IDENTIFICATION OF ACCIDENT BLACK-SPOTS IN 18 MICHIGAN FREEWAYS USING GIS

Abdulla Ali, Ph.D., Student
Nishantha Bandara, Ph.D., P.E., Assistant Professor
Susan Henson, M.S., Adjunct Professor
Department of Civil and Architectural Engineering
Lawrence Technological University
21000 W 10 Mile Rd, Southfield, MI 48075
aali1@ltu.edu
nbandara@ltu.edu
shenson@ltu.edu

ABSTRACT

Road accidents are one of the challenging problems affecting many parts of the world. The Michigan freeways are far busier today than before. This led to the increase of traffic incidents due to several factors including human errors, roadway deficiencies, environmental factors, vehicle factors, etc. A study conducted by Michigan Traffic Crash Facts (MTCF) estimates an accident will happen every 44 minutes and every six hours a person will die on Michigan roadways. The success of traffic safety and highway improvement programs depend on the analysis of accurate and reliable traffic accident data. This study discusses the present traffic accident information on 18 freeways in Michigan. It will also discuss the identification of high rate accident locations (black-spots) by using the Geographic Information System (GIS) Software and safety deficient areas on the highway. This paper particularly discusses the use of two statistical black-spot identification techniques, namely kernel density estimation (KDE) and the point density estimation (PDE). By comparing the two methods, it is found that both methods have resulted in reasonably different sets of black-spots. However, KDE is more capable of pinpointing the black-spots than the PDE method.

KEYWORDS: Accident Black-Spots, Kernel Density Estimation (KDE), Point Density Estimation (PDE)

INTRODUCTION

There is an exponential increase in road problems, risks, and accidents in many nations worldwide. Timely and accurate responses are required to avoid incidents of accidents and hazards on the road to guarantee a safe, efficient, and faster travel experience. Road safety became a primary concern for road developers and those who are concerned with public safety and well-being (Apparao, G., 2012). Black-spots are the areas of the road characterized by high levels of accidents. Defining black-spots is significant for road safety and hazard elimination (Thakali, 2015). Accordingly, the ability to determine black-spots can help with road network development in order to keep pace with the continuous increase in transportation and the risks and hazards associated with this increase. For the purpose of this research, 18 freeway segments in Michigan were investigated to identify and evaluate accident black-spots. Michigan is the eleventh biggest state in the USA by area, with a total land mass of 96,716 square miles. The population in Michigan was approximately 9,909,877 in 2014 with a 0.3% percent change from 2010 (MTCF 2014). According to MDOT (2015), the entire length of Michigan roads also increased from 110,656 miles in 1960 to 122,901 miles in 2010. The increase in road length accommodates the 1.8 percent increase in the number of vehicles and vehicle mileage from the same period (MDOT 2015). The number of licensed drivers and total number of registered vehicles on Michigan roads also increased by 0.4 percent (MTCF, 2014). In 2010, the total number of road accidents was 282,075 with 868 fatalities, 51,672 seriously injured, and 229,535 slightly injured. There were 298,699 total accidents statewide in 2014 with 0.9 deaths per 100 million miles of travel. As shown in figure 1, these results equate to a 14.9 percent increase from 2010 (MTCF, 2014).
This research analyzes accident and roadway environment data associated with respective road accidents. The technique used for evaluation consists of three basic phases: identification, diagnosis, and remedy. The sequence of phases identifies the accident causes and contribution factors, diagnoses safety problems at accident-prone locations, and suggests appropriate countermeasures. In this study, Geographic Information Systems (GIS) is utilized to detect road accident black-spots on Michigan expressways. Two methods of identifying road accident black-spots were used: kernel density estimation (KDE) and point density estimation (PDE).

LITERATURE REVIEW

Traffic, roadway configuration, weather conditions, vehicle characteristics, human perception, etc. are the main reasons for road incidents (Shinar, 2007). In uncertain road environments, anticipating and quantifying the time and locations where accidents have a high probability of occurring is not easy. However, identifying locations that experience black-spots can pinpoint areas that may contribute to a higher accident risk compared to other similar locations. Additionally, avoiding major danger and fatalities in the future (Molla, 2014) is another benefit. Black-spots could be an indication of hazardous-prone areas in the freeway network which experience a high volume of accidents. Sometimes ineffective methods can lead to identifying a safe location as dangerous (false positive) or a dangerous location as safe (false negative). Some methods of black-spots identification fail to include minor injuries, and accidents causing property damage only (Washington, 2014). Hazards on the road resulting in accidents, crimes, and fatalities are a major threat to public safety (Kuo, 2013).

