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ABSTRACT 
 
In this paper, we present an automatic algorithm to estimate the orientation of multiple images with respect to 
terrestrial laser data. The proposed algorithm takes advantage of both conventional single-view and multi-view 
registration approaches. The algorithm consists of three steps. In the first step, intensity images are generated from 
the terrestrial laser data with intensity information, and the initial exterior orientation parameters (EOPs) of each 
camera image are then estimated from feature correspondences with the intensity images. In the second step, the 
initial EOPs obtained from previous step are refined through a bundle adjustment process. In the third step, the point 
cloud reconstructed from the bundle adjustment process is registered to the terrestrial laser point cloud to determine 
the final orientation of each image. The proposed algorithm is tested on experimental datasets, and the results 
demonstrate that the proposed algorithm can efficiently handle the orientation estimation of multiple images with 
respect to the terrestrial laser data. 
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INTRODUCTION 
 

Nowadays, 3D modeling of objects can be achieved through either active or passive remote sensing systems. 
Active sensors, such as laser scanners, are able to directly provide precise and reliable 3D information of scanned 
objects. However, the obtained 3D data (point cloud) usually lacks color information (especially when collecting 
data from mobile platforms). On the other hand, passive sensors, which commonly use digital frame cameras, can be 
incorporated for 3D reconstruction while providing spectral information of the mapped objects. This spectral 
information would allow for the derivation of more reliable semantic information when compared with active 
ranging sensors. However, the main challenge in deriving 3D information from imagery is the automated 
identification of conjugate features in overlapping images, which is known as the matching problem. Both active 
and passive approaches have their limitations, and cannot individually solve all the problems during 3D 
reconstruction of real world (González-Aguilera et al., 2009). Therefore, the integration of both active and passive 
approaches for 3D reconstruction can provide benefits for different applications. 

Many approaches have been developed to register imagery with laser data. However, these approaches are not 
fully automated and time-consuming, mainly because of inefficient 2D-to-3D correspondences between imagery and 
laser data. This paper presents a fully automatic algorithm to estimate the orientation of multiple images relative to 
terrestrial laser data. The algorithm consists of three steps. In the first step, intensity images from laser data are 
created, and then the initial exterior orientation parameters (EOPs) of each camera image are estimated from feature 
correspondences with intensity images. In the second step, the initial EOPs obtained from previous step are refined 
through a bundle adjustment process. In the final step, the point cloud reconstructed from previous bundle 
adjustment process is registered to 3D laser points to determine orientation of each image with respect to laser data. 

The remainder of this report presents the proposed algorithm in more details. First, a literature review of related 
works is given. Then, the proposed algorithm is presented. Finally, the experimental results and conclusions are 
shown respectively. 
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LITERATURE REVIEW 
 

There has been a considerable amount of research efforts in registering images with laser scanning data. 
Considering the different strategies used for image registration relative to laser scanning data, current registration 
approaches can be divided into two different categories: single-view registration approach and multi-view 
registration approach. In the single-view registration approach (Stamos & Alien, 2001; Ding et al., 2008; González-
Aguilera et al., 2009; Mastin et al., 2009; Sattler et al., 2011; Guan et al., 2013), the correspondences between 2D 
features from the image and 3D points from the laser data are first determined. Then, the orientation of each image is 
estimated separately. The single-view registration approach is easy and fast to implement. However, if there are 
multiple overlapping images, this approach doesn’t consider the geometric constraints and feature correspondences 
among different images. On the other hand, instead of finding 2D-to-3D feature correspondences between each 
individual image and the laser points, in the multi-view registration approach (Liu et al., 2006; Mastin et al., 2009), a 
3D model (3D point cloud) is usually generated from multiple images within a local coordinate system. Then, the 
3D model is registered with the 3D laser points to determine the orientation parameters of involved images. The 
shortcoming of this approach is that generating a 3D model from multiple images can be very computationally 
expensive. Therefore, a new algorithm, which takes advantage of both single-view and multi-view registration 
approaches, is developed and presented in this paper. Reviews of the single-view and the multi-view registration 
approaches are respectively given in following sections. 

