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ABSTRACT 
 
Digital elevation models (DEM) are baseline geospatial products widely used in mapping and other applications. 
Generally obtained from airborne sensor data, DEMs can be made available at various spatial resolutions and 
accuracy levels. As DEM production costs vary significantly depending on the detail level of these two 
parameters, plans for data acquisition must be carefully balanced so as to satisfy spacing and accuracy 
requirements at the lowest possible cost. While most standard mapping techniques provide methods for 
determining the required resolution, they are usually based on qualitative surface definitions such as open, built-
up and/or urban terrain, or by land cover such as weeds, crops, scrub, wooded, etc. These categories, however, 
are not necessarily correlated to the complexity of the surface, which ultimately defines the spatial sampling 
distance for any given surface representation requirements. This paper investigates a method for surface 
characterization that uses the spatial spectrum. Mathematically, DEMs can be modeled as real, single-valued 
functions of two variables. Using a 2D Fourier transform, surfaces can be represented in the spatial frequency 
domain, where each frequency can be interpreted as a different sampling rate of the measurements (i.e., 
spacing). In a simple interpretation: low-frequency components characterize slow changes of the surface, such 
as average slope, while high-frequency components describe the microstructure, or local, details. Evaluating 
representative DEMs, the most typical spatial spectra can be determined which, subsequently, can help 
practitioners define the optimal sampling distances and/or error requirements to determine DEM resolution and 
data acquisition for major surface categories. 
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INTRODUCTION 
 
Since DEMs (Digital Elevation Model) became a baseline mapping/geospatial product, they have been 

broadly used in almost all mapping and engineering (as well as many other) applications (Muane, 2007). For 
example, they are directly used in flood-plain mapping or for line-of-sight analysis in telecommunications. 
Indirectly they are used in orthophoto production or 3D city modeling. The real proliferation of DEM-based 
analysis started with the introduction of powerful computers and digital photogrammetric systems that could 
provide an affordable platform for mass surface-point generation from scanned airborne imagery as well as 
satellite radar acquisition able to process point clouds acquired by LiDAR imaging systems. Most recently, the 
introduction of SGM (Semi-Global Matching), which is widely used to process UAS (Unmanned Aerial 
System) imagery, has reinvigorated stereo-image-based production of DEMs (Hirschmuller, 2005). 

 
There are numerous terms used for describing surface models and data including DSM (digital surface 

model), DTED (digital terrain elevation data), DTM (digital terrain model), DEM (digital elevation model), etc. 
Some of these overlap in definition, while others are unique. In the following, only DEM is used as a general 
term. Note that the term “point cloud” (PC) has been widely used in conjunction with DEMs, but shouldn’t be 
confused with DEMs as PCs represent a more general spatial model/data structure; DEMs are single-valued 2D 
functions, while PCs have no limitation on the 3D point distribution. 

 
Government organizations, data vendors, and business clients make various specifications on these products 

in terms of accuracy, reliability, etc., that are defined as regularizations, quasi-standards, guidelines, etc. The 
regulations most often used in the US are from federal and/or non-profit agencies such as USGS, FEMA, NGA, 
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FGDC, ASPRS, etc. All of these standards/guidelines are focused mainly on aspects of the DEM including 
accuracy level, ground control and statistical evaluation methods. Little or no attention has been paid to 
characteristics of the actual surface, or, in a broader sense, to what impact the complexity of the object space has 
on DEM characterization.  