Research conducted on the identification of black-spots is very limited; however, several methods have been proposed and implemented in this field. Some of these methods depend on counting or rating accidents using a negative binomial technique which is not accurate in estimating accidents that change from a year-to-year (Thakali, 2015). This approach can be exhaustive and give inaccurate data (Kuo, 2013). One method to identify black-spots includes dividing the road section into constant lengths, where the total length is divided into 300-, 500-, and 1,000-meter road sections. However, this method is inaccurate because the section length is constant where accidents within each section may not be related to each other. Further, the method tends to overlook dangerous locations in which the section lengths should be long enough to cover all continuous accidents that appear to be related to one another (Mitra, 2008). The Conventional Method section lengths vary from country to country as shown Table 1.

<table>
<thead>
<tr>
<th>Country</th>
<th>Section Length</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Fairly short</td>
<td>At least 3 casualty accidents in 5 years</td>
</tr>
<tr>
<td>England</td>
<td>300 meters</td>
<td>12 accidents in 3 years</td>
</tr>
<tr>
<td>Germany</td>
<td>300 meters</td>
<td>8 accidents in 3 years</td>
</tr>
<tr>
<td>Norway</td>
<td>100 meters</td>
<td>4 accidents in 3 years</td>
</tr>
<tr>
<td>Portugal</td>
<td>200 meters</td>
<td>5 accidents in 3 years</td>
</tr>
<tr>
<td>Thailand (DOH)</td>
<td>Variable</td>
<td>At least 3 accidents in 1 years</td>
</tr>
</tbody>
</table>

Figure 1. Total number of accidents statewide from 2010-2014
The Michigan Department of Transportation and other state Departments of Transportation (DOT) identifying black-spots to ensure that money allotted to identify black-spots is well spent. Properly identified black-spots help ensure the safety of drivers by reducing the frequency of accidents and their severity (MDOT 2015). The kernel density estimation (KDE) is one of the well-known and frequently used methods in identifying black-spots, calculating accident intensity, and studying the spatial pattern of the accident. There are multiple kernel functions such as uniform, normal, and quartic. There are other methods that examine and evaluate risk relative to location using clustering models such as the “K-mean clustering, Moran’s I Index, nearest neighborhood hierarchical (NNH) clustering, and Getis-Ord Gi* statistics” (Thakali, 2015).

Point density estimation was used to produce an event zone (black-spot) and a surface by using the weights and density of points in an area (Jones, 2008). In a study conducted by Thakali in 2015 that aimed to define black-spots in Hennepin County, Minnesota, two geostatistical methods were compared: KDE and kriging. Hennepin County supplied historical accident data (2003 to 2007) collected at different times during the day for this study. Table 2 below compares the black-spot identification methods listed above and other potential methods. The method and goal of each method are listed (Ansari, 2014).

Table 2. Different Methods for Black-Spot Identification in GIS

<table>
<thead>
<tr>
<th>Method</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel Density</td>
<td>For smoothing effect within radius and cell size</td>
</tr>
<tr>
<td>Point Density</td>
<td>Calculates a volume per unit area of a neighborhood around each output cell</td>
</tr>
<tr>
<td>Line Density</td>
<td>Calculates a volume per unit area for radius of the cell size</td>
</tr>
<tr>
<td>IDW Interpolation</td>
<td>Classifying within max and min value</td>
</tr>
<tr>
<td>Kriging</td>
<td>For assuming spatial variation of attribute</td>
</tr>
<tr>
<td>Spline</td>
<td>For smoothing effect</td>
</tr>
<tr>
<td>Morans I</td>
<td>For present of the cluster of similar values</td>
</tr>
<tr>
<td>Geties-Ord Gi</td>
<td>For separating the high and low values of clusters</td>
</tr>
</tbody>
</table>

Summary of the Selected Methods

The Point Density tool identifies the density of point features located in a specified neighborhood. If a point feature has a value other than none, the tool incorporates that value into the density calculation. For example, a neighborhood of 10 pixels containing points weighted as 8 would be calculated by counting each point 8 times to obtain the value for that neighborhood (Jones, 2008). The number of points located within a neighborhood is divided by the area of the neighborhood. This result, or density, is assigned to a grid cell. In other words, point density calculates a volume per unit area of a neighborhood around each output cell. The point density tool creates the event zone characterized by a surface based on the weights and the concentration of points in an area (ArcGIS, 2005).

