected water-body (Blue semi-transparent 
polygon). 

Detection performance is shown for a very large scale 
dataset in Fig.09. The Salisbury dataset contains a few rivers 
in both rural and urban scenes. Additionally, there are many 
in-land standing water-bodies too. In Fig.09, detected water-
bodies are shown in blue polygons and an overlay satellite 
image. From visual inspection, it is clear that all major water-
bodies were detected correctly. Five sections (A-E) of this 
large dataset are magnified and shown in Fig.10. From section 
A, it is observed that a major river and all its curved are 
detected as expected. Small water-bodies are also extracted 
correctly as shown in section B. In section C, we see that 
roads on water-bodies are distinguished from the detected 
water surfaces. Section D demonstrates detection performance 
in an urban scene. All bridges were removed from detected 
water surface. A some small portion of water surface remains 
undetected because those were separated from main water-
bodies by multiple bridge crossings. From section E, it is clear 
that rivers and its branches can be extracted as expected using 
the proposed algorithm. Overall, the performance of the 
proposed algorithm is satisfactory for very large scale dataset 
contain both rural and urban scenes.  

 
Detection comparisons for a few small water-bodies are 

shown in Fig.11. It is seen that small water-bodies inside 
vegetation were detected correctly. Man-made, small square 
shaped water-bodies, water-bodies with algae and very 

isolated small water-bodies were detected as well. It is also to 
be noted that bridges were not detected as water-body part, 
which is vital for many application. Parts of water-bodies 
which are divided by a bridge were also detected separately.   

V. CONCLUSIONS 
In this paper, we proposed a novel algorithm for water 

surface mapping using elevation and intensity of airborne 
LiDAR data. The quantitative results are shown for two 
different datasets, where manual hydro break-lines are 
available. For extensive analysis, qualitative results are shown 
for a 500 sq.km area. From visual inspection, it was clear that 
the proposed algorithm is working well as expected. 

 
In future, the tool will be adapted for very large scale 

application. An ArcGIS toolbox will be developed for state 
level analysis in a batch mood. An extensive performance 
analysis will be completed by both UTA and NRCS personnel 
before final public release of the tool. 
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Fig.09.  Detected water-body (Blue polygons) overlaid on satelite image for Maryland dataset. Five interesting areas are marked and zoomed in for better 
visualization. All rivers and small water-bodies were detected according to visual inspection. Grid size is around 2 𝑘𝑚2 and whole area size is around 500 𝑘𝑚2.  
 

 
Fig.10.  Detected water-body (Blue polygons) overlaid on satelite image for Maryland dataset. 

 

 
Fig.11.  Detected water-body (Blue polygons) overlaid on satelite image are shown for a few small water-bodies 
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