 
Single-view Registration Approach 

Since the registration of a single image to laser data can be formulated as a camera pose estimation problem, the 
pre-requisite of single-view registration approach is to establish feature correspondences between 2D image features 
and 3D laser points. One straightforward way to solve the feature correspondences problem is to extract features 
from both types of data and find direct 2D-3D correspondences. Sattler et al. (2011) developed a direct 2D-3D 
descriptor matching method using visual vocabularies quantization. In their method, both 2D point features in the 
image and 3D points in the point clouds are assigned visual vocabularies. Then, a features matching process is 
carried out based on a search through features with similar visual words. However, a prioritized correspondence 
search is required. Ding et al. (2008) proposed a fast and automated algorithm for registering oblique aerial imagery 
onto 3D geometric models obtained from LiDAR. In their algorithm, the vanishing points are used for initial angular 
estimation, and then 2D corners from the images are matched with orthogonal 3D structural corners in the 3D 
geometric models. However, this method requires GPS and compass measurements for coarse estimation of the 
image orientation, and it doesn’t work for scenes without orthogonal 3D structural corners.  

With the previous discussion, due to the characteristics of laser data, it’s usually very hard to find exact 2D-3D 
point feature correspondences between 2D camera images and 3D laser data. Instead of direct 2D-3D point feature 
correspondences, structural features, such as building edges and other linear features, are used in many research 
efforts. For example, Stamos and Alien (2001) presented a semi-automatic method for image-to-model registration 
of urban scenes. In their method, 3D lines are extracted from point clouds of urban scenes, and matched with 
extracted edges from the images. Because this method involves parallelism and orthogonality constraints that exist 
in urban environments, this method only works for scenes containing linear features with strong geometry 
constraints.  

One advantage of implementing direct 2D-3D feature correspondences is that the orientation parameters of each 
image can be directly computed through spatial resection. However, most direct 2D-3D registration algorithms only 
work for a certain type of images with special geometric constraints, which limit their ability to solve different 
registration problems. 

Considering that current laser data usually contains intensity information, which could be very helpful for 
matching 3D point cloud with 2D camera images. Therefore, instead of the direct 2D-3D feature correspondences, 
2D intensity images can be generated from 3D laser points, and 2D-2D feature correspondences can be applied 
between the camera images and the laser-based intensity images. As a result, an indirect 2D-2D-3D registration 
framework can be applied to determine the feature correspondences between the image and the laser points. Then, 
the orientation of each image can be estimated in the same way as the above-mentioned direct 2D-3D feature 
correspondences methods. 

In the indirect 2D-2D-3D registration framework, similarity measures among different features, such as the 
normalized cross correlation, are usually used for 2D-2D feature correspondences between camera images and laser-
based intensity images. For example, Mastin et al. (2009) presented a 2D-3D registration method based on mutual 
information. In their method, laser points are back-projected onto a 2D image plane, which is obtained from 
GPS/INS data or a user pre-defined image orientation. Then, mutual information between image point features and 
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the projected laser features are computed to update the estimated image orientation. González-Aguilera et al. (2009) 
proposed a robust 3-level feature matching strategy to match digital camera images with laser intensity images. In 
the proposed strategy, point features from different sources are initially matched in an image pyramid based on 
cross-correlation coefficient. Then, the initial matches are refined using Least Squares Matching. Finally, the 
fundamental matrix within the image stereo pair is estimated through a RANSAC algorithm to remove mismatches 
between the digital camera images and the laser intensity images. Similarly, Guan et al. (2013) developed an indirect 
feature matching algorithm to estimate the position of a hand-held camera with respect to terrestrial LiDAR data. In 
the method, the camera image is initially registered with a terrestrial LiDAR data using SIFT features. Then, the 
orientation of the camera is refined by iterative feature matching using Harris features.  

The 2D-2D-3D registration methods, which usually convert 3D laser points into 2D intensity image, take the 
advantage of current 2D image processing techniques. However, the conversion from 3D laser point cloud to 2D 
laser intensity images may introduce additional errors and reduce the registration accuracy between images and laser 
points.  

One common limitation of both the direct and the indirect 2D-3D single-view registration approaches (Sattler et 
al., 2011) is that they can’t handle scenes lacking easily extracted points and lines. In addition, possible significant 
occlusions may also reduce the accuracy of estimated image orientation. Therefore, a multi-view registration 
approach, which uses multiple overlapping images, is usually an alternative option for registering images with laser 
data. 

 
Multi-view Registration Approach 

Different from the above-mentioned single-view registration approach, multi-view registration approach usually 
follows a 3D-3D registration framework. For example, Zhao et al. (2005) used iterative closest point algorithm 
(ICP) to align a point cloud derived from a sequence of video images to a 3D point cloud from a laser scanner. In 
their method, the 3D point cloud is first reconstructed from a sequence of video images relative to a local coordinate 
system. Then, the outcome from the image-based 3D reconstruction is matched to the geo-referenced laser points in 
order to estimate the transformation between the image-based local and the laser-based reference coordinate 
systems. Meanwhile, the authors also assume that the initial transformation parameters for the ICP algorithm are 
available from GPS measurements or manual geo-referencing process. Liu et al. (2006) also applied structure-from-
motion algorithm on a group of images, and then implemented 3D-3D registration from the sparse point cloud, 
which was obtained from structure-from-motion, to the 3D range data. 