 
The question is how the terrain can be characterized using simple and straightforward methods. In other 

words, a classification of what category of terrain complexity corresponds to a specific surface that is based not 
just on the experts’ subjective decision, but formalized in a mathematical way to optimize the measurement 
planning and the QA/QC processes. The DEM spatial spectrum provides a potential tool for analyzing surface 
complexity. In theory, DEMs can be modeled as real, single-valued functions of two variables. Using 2D 
Fourier transform, the surfaces can be represented in the spatial frequency domain, where each frequency can be 
interpreted as a different sampling rate of the measurements (i.e., spacing). In a simple interpretation: low-
frequency components characterize the slow changes in the surface, such as average slope, while high-frequency 
components describe the microstructure, or local, details. Evaluating representative DEMs, the typical spatial 
spectra are determined which, subsequently, can help practitioners define optimal sampling distance and/or error 
requirements for DEM resolution and data acquisition for major surface categories. 

 
This paper is a part of an ongoing research project. The objective of this study is to investigate the 

complexity of the surface/object space condition in terms of spatial sampling of the surface and to categorize 
surfaces to analyze the impact of these categories on the QA/QC processes of DEM data. First, in earlier work, 
the idea behind the downsampling and the filtering of frequency domains was introduced (Toth, 2011). Then 
this method was applied to LiDAR point-cloud-derived DEMs (Toth and Grejner-Brzezinska, 2012). In this 
study, three land surface types are analyzed and reconstruction error at different downsampling rates is 
calculated. The results show a relationship between the sampling rate and achievable accuracy level. The 
applied method makes no distinction with respect to the origin of the DEM; it can come from stereo or multiple 
ray imagery or LiDAR point cloud data as well as radar scans. In this study, elevation data derived from the 
SRTM (Shuttle Radar Topography Mission) was used. 

 
 

BACKGROUND AND THEORY 
 
From the DEM point of view, the reconstruction ability of any data acquisition technology is determined by 

the sampling frequency and the accuracy of the measurements. In the case of sampling frequency, for example, 
with increased sampling frequency, the sampling distance will decrease, resulting in a finer representation of the 
surface; with lower sampling frequency, the sampling distance will grow providing a coarser approximation the 
surface. Theoretically, the ideal sampling frequency for a given surface complexity is the Nyquist rate. On the 
other hand, accuracy (vertical measurement error) also has an impact on the DEM: with large vertical errors, the 
details in the reconstructed DEM will decrease or even disappear. In practice, the aim is to determine the largest 
sampling rate where the reconstruction error is equal or comparable to the accuracy of the vertical measurement. 

 
Sampling 

Let the land surface be given as a 2D function: 
 
 

𝑧 = 𝑠(𝑥, 𝑦), (1) 
 
 
where 𝑠(𝑥,𝑦) is the continuous “real” surface. Discretizing the continuous function at 𝑥𝑖 ,𝑦𝑖  points, one 
realization of the sampling can be: 
 
 

𝑧𝑖,𝑗 = 𝑠�𝑥𝑖 , 𝑦𝑗� (2) 
 
The arrangement of the sample points can be regular or irregular. Irregular sample points can be obtained, 

for instance, by conventional land surveying wherein a TIN model is created and generally used (though a grid 
model is frequently derived from irregular data by resampling to a regular grid). Other technologies provide 
nominally regular but not rectangularly arranged point sets. For example, sinusoidal or saw-tooth patterns are 
obtained by some type of LiDAR sensors (without terrain distortion); note that these types of data are usually 
resampled to a regular grid. Since almost all DEM products are distributed in regular grid format, the subsequent 
discussion is only concerned with that data type. 
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The sampling frequency is the number of the sample points in a unit distance. In the X direction, assume 
that the sampling distances, 𝑑𝑥𝑠 , are equidistant and the number of samples, 𝑁𝑥, is finite. Then 
 
 

𝑑𝑥𝑠 =  𝑥𝑖 − 𝑥𝑖+1 = 𝑐𝑜𝑛𝑠𝑡, 𝑖 = 1. .𝑁𝑥 − 1 < +∞ 
 

(3) 

 
 
and, thus, the sampling frequency can be calculated with following expression: 
 
 

𝑓𝑠𝑥 =
1
𝑑𝑥𝑠

 , 𝑓𝑠
𝑦 =

1
𝑑𝑦𝑠

  