The Kernel Density tool depends on stretching the known amount of population associated with each point out from the location of this point as a way to calculate the density of features in a neighborhood around those features. The produced surfaces surrounding every point in kernel density are based on a quadratic shape with the maximum value at the center of the surface and narrowing down to zero at the search radius distance. The following steps are used to determine the default search radius, or “bandwidth” (ArcGIS, 2016):

1. Calculate the mean center of all input points keeping in mind that all calculations are weighted by the values in that field.
2. Calculate the distance from the (weighted) mean center for all point.
3. Calculate the (weighted) median of these distances, Dm.
4. Determine the (weighted) Standard Distance, SD.
5. Calculate the bandwidth using the following formula:
Search Radius = $0.9 \times \min\left(\sqrt[\ln(2)]{\frac{1}{SD}} \times D_m\right) \times n^{-0.2}$ \hspace{1cm} (1)

Where “min” means that the smallest value of the two resulting options will only be considered (ArcGIS, 2016).

Figure 3. KDE spreads the known amount of the population for each point out from the point location

Both the PDE and KDE methods use points as input and produce raster grids as output. The raster grids are made up of grid cells that contain the calculated density values.

METHODOLOGY

The proposed methodology in this study illustrates how GIS can be used to identify black-spot locations and implement analysis of the black-spots. This study uses Arcmap 10.3 GIS for Network Accident Analysis and includes two main parts: data collection and analysis of contributing factors related to the accidents. The data for this study was obtained from the present traffic accident information from the State of Michigan. The study also discusses the identification of high rate accident locations and safety deficient areas on the highway by using GIS Software. The traffic accident data were obtained from MTCF website for the years (2010-2014). For this study, a step-by-step method was adopted:

1. Collect data from MTCF for high number of accidents that happened on freeways in Michigan for the years 2010-2014.
2. Collect GPS information from MTCF and convert the coordinate system to NAD_1983, the datum used by the State of Michigan transportation framework.
3. Export, merge, and save data obtained for each year from 2010 to 2014 as a shapefile (see figure 4).
4. Determine black-spots using the two spatial analysis tools: Point Density Estimation (PDE) and Kernel Density Estimation (KDE). Evaluate and compare the results of these tools to determine which method is better suited to find black-spots in this and future research.

3.1 Data Analysis

Sample accident data from freeway M-31 was used in this study as shown in table 3. This data includes the following elements: road name, road condition, speed limit, weather, light condition, type of accident, and x and y coordinates.

<table>
<thead>
<tr>
<th>No</th>
<th>Road Name</th>
<th>Road Condition</th>
<th>Speed Limit</th>
<th>Weather</th>
<th>Light</th>
<th>Accident Type</th>
<th>GPS X Coordinate</th>
<th>GPS Y Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M-31</td>
<td>Snowy</td>
<td>55 mph</td>
<td>Snow/blowing Snow</td>
<td>Dark Unlighted</td>
<td>Single Motor</td>
<td>-85.0757</td>
<td>45.3591</td>
</tr>
<tr>
<td>2</td>
<td>M-31</td>
<td>Icy</td>
<td>70 mph</td>
<td>Snow/blowing Snow</td>
<td>Dark Unlighted</td>
<td>Angle</td>
<td>-86.2111</td>
<td>43.09664</td>
</tr>
<tr>
<td>3</td>
<td>M-31</td>
<td>Snowy</td>
<td>35 mph</td>
<td>Snow/blowing Snow</td>
<td>Dark Lighted</td>
<td>Angle</td>
<td>-86.0806</td>
<td>42.78333</td>
</tr>
<tr>
<td>4</td>
<td>M-31</td>
<td>Icy</td>
<td>70 mph</td>
<td>Snow/blowing Snow</td>
<td>Daylight</td>
<td>Angle</td>
<td>-86.3111</td>
<td>41.91413</td>
</tr>
<tr>
<td>5</td>
<td>M-31</td>
<td>Slushy</td>
<td>55 mph</td>
<td>Snow/blowing Snow</td>
<td>Daylight</td>
<td>Angle</td>
<td>-85.3434</td>
<td>45.25483</td>
</tr>
<tr>
<td>6</td>
<td>M-31</td>
<td>Snowy</td>
<td>45 mph</td>
<td>Snow/blowing Snow</td>
<td>Dark Lighted</td>
<td>Angle</td>
<td>-85.646</td>
<td>44.72294</td>
</tr>
</tbody>
</table>
A total of 370,016 accidents occurred from 2010 to 2014. The following road and weather conditions were noted relative to the number of accidents:

1. Road conditions:
 - Dry – 237,132 accidents
 - Snowy, slushy, and icy – 64,616 accidents
 - Others – 68,268 accidents

2. Weather conditions:
 - Clear weather – 188,020 accidents
 - Rain – 38,502 accidents
 - Snow/blowing snow – 46,447 accidents
 - Others – 97,047 accidents

Figure 5 shows that more than two-third of the accidents happened in dry road conditions. Similarly, more than half of the accidents happened during clear weather conditions.
3.2 Kernel Density Estimation (KDE) Method

Kernel Density Estimation (KDE) is an ideal method to calculate if the significance of a point is affected more by known points than by those farther away. The kernel radius should preferably be small and insignificant enough to be representative of local variation within the region. The scale should be compatible with the size of the region and big enough to seize multiple point locations within the kernel radius (Thakali, 2015). The following equation was used to calculate kernel density:

\[f(x, y) = \sum_{i=1}^{n} \left(\frac{1}{n \times 2 \times \pi h^2} \times Wi \times K \left(\frac{d_i}{h} \right) \right) \]

(2)

Where \(f(x, y) \) is the density estimate at the location (x,y); \(n \) is the number of observations; \(h \) is the bandwidth; \(K \) is the kernel function and \(d_i \) is the distance between the location (x, y) and \(i \) the observation; and \(Wi \) is the density of the observation. For the accident count, \(Wi \) is a unit, whereas this may vary when we consider different weights for different accidents.

3.3 Point Density Estimation (PDE) Method

\[\rho_q = \frac{\sum_{i \in C(q,r)} \rho_i}{\pi r^2} \]

(3)

Where \(\rho_q \) the density at a location q, \(C(q,r) \) is a circular search area centered on q with a radius of \(r \), and \(\rho_i \) are the values of points contained within the search area (Jones, 2008). The Point Density Estimation is a density tool found within the ArcGIS Spatial Analyst toolset. Point Density Estimation was used to determine the region of blackspot occurrence. Point density estimation has the ability to pinpoint the co-occurrence of points within the neighborhood of each one of these points. This technique depends on the concept that a surface is a set of points and by using the density of points within a search radius, as well as the weighted value of these points, it is possible to determine the value of each output raster cell.

Method Comparison

Both the kernel density and point density estimation methods are used to find different types of densities such as the density of houses, crimes, accidents, or roads. Both methods employ a radius variable. The major impact of using a larger radius is that the density can be determined using a larger number of points. However, those points can be farther away from the resulting calculated raster cell. Figure 6 shows a summary of the methodology used for this research.

![Figure 6. Comparison between PDE and KDE](image)

These two density estimation methods were used to estimate the accident density of the 18 freeways in the State of Michigan. A summary detailing each method was offered in Sections 3.2 and 3.3.

3.4 Black-Spots Selection Criteria

When applying the KDE and PDE methods to generate accident density maps for the 18 freeways, a grid cell size of 1887.297561m x 1887.297561m was enforced. Both methods also incorporated a radius of 400 meters. By incorporating a standard cell size and radius, both methods produced output containing the same number of cells. This allowed for easier comparison between the two methods.

After running each method, each grid cell was assigned a value. The higher the value, the higher the accident density, or accident risk. Cells are classified into a specific range or class depending upon the cell value. Each class
was assigned a specific color and manually assigned a letter value or level. These levels are categorized as risk level A, risk level B, and so on. Black-spots are then determined as the level having the highest density of accidents, in this case, level F. As shown in the resulting density maps (figure 7), the locations of black-spots appear to be similar for both methods.

![Density Maps](image_url)

Figure 7. KDE (left) and PDE (right) results for 2010-2014 accident data

RESULTS AND DISCUSSIONS

The density results were classified into six classes or levels. The six levels are listed in ascending order of risk. Each of these levels represents approximately 10% of the total map area. These levels are represented by color-coded areas that show accident density. The areas in blue indicate higher risk. The kernel density and point density estimation methods show that the areas known to be accident-prone are condensed in the 18 freeways used in this research. The areas having higher traffic interaction (urban areas) have more traffic and safety problems. The risk level decreases when the highways spread outwardly from the heart of the urban areas.