There are several advantages of the 3D-3D registration framework. One is its capability to handle images with 
significant occlusions. For example, in the 2D-3D registration framework, if there isn’t enough feature 
correspondences between the image and the laser points, the image orientation can be poorly estimated. However, in 
the 3D-3D registration framework, the image orientation can be determined through a relative orientation procedure. 
Another advantage is that the 3D-3D registration framework removes the demand for feature extraction, like corners 
and edges, from 3D laser points prior to the registration. However, the 3D-3D registration framework could fail for 
certain images and scenes. For example, for those images with weak intersection geometry, the reconstructed 3D 
point cloud may be distorted. As a result, the image orientation cannot be accurately estimated. 

 
 

METHODOLOGY 
 

The proposed algorithm takes advantages of both single-view and multi-view registration approaches. As shown 
in Figure 1, there are three steps in the proposed algorithm. In the first step, intensity images from laser data are 
generated, and then the initial EOPs of each camera image are estimated using feature correspondences with the 
laser-based intensity images. In the second step, the initial EOPs obtained in the first step are refined through a 
bundle adjustment process. In the third step, the Iterative Closest Patch (ICPatch) algorithm is applied to register the 
point cloud reconstructed from the bundle adjustment process to the 3D terrestrial laser points. 
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Figure 1. Proposed algorithm 

 
Image Orientation Initialization 

In this paper, the image orientation is estimated for distortion-free digital camera images. It means that the 
digital camera used for data collection is calibrated, and the distortion of each image is removed. 

Synthetic Views of 3D Laser Data. As shown in Figure 2, virtual cameras with different viewing directions are 
placed around the 3D laser points. Then, laser points are projected onto the image plane of each virtual camera to 
generate intensity images. In this process, Z-buffering algorithm is implemented to handle the problem of 
occlusions. 
 

 
Figure 2. Virtual cameras can be placed around 3D terrestrial laser point cloud with different viewing directions and 

distances. 

In different applications, the number of virtual cameras depends on the type of feature operators (like Harris 
operator, SIFT operator, and etc.) that is used for feature matching between camera and intensity images. If the 
extracted feature is able to handle rotation, scale and wide-baseline, less virtual cameras are needed. In contrast, if 
the extracted feature is neither rotation-invariant nor scale-invariant, more virtual cameras are needed.  

Another problem of generating laser-based intensity images is the presence of holes and gaps in the intensity 
images, due to an insufficient density of laser points. To solve this problem, an appropriate pixel size has to be 
estimated and assigned to the virtual camera at each viewpoint (see Equation (1)).  
 

𝑝𝑝𝑝𝑝𝑝 =  
𝑓𝑓
𝐻

 (1) 
 

Where: 
𝑝𝑝𝑝𝑝𝑝 is the pixel size of the virtual camera; 
𝑓 is the principal distance of the virtual camera; 
𝐷 is the point spacing in the point cloud; 
𝐻 is the depth from laser point to the perspective center of the virtual camera. 

1. Estimate the orientation of each image based on a 
feature matching strategy 

2. Use a bundle adjustment to refine the EOPs of available 
images, and generate 3D point cloud in object space 

3. Use the ICPatch algorithm to register image-based point 
cloud to laser-based point cloud 
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However, this formula only considers the situation, in which all laser points fall on the same plane that is 
parallel to the image plane. Therefore, additional interpolation is then applied on each intensity image to fill gaps 
and reduce the influence of insufficient laser point density. 

Feature Matching Process. In close-range photogrammetry applications, the baseline cannot be always kept 
constant and the rotation around each axis is usually significant. Therefore, the extracted features for matching 
digital camera images with laser-based intensity images should be invariant under different transformations. 

In the proposed algorithm, Scale-Invariant Feature Transform (SIFT) features (Lowe, 2004), which are invariant 
to image scaling and rotation, are used for feature matching between the camera images and the laser-based intensity 
images. The proposed feature matching process is implemented in two different levels. 