 

(4) 

 
 
where 𝑓𝑠𝑥 , 𝑓𝑠

𝑦 are the frequency in the X and Y directions, respectively. The aim of the data acquisition is to 
acquire enough information to allow for reconstruction of the original surface from the samples; the function 
s(x,y) has to be estimated from the 𝑧𝑖,𝑗 samples. Note that the sampling frequency impacts the surface 
reconstruction results. If s(x,y) is a band-limited function, then there exists a highest frequency, called 
bandwidth, above which there are no non-zero spectral frequencies. For the 2D case, there are Bx and By in the X 
and Y directions, respectively. The double of the bandwidth is the so-called Nyquist rate (Shannon, 1949). If the 
sampling rate is higher than the Nyquist rate, then the surface can be reconstructed perfectly: 
 
 

𝑓𝑠𝑥 ≥ 2𝐵𝑥 = 𝑓𝑁𝑥 and 𝑓𝑠
𝑦 ≥ 2𝐵𝑦 = 𝑓𝑁

𝑦    . 
 

(5) 

 
This inequality is called the Nyquist criterion, and the surface can be reconstructed without any error as the 
composition of sinus cardinalis functions: 

 
 

𝑠(𝑥, 𝑦) = � � 𝑧𝑖,𝑗𝑠𝑦𝑛𝑐(𝜋𝑑𝑥𝑠(𝑥 −
𝑖
𝑑𝑥𝑠

))𝑠𝑦𝑛𝑐(𝜋𝑑𝑦𝑠(𝑦 −
𝑗
𝑑𝑦𝑠

))
+∞

𝑗=−∞

+∞

𝑖=−∞

 
(6) 

 
 
Ideally, the bandwidth should be known in order to calculate the ideal sampling frequency. Determination 

of the Nyquist rate is usually accomplished by measurements and analysis of the spatial spectrum. In most 
geospatial data acquisition and product generation tasks, there is an expected or target sampling rate and, thus, 
the band limits (or approximate band limits) are known from past experience. If the band limit is unknown, then 
it may be estimated from a sequence of tests done with various sampling rates. Note that, with undersampling, 
problems may occur such as aliasing and/or spectral leakage. 

 
Reconstruction error of downsampling 

 
In order to characterize the impact of downsampling, i.e., the loss of signal energy, we define the 

reconstruction error in the spatial domain with the RMSE (root mean square error) such that: 
 
 

𝑅𝑀𝑆𝐸(𝑧̃) ≝ �∑ �𝑧𝑖,𝑗 − 𝑧̃𝑖,𝑗�
2𝑁𝑥−1,𝑁𝑦−1

𝑖,𝑗=0

𝑁𝑥 ∗ 𝑁𝑦  (7) 

 
 

where 𝑧𝑖,𝑗 is the original and 𝑧̃𝑖,𝑗 is the reconstructed surface.  
In order to estimate the reconstruction error of downsampling, Parseval’s theorem is applied to create the 

connection between the time and frequency domains. The expression for discrete Fourier transform is the 
following: 
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𝐸𝑧 = ∑ �𝑧𝑖,𝑗�
2𝑁𝑥−1,𝑁𝑦−1

𝑖,𝑗=0 = 1
𝑁𝑥∗𝑁𝑦

∑ �𝑍𝑖,𝑗�
2𝑁𝑥−1,𝑁𝑦−1

𝑖,𝑗=0      (8) 
 
 

This equation states that energy in the time domain is equal to power in the frequency domain. The 
downsampling is implemented by a rectangular (rect) function defined as: 

 
 

ℎ𝑖,𝑗 = � 0, 𝑖𝑓 𝑛𝑓𝑐
𝑥 < 𝑖 < 𝑁 − 𝑛𝑓𝑐

𝑥  𝑎𝑛𝑑 𝑛𝑓𝑐
𝑦 < 𝑗 < 𝑁 − 𝑛𝑓𝑐

𝑦

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� (9) 