Figures 8-12 show PDE and KDE results per year. Some differences are noted between the two methods relative to year. A group of hotspots were selected that allowed careful investigation and comparisons. The selection of black-spots was not based on a certain criteria and varied one study to another. The basis for selection was choosing a set of regions with higher safety risks. In this study, the KDE quartic method was utilized. In this method, the top
risk level was chosen from the formerly referred to sets of risk levels. Statistically, cut-off values, such as the mean, can be identified based on the estimated accidents within the area used.

Figure 8. PDE (left) and KDE (right) results for 2010

Figure 9. PDE (left) and KDE (right) results for 2011
Figure 10. PDE (left) and KDE (right) results for 2012

Figure 11. PDE (left) and KDE (right) results for 2013
Using both KDE and PDE methods, yearly selected black-spots locations are represented by the blue rectangles illustrated in figures 8, 9, 10, 11, and 12. No identical spatial locations of black-spots were observed relative to each method. Accordingly, one of these methods was selected based on performance evaluation. The performance evaluation compared estimated results and actual values of both methods (Table 4).

Table 4. Performance Comparisons of KDE and PDE Methods

<table>
<thead>
<tr>
<th>Years</th>
<th>No. of Accidents</th>
<th>Method</th>
<th>No. of accidents in black-spot</th>
<th>Standard deviation</th>
<th>Mean</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>70,094</td>
<td>KDE</td>
<td>4700</td>
<td>19.593</td>
<td>0.9560</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDE</td>
<td>7122</td>
<td>4.6743</td>
<td>0.2853</td>
<td>10%</td>
</tr>
<tr>
<td>2011</td>
<td>80,801</td>
<td>KDE</td>
<td>12,643</td>
<td>7.0119</td>
<td>0.3173</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDE</td>
<td>13,920</td>
<td>6.3988</td>
<td>0.3386</td>
<td>17%</td>
</tr>
<tr>
<td>2012</td>
<td>67,071</td>
<td>KDE</td>
<td>9349</td>
<td>5.8781</td>
<td>0.2780</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDE</td>
<td>11,988</td>
<td>4.7056</td>
<td>0.2709</td>
<td>18%</td>
</tr>
<tr>
<td>2013</td>
<td>73,413</td>
<td>KDE</td>
<td>9830</td>
<td>6.3715</td>
<td>0.3050</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDE</td>
<td>12,675</td>
<td>5.0962</td>
<td>0.3011</td>
<td>17%</td>
</tr>
<tr>
<td>2014</td>
<td>78,637</td>
<td>KDE</td>
<td>6050</td>
<td>6.8061</td>
<td>0.3239</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDE</td>
<td>8530</td>
<td>5.4015</td>
<td>0.3189</td>
<td>11%</td>
</tr>
</tbody>
</table>

The table 4 shows that the number of accidents in the black-spot locations vary from year to year. Most of the black-spot locations are around intersections and alternate in both methods. However, the black-spots are spreading outwards more using the PDE method. This observation was made since the number of black-spot accidents are greater when using the PDE method. In all cases, higher values were more concentrated using the KDE method when compared to the PDE method. A certain method is considered more capable to pinpoint high potential accidents in a small area when it shows higher values. Such a method will help road agencies effectively delegate their limited resources. This study shows that the KDE method has the ability to perform better when compared to the PDE method.
At the same time, the KDE method can be used in the future to better locate black-spots as compared with other statistical modeling approaches.

CONCLUSION

The two geostatistical methods evaluated in this analysis are called Kernel Density Estimation (KDE) and Point Density Estimation (PDE). PDE is comparable to KDE in such it weights the surrounding weighted values to derive an estimated density for a measured site. KDE is one of the well-known spatial statistical methods that proved to be very powerful in managing regional black-spot analysis. Both PDE and KDE methods were used previously in the study of road safety. However, KDE was applied more frequently than PDE in investigating black spots for areas that are likely to cause a health problem or areas that have high levels of crime. In this research study, KDE is presented as a promising alternative that is characterized by its ability to handle spatially autocorrelated datasets that can be used successfully to pinpoint black spots. The two methods were compared in a case study for identifying accident black-spots using the road network of the State of Michigan. Historical accident data from 2010 to 2014 was used. After applying both methods, the KDE results were more concentrated and considered more desirable for black-spot determination then the PDE results.

REFERENCES

Mitra, S., 2008. Enhancing road traffic safety: A GIS based methodology to identify potential areas of improvement, *California Polytechnic State University, San Luis Obispo, CA.*

Molla, Mohammad, M., & Matthew, 2014. Geostatistical approach to detect traffic accident hotspots and clusters in North Dakota; *Upper Great Plains Transportation Institute.*