At the first level, the initial feature matching between the camera image and the laser-based intensity image is 
determined through a Euclidean-distance-based nearest neighbor matching approach. Then, matching error detection 
is carried out using forward/backward consistency check. As shown in Figure 3(a), from the camera image to the 
intensity image, P1 matches Q1, and P2 matches Q2; from the intensity image to the camera image, Q1 matches P1, 
and Q2 matches P3. Through camera/intensity consistency check, (P1, Q1) is accepted as a correct, while (P2, Q2) 
and (Q2, P3) are discarded as mismatches. 

 
Figure 3. (a) Forward/backward consistency check; (b) feature matching along conjugate epipolar lines 

At the second level, with the relative orientation parameters estimated from co-planarity model (Mikhail et al., 
2001), we can generate more feature correspondences by limiting the feature corresponding search range along the 
epipolar line. As shown in Figure 3.3(b), for each feature in the query image, its search space for corresponding 
features is reduced from the whole image to the epipolar line. A buffer area around the epipolar line is generated as 
the search space. In the search space, the feature with the minimum Euclidean-distance between feature descriptors 
is considered as the candidate match. The same forward/backward consistency check is also carried out at the second 
level to remove mismatches between the camera and the intensity images. 

After applying the proposed feature matching process, the feature correspondences between camera image and 
laser-based intensity image can be determined.  

Image Orientation Estimation.  
• Relative Orientation Parameters (ROPs) Estimation 
In general, the image orientation is directly estimated through a spatial resection process with corresponding 2D 

to 3D features. Instead, in this research, the relative orientation parameters (ROPs) between the camera image and 
the laser-based intensity image are initially estimated. 

The well-known co-planarity model (e.g. Mikhail et al., 2001) is adopted to solve the relative orientation within 
an image stereo pair. The co-planarity model is presented in Equation (2). 
 

𝑢𝑙𝑇 �
0 𝑇𝑇 −𝑇𝑇

−𝑇𝑇 0 𝑇𝑇
𝑇𝑇 −𝑇𝑇 0

� (𝑅𝑐𝑙 )𝑇𝑢𝑐  =  0 (2) 

 
Where 𝑢𝑙 = (𝑥𝑙 ,𝑦𝑙 ,−𝑐𝑙)𝑇represents the laser-based intensity image coordinates;  𝑢𝑐 = (𝑥𝑐 ,𝑦𝑐 ,−𝑐𝑐)𝑇 represents 

the camera image coordinates. The rotation matrix 𝑅𝑐𝑙  is the rotation of the camera image with respect to the laser-
based intensity image. 𝑇𝑇, T𝑦, and 𝑇𝑇 are three translations between the perspective centers of the camera image 
and the laser-based intensity image. Based on the direction of the baseline, either 𝑇𝑇 or 𝑇𝑇 is assigned an arbitrary 
value. The co-planarity model can be solved through a least-squares adjustment. At least five corresponding point 
pairs within a camera/intensity image stereo pair are needed to recover the relative orientation parameters within the 
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same image stereo pair (e.g. three rotation angles, and two translations). 
Due to projection and interpolation errors, the 3D coordinates of the extracted features in the laser-based 

intensity images are not accurate. As a result, the image orientation that is estimated through the single photo 
resection procedure would not be accurate either. In this paper, the relative orientation parameters estimated between 
the camera image and the laser-based intensity image only utilizes feature correspondences in 2D space. Therefore, 
the estimated image orientation is more accurate. 

• Compatibility Analysis 
After the ROPs estimation, the EOPs of a camera image are then estimated within a selected triplet, which 

consists of two intensity images and one camera images. There are two requirements for the selected triplet: 
1. There should be sufficiently matched features within the selected triplet; 
2. There should be a good geometry within the selected triplet.  
For the first requirement, we only need to maximize the number of matched features within the selected triplet. 

For the second one, a compatibility analysis approach is proposed to evaluate the geometry within all possible 
triplets.  

As shown in Figure 4, one possible triplet includes Intensity Image i, Intensity Image j, and Camera Image k. 
The relative orientation parameters for the stereos (k, i) and (k, j) are obtained through the SIFT feature matching 
process and relative orientation procedure, which have been described in previous sections. Since the ROPs of the 
stereos (k, i) and (k, j) are estimated with different scales, the scale factors for the stereos (k, i) and (k, j) can be 
determined through Equation (3). 
 

rji =  λ2rki − λ 1Rj
irk
j  (3) 

 
      Where rk

j  and rki  are the two translation vectors that have been estimated from the relative orientation procedure; 
rk
j  describes the translation between Camera Image k and Intensity Image i, and rki  describes the translation between 

Camera Image k and Intensity Image j. The two scale factors λ 1  and λ 2  are then used to transform the two 
translation vectors rk

j  and rki  into the same scale. In the intensity image stereo (j, i), rji  describes the translation 
between Intensity Images j and i. The matrix Rj

i describes the rotation from Intensity Image j to Intensity Image i. 
Since the EOPs of both Intensity Images i and j are known, both rji and Rj

i are computed from the known EOPs. 
 