 
 

that removes the frequencies inside of the region of 𝑛𝑓𝑐
𝑥  and 𝑁𝑥 − 𝑛𝑓𝑐

𝑥  as well as 𝑛𝑓𝑐
𝑦  and 𝑁𝑦 − 𝑛𝑓𝑐

𝑦 . Here 𝑓𝑐 is the 
cutting frequency and 𝑛𝑓𝑐𝑥

𝑥 ,𝑛
𝑓𝑐
𝑦
𝑦  are the corresponding indices of the cutoff frequencies of 𝑓𝑐𝑥,𝑓𝑐

𝑦. Note that this 
rectangular function acts as a low-pass filter. While mathematically the filtering is not the same as 
downsampling, it is a good approximation.  

To estimate the reconstruction error, we extend Eq. (8) with the windowed region: 
 
 

1
𝑁𝑥∗𝑁𝑦

∑ �ℎ𝑖,𝑗𝑍𝑖,𝑗�
2𝑁𝑥−1,𝑁𝑦−1

𝑖,𝑗=0 = 1
𝑁𝑥∗𝑁𝑦

∑ �𝑍𝑖,𝑗�
2𝑁−𝑛𝑓𝑐𝑥

𝑥 ,𝑁−𝑛
𝑓𝑐
𝑦
𝑦

𝑖,𝑗=𝑛𝑓𝑐𝑥
𝑥 ,𝑛

𝑓𝑐
𝑦
𝑦 = ∑ �𝑧𝑖,𝑗 − 𝑧̃𝑖,𝑗�

2      𝑁𝑥−1,𝑁𝑦−1
𝑖,𝑗=0 . 

 
(10) 

 
 
Note that the right side of the expression is the difference between the original and reconstructed surfaces after 
downsampling. Calculating the square root of Eq. (10) and dividing it by 𝑁𝑥 ∗ 𝑁𝑦: 

 
 

� 1
(𝑁𝑥 ∗ 𝑁𝑦)2

� �𝑍𝑖,𝑗�
2

𝑁−𝑛𝑓𝑐𝑥
𝑥 ,𝑁−𝑛

𝑓𝑐
𝑦
𝑦

𝑖,𝑗=𝑛𝑓𝑐𝑥
𝑥 ,𝑛

𝑓𝑐
𝑦
𝑦

= �∑ �𝑧𝑖,𝑗 − 𝑧̃𝑖,𝑗�
2𝑁𝑥−1,𝑁𝑦−1

𝑖,𝑗=0

𝑁𝑥 ∗ 𝑁𝑦  = 𝑅𝑀𝑆𝐸(𝑧̃𝑛) 

 

(11) 

 
 
gives the reconstruction error. This expression shows that the reconstruction error of downsampling can be 
estimated by the square root of the power spectra of the removed frequencies. Suppose that no systematic error 
is present in the measurements: 

 
 

𝑅𝑀𝑆𝐸(𝑧̃𝑛) =  𝜎𝑚 
 (12) 

 
where 𝜎𝑚 is the standard deviation of the measurement. This statement suggests that the measurement accuracy 
corresponding to a sampling rate can be calculated from the removed frequencies determined by sampling rate. 
 
 

EXPERIMENTS 
 
Three types of digital elevation models were used for analyzing the typical surfaces categories. All were 

derived from SRTM 1-arc dataset. The first data set is a “flat” territory from Ohio with an ~200 m difference in 
elevation (DEM-1). The second DEM is located on the edge of the Appalachia range in Pennsylvania with an 
~600 m difference in height (DEM-2). The third DEM covers a region of the Rocky Mountains with an ~2300 m 
difference in range (DEM-3). All DEMs are of 3601 by 3601 raster, transformed into UTM projection, resulting 
in spacings of ~25 and ~30 meters in the X and Y directions, respectively. The total area of coverage is about 
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9725.4 km2, or ~90,025 by ~108,030 m. The contour plots of the DEMs are shown in Figure 1. The large GSD 
means that the areas are strongly under-sampled, and many surface details are lost. Yet for this study, they still 
can be used based on our assumption that the surfaces have the proper spatial sampling. Note that these DEMs 
may be scaled to create a test surface with centimeter-level detail. Also note that the derived results in terms of 
meaning wouldn’t change. 