 

 
Figure 4. Compatibility analysis within a triplet of two intensity images and one camera image 
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As long as Equation (3) is solved, and the scale factors (𝜆1 and 𝜆2) for the stereos (k, i) and (k, j) are 
determined, the approximate EOPs of the Camera Image k can be computed through Equation (4). 
 

⎩
⎪⎪
⎨

⎪⎪
⎧�
𝑋0𝑘
𝑌0𝑘
𝑍0𝑘

� =  �
𝑋𝑜𝑜
𝑌𝑜𝑜
𝑍𝑜𝑜

� +
(λ2rki + rji + λ 1Rj

irk
j )

2
�

𝑅𝑘
𝑟𝑟𝑟 =  𝑅𝑖

𝑟𝑟𝑟 ∙ �
(𝑅𝑗𝑖 ∙ 𝑅𝑘

𝑗 + 𝑅𝑘𝑖 )
2
� �

 

 

(4) 

 
Where (𝑋0𝑘  ,𝑌0𝑘 ,𝑍0𝑘 ) and (𝑋0𝑖  ,𝑌0𝑖 ,𝑍0𝑖 ) represent the positions of Camera Image k and Intensity Image i 

within the laser point cloud reference frame. The two scale factors (𝜆1 and 𝜆2) are computed from Equation (3). 
The two vectors λ2rki  and (rji + λ 1Rj

irk
j ) describe the translation from Camera Image k to Intensity Image i. Both 𝑟𝑘𝑜  

and 𝑟𝑘
𝑗 are estimated from the relative orientation procedure of the stereos (k, i) and (k, j), and 𝑟𝑗𝑜  is computed from 

the EOPs of Intensity Images i and j. The two rotation matrices 𝑅𝑖
𝑟𝑟𝑟  and 𝑅𝑘

𝑟𝑟𝑟  describe the rotations from Intensity 
Image i and Camera Image k to the reference frame. The two matrices 𝑅𝑗𝑖 ∙ 𝑅𝑘

𝑗  and 𝑅𝑘𝑖  describe the rotation from 
Camera Image k to Intensity Image i. All the three rotation matrices 𝑅𝑗𝑖, 𝑅𝑘𝑖  , and 𝑅𝑘

𝑗  represent the rotations within 
the stereos (j, i), (k, i), and (k, j). Both 𝑅𝑘𝑖  and 𝑅𝑘

𝑗  are estimated from the relative orientation procedure of the stereos 
(k, i) and (k, j), and 𝑅𝑗𝑖 is computed from the EOPs of Intensity Images i and j. 

As shown in Figure 4, the image orientation of Camera Image k can be estimated from either Intensity Image i 
or Intensity image j through a relative orientation procedure. Ideally, these two estimated image orientations (one is 
estimated from Intensity Image i, and the other one is estimated from the Intensity Image j) should be identical. 
However, due to the noise in the image, there would be a discrepancy between the two estimated image orientations. 
Therefore, a score function for compatibility analysis is defined as Equation (5). 

 

S = �𝑎𝑎𝑎(𝑟𝑖) ∙ � �𝑓𝑚𝑚2
3

𝑛=1

3

𝑚=1

3

𝑖=1

 
 

(5) 

 
Where: 

 �
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�
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� describes the differences between the two estimated rotation matrices of Camera Image k with 

respect to Intensity Image i; (𝑟1, 𝑟2, 𝑟3) describes the differences between the two estimated positions of Camera 
Image k with respect to Intensity Image i. Ideally, both the rotation matrix and the position differences should be 
zero. In practice, good geometry within the selected triplet usually would lead to a small difference between the two 
estimated image orientations. Therefore, a small value of S computed from the score function (Equation (5)) 
indicates that there is good geometry within the triplet. By maximizing the product of the number of matches within 
the triplet and the reciprocal of the score value S defined in Equation (5), the triplet with sufficient feature matches 
and good geometry can be selected. Then, the EOPs of Camera Image k can be estimated within the selected triplet 
through a bundle adjustment process. The initial approximations of EOPs are defined in Equation (4). 

In practice, due to occlusions, some camera images cannot be matched with an intensity image. In this 
situation, the EOPs of the unreferenced camera images are estimated through relative orientation procedure with the 
camera images, which have been referenced with the laser points. 

 
Refinement by Bundle Adjustment 

In the previous section, the camera images are matched with the laser-based intensity images, and the EOPs of 
each camera image are estimated with respect to the laser point cloud reference frame. Then, in this section, a bundle 
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adjustment process is carried out to refine the EOPs of each camera image. Figure 5 illustrates the inputs and the 
outputs of the bundle adjustment process. As for the inputs, the initial EOPs of each camera image are obtained from 
the previous image orientation estimation process. Tie points are automatically extracted and matched through a 
proposed SIFT feature matching process. The proposed SIFT feature matching process here is similar to the above-
mentioned feature matching process in the previous section. The only difference is that the proposed SIFT feature 
matching process in this section deals with the feature correspondences between two camera images. The 
approximate 3D object points are then computed through a spatial intersection process with the initial EOPs of each 
camera image and image coordinates of the tie points. 

 
Figure 5. Inputs and outputs of the bundle adjustment process 

 
Refinement by Iterative Closest Patch (ICPatch) 

After the refinement through the bundle adjustment process, a 3D-3D Iterative Closest Patch (ICPatch) 
registration process is applied to register the 3D point cloud reconstructed from the previous bundle adjustment 
process to the 3D laser point cloud.  

Due to the irregular nature of point clouds, exact point-to-point correspondence usually cannot be assumed. 
Instead of point-to-point correspondence, the geometric primitives chosen for the ICPatch registration are points and 
triangular patches (Habib, 2010). Therefore, for any two overlapping models, one of the point clouds is kept as it is, 
and the other one is converted to a Triangulated Irregular Network (TIN). In this paper, because the point cloud 
reconstructed from the bundle adjustment process is sparse, the image-based point cloud is kept as it is, and TIN is 
generated from the laser-based point cloud. Similar to the Iterative Closet Point (ICP) registration algorithm, the 
correct correspondences between the image-based points and the laser-based triangular patches is established 
through an iterative approach. To solve for the transformation parameters between the two different point clouds, co-
planarity constraint is implemented.  

 
Figure 6. Conjugate primitives for ICPatch registration 

In the co-planarity constraint model, points 𝑃′,𝑉1,𝑉2, and 𝑉3 are assumed to be coplanar. This means that the 
volume of the pyramid, which is created by 𝑃′,𝑉1,𝑉2, and 𝑉3  (as shown in Figure 6) should be zero. The co-
planarity constraint is given in Equation (6). 
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In this paper, because the EOPs of each image are estimated with respect to the laser point cloud reference 
frame, the image-based point cloud is close enough to the laser-based point cloud. All the initial transformation 
parameters for the ICPatch registration process are set to zero. The final EOPs of each camera image are given in 
Equation (7). 

 

�
𝑋𝑖𝑙𝑙𝑙

𝑋𝑖𝑙𝑙𝑙

𝑋𝑖𝑙𝑙𝑙
� = 𝑠 ∙ 𝑅𝑖𝑖𝑖𝑙𝑙𝑙 �

𝑋𝑖
𝑖𝑖𝑖

𝑌𝑖
𝑖𝑖𝑖

𝑍𝑖
𝑖𝑖𝑖

� + 𝑟𝑖𝑖𝑖
𝑙𝑙𝑙     𝑎𝑎𝑎  𝑅𝑖𝑙𝑙𝑙 =  𝑅𝑖𝑖𝑖𝑙𝑙𝑙 ∙ 𝑅𝑖

𝑖𝑖𝑖 

 
                (7) 

 
Where: 

(𝑋𝑖
𝑖𝑖𝑖 ,𝑌𝑖

𝑖𝑖𝑖 ,𝑍𝑖
𝑖𝑖𝑖)  and (𝑋𝑖𝑙𝑙𝑙 ,𝑌𝑖𝑙𝑙𝑙 ,𝑍𝑖𝑙𝑙𝑙)  respectively represent the position of the perspective center of the 

camera image i within the image-based and the laser-based point cloud coordinate frame; the two rotation matrices 
𝑅𝑖
𝑖𝑖𝑖 and 𝑅𝑖𝑙𝑙𝑙 describe the rotations of the camera image i with respect to the image-based and the laser-based point 

clouds. The rotation matrix 𝑅𝑖𝑖𝑖𝑙𝑙𝑙  and the translation vector 𝑟𝑖𝑖𝑖
𝑙𝑙𝑙  describe the rotation and the translation from the 

image-based point cloud to the laser-based point cloud. 𝑠 is the scale factor between the two different point clouds. 
𝑅𝑖𝑖𝑖𝑙𝑙𝑙 , 𝑟𝑖𝑖𝑖

𝑙𝑙𝑙  , and s are all computed from the ICPatch registration process. 
After the ICPatch registration process, the image-based and the laser-based point clouds are registered into the 

same reference frame. Then, by computing the normal distances between the image-based points and the 
corresponding laser-based triangular patches, the registration accuracy is evaluated. 