 

 
DEM-1 

 
DEM-2  

DEM-3 
Figure 1. Contour plots of the DEMs. 

 
To model different sampling rates, a rectangular windowing (rect function) in the spatial frequency domain 

was applied to the DEMs, implementing a low-pass filter. The basic processing steps are illustrated in Figure 2. 
First, the DEMs are transformed into the frequency domain with 2D discrete Fourier transform. Then the 
spectrum is windowed with the desired frequency cut (see Figure 2a-2b). The error of the surface reconstruction 
can be calculated based on Eq. (11), providing an estimate of the RMSE. Next the surface is reconstructed based 
on the truncated spectrum (see Figure 2d). Since the higher frequency components have been removed, the 
surface is not as accurate and smooth as it was before applying the resampling method. The contours of the 
reconstructed DEM are sharper due to the use of the rect function. Note that filters such as Hamming, Hann, 
Parzen, etc., can be used to decrease the impact of this error. This effect can cause a small deviation between the 
estimated RMSE from the frequency domain and the RMSE in the spatial domain (Eq. (8)).  

Applying different cutoff frequencies to the DEMs, different downsampling is realized and, subsequently, 
the RMSE of the downsampling can be estimated. In these tests, 35-, 40-, 45-, 50-, 80-, and 100-meter 
downsampling rates were used for all the DEMs. The reconstruction errors, in linear and logarithmic format, are 
shown in Figure 3. 

As expected, DEM-3 is more sensitive to changes in the downsampling rate due to its more complex 
surface. Figure 3 clearly shows the error increasing as it is introduced by the larger sampling distances. Thus 
this technique can provide good information for data acquisition planning with specific accuracy requirements. 
For instance, if the accuracy requirement is 1 m, then the sampling rate will need to be less than ~80 meters over 
flat areas and ~40 meters for a modestly undulating surface. In this example, in contrast, this goal cannot be 
reached for mountainous regions. While a DEM derived from satellite data was used in these experiments, this 
method is generic and allows for support of the optimization of the sampling rate of aerial and/or other data 
acquisition systems to any desired level of accuracy. 

 
 

CONCLUSIONS AND FUTURE WORK 
 
In this paper, we present a procedure to estimate surface errors introduced by using different sampling rates. 

The analysis is based on spatial frequency domain processing, and it estimates the RMSE as a function of the 
sampling distance. Note that the condition to meet the Nyquist criterion (in other words, the spatial surface 
signal is band limited) is assumed in this study. Three types of DEMs obtained from SRTM mission data and 
representing different major terrain categories were used for validating the method. The research results indicate 
that for a given accuracy requirement, the sampling distances are correlated to the surface category. In addition, 
the relationship between errors introduced by downsampling the surface and the sampling rate is established. 
This can provide input to data acquisition planning and, even, to DEM archival considerations. Future work will 
address a terrain types to provide statistically relevant classifications for general data acquisition planning.  
 
 



ASPRS 2014 Annual Conference 
Louisville, Kentucky ♦ March 23-28, 2014 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2. The processing steps illustrated for DEM-3: (a) spatial frequency representation, (b) truncating 
the spatial spectrum, (c) original DEM, (d) reconstructed DEM, (e) enlarged area of original DEM, and  

(f) enlarged area of reconstructed DEM. 

 
 

  
Figure 3. Reconstruction errors (linear and logarithmic) of the DEMs at different downsampling rates. 
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