 
 

EXPERIMENTAL RESULTS 
 
Description of the Experimental Dataset 

The test site involved in the experiment is the Ronald McDonald House in Calgary, Canada. 21 images around 
the Ronald McDonald House were captured by a Canon Rebel T3 digital camera. The Canon digital camera is 
calibrated, and the IOPs of the calibrated camera is given in Table 1. In the meantime, terrestrial laser points were 
acquired by a Faro Focus3D scanner. The resolution of the laser point cloud is up to 2 cm at the distance of 15 
meters. 

Table 1. The IOPs of the calibrated Canon Rebel T3 digital Camera 

 Principal 
point 

coordinate 
𝑥𝑥 (mm) 

Principal 
point 

coordinate 
𝑦𝑦 (mm) 

Principal 
distance 
c (mm) 

Pixel size 
(mm) 

Image size 
(pixel2) 

K1 
(mm-2) 

K2 
(mm-4) 

Calibrated -0.02233 -0.14730 22.32591 0.0052 4272 × 2848 −3.0637 × 10−4 6.8414 × 10−7 

 
      We place 12 virtual cameras around the obtained terrestrial laser point cloud. These virtual cameras are aligned 
along two different rows (see Figure 7.(a)). The minimum distance from the first row to the front façade of the 
Ronald McDonald House is about 20 meters; the minimum distance from the second row to the same façade is about 
25 meters. All the virtual cameras on the same row are placed uniformly in viewing directions. The intersection 
angle between two adjacent virtual cameras is 15 degree, and the intersection angle between the first and the last 
cameras on the same row is 75 degree. The distance between two adjacent virtual cameras is 3 meters. 
      To simplify the feature matching process between the camera and the intensity images, the same image and pixel 
sizes of the Canon Rebel T3 camera are assigned to the virtual cameras. The principal distances of the virtual 
cameras are all set to 20 mm, which is close to the principal distance of the real camera. Meanwhile, to reduce the 
influence of insufficient point density, interpolation is applied to fill gaps and holes in the intensity images. 
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Figure 7. (a) 12 virtual cameras are placed in front of the Ronald McDonald House; (b) one intensity image generated 

from the point cloud acquired by Faro Focus 3D laser scanner 

Registration Results 
Because the virtual cameras are placed around the front façade of the Ronald McDonald House (see Figure 

7(a)), four out of 21 camera images, which are close to the virtual cameras, are successfully matched with the laser-
based intensity images. For the four matched camera images, the initial EOPs are estimated through the proposed 
image orientation estimation process. For the remaining 17 camera images, the initial EOPs are estimated through 
the image feature matching and the relative orientation procedure with the four matched camera images. Then, the 
estimated image EOPs are sequentially refined through the bundle adjustment and the ICPatch registration 
processes. Figure 8 illustrates the final orientation of each camera image after the refinements. Comparing it with 
the positions of 12 virtual cameras (see Figure 7(a)), we observe that the 17 unmatched camera images are far away 
from the 12 virtual cameras. It gives us an explanation why there are only four out of 21 camera images successfully 
matched with the laser-based intensity images.  

 

 
Figure 8. The final image orientations with respect to the terrestrial laser data: four matched camera images are within 

highlighted ellipse 

      Figure 9(a) and Figure 9(b) illustrate the two point clouds before and after the ICPatch registration process. It’s 
obvious that the discrepancies between the two point clouds disappear after the refinement of the ICPatch 
registration process. The normal distances from the image-based points to the corresponding laser-based triangular 
patches are then computed. The average normal distance of point-to-patch is 0.027 m. 
 

 
Figure 9. The image-based and laser-based point clouds before (a) and after (b) the ICPatch registration process; the 

point cloud with the red color is the image-based, and the point cloud with the green color is the laser-based. 

(a) (b) 

(a) (b) 
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      To evaluate the accuracy of the proposed algorithm, a dense point cloud is reconstructed from the same 
experimental dataset using semi-global dense matching algorithm. Then, the normal distances from the dense-
reconstructed points to the corresponding laser-based triangular patches are computed. The average normal distance 
is 0.025 m. This result is consistent with the average normal distance obtained from the proposed algorithm. Figure 
10 illustrates the dense reconstructed point cloud as well as the point cloud acquired by the terrestrial laser scanner. 
 

 
Figure 10. (a) Dense point cloud reconstructed from multiple images using the semi-global dense matching algorithm; (b) 
point cloud acquired by the Faro Focus3D terrestrial laser scanner; colors are obtained from the camera integrated with 

the laser scanner. 

      Meanwhile, the laser-based point cloud is back-projected onto the camera images to evaluate the accuracy of the 
registration. The result (See Figure 11) shows that the back-projected laser points are accurately matched with the 
camera image, which indicates that the estimated image EOPs are accurate. 
 

 
Figure 11. (a) The back-projected laser points with the camera image; (b) the details of the back-projected laser points 

 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
This paper proposed a fully automatic algorithm to estimate the orientation of multiple images with respect to 

the terrestrial laser data. Virtual cameras are employed to generate the intensity images from terrestrial laser data. 
Then, the SIFT feature matching process is introduced in order to find the feature correspondences between the 
camera and the intensity images. Afterwards, the bundle adjustment and the ICPatch registration processes are 
sequentially applied to refine the estimated image EOPs. The proposed algorithm is tested on real datasets. The 
results show that the proposed algorithm is robust, and the estimated image EOPs are accurate. 

The proposed algorithm utilizes the virtual cameras to generate the intensity images from the terrestrial laser 
data. However, the positions of the virtual cameras have to be carefully estimated. Another limitation of the 
proposed algorithm is that it can only deal with the terrestrial laser data with intensity information. Future work 
therefore could include improving the proposed algorithm for the image orientation estimation without using virtual 
cameras, and increasing the applicability of the proposed algorithm for laser data without intensity information. 

 
 
 

(a) (b) 

(a) (b) 



ASPRS 2014 Annual Conference 
Louisville, Kentucky ♦ March 23-28, 2014 

ACKNOWLEDGEMENT 
 
The author would like to thank CANTEGA, Tecterra and the Natural Sciences and Engineering Research 

Council of Canada (NESRC) for the financial support of this research work. 
 
 

REFENCES 
 
Ding, M., Lyngbaek, K., & Zakhor, A. (2008). Automatic registration of aerial imagery with untextured 3d lidar 

models. Paper presented at the Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE 
Conference on. 

González-Aguilera, D., Rodríguez-Gonzálvez, P., & Gómez-Lahoz, J. (2009). An automatic procedure for co-
registration of terrestrial laser scanners and digital cameras. ISPRS Journal of Photogrammetry and Remote 
Sensing, 64(3), 308-316.  

Guan, W., You, S., & Pang, G. (2013). Estimation of camera pose with respect to terrestrial LiDAR data. Paper 
presented at the Applications of Computer Vision (WACV), 2013 IEEE Workshop on. 

Liu, L., Stamos, I., Yu, G., Wolberg, G., & Zokai, S. (2006). Multiview geometry for texture mapping 2d images onto 
3d range data. Paper presented at the Computer Vision and Pattern Recognition, 2006 IEEE Computer 
Society Conference on. 

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer 
vision, 60(2), 91-110.  

Mastin, A., Kepner, J., & Fisher, J. (2009). Automatic registration of LIDAR and optical images of urban scenes. 
Paper presented at the Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 

Mikhail, E. M., Bethel, J. S., & McGlone, J. C. (2001). Introduction to modern photogrammetry (Vol. 1). John Wiley 
& Sons Inc, New York. 479 pp. 

Sattler, T., Leibe, B., & Kobbelt, L. (2011). Fast image-based localization using direct 2D-to-3D matching. Paper 
presented at the Computer Vision (ICCV), 2011 IEEE International Conference on. 

Stamos, I., & Alien, P. (2001). Automatic registration of 2-D with 3-D imagery in urban environments. Paper 
presented at the Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference 
on. 

Zhao, W., Nister, D., & Hsu, S. (2005). Alignment of continuous video onto 3D point clouds. Pattern Analysis and 
Machine Intelligence, IEEE Transactions on, 27(8), 1305-1318. 


	AUTOMATIC ORIENTATION ESTIMATION OF MULTIPLE IMAGES WITH RESPECT TO LASER DATA
	KEYWORDS: registration, image matching, orientation estimation, point cloud
	Synthetic Views of 3D Laser Data. As shown in Figure 2, virtual cameras with different viewing directions are placed around the 3D laser points. Then, laser points are projected onto the image plane of each virtual camera to generate intensity images....



