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ABSTRACT: 
 
In rural areas, hydro break lines are necessary to create LiDAR derivative products such as TINs, contours, DEMs 
etc. Water body detection and delineation are necessary to generate hydro break lines. Hydro flattening follows the 
detection and delineation of water bodies (lakes, rivers, ponds, reservoirs, streams etc.). Manual hydro break line 
generation is time consuming and expensive, especially when there are large number of lakes, rivers and their 
tributaries. Accuracy and processing time depend on the number of vertices marked for delineation of break lines. 
Automation with minimal human intervention is desired for this operation. In this paper, we proposed an advanced 
algorithm to detect water bodies automatically using both LiDAR elevation and intensity data. We used two 
distinguishing characteristics to detect water bodies. The first one is that the surface of water body is a flat area and 
the elevation of it is lower than that of the surrounding area. The second one is that spectral reflectance of water is 
very small in the near infra-red range compared with vegetation and other topographic features. Beyond these two 
broad strategies, we used additional techniques to fine tune the algorithm. After detecting water bodies, we 
generated 3D break lines. Finally, we performed a comparison of automatically generated break lines with their 
semi-automated/manual counterparts and we discussed the results. 
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1. INTRODUCTION 

Vast majority of the feature detection work appears to be in urban areas. Building tops, well defined fields, 
streets etc. are some of the more common features that are detected from overhead imagery and LiDAR. Our 
investigations unearthed very little work in automated generation of rural features such as water bodies and 
wetlands. Although manual and semi-automated approaches exist for some rural feature generation, these tend to be 
time consuming and expensive. 

Water body detection is necessary to generate hydro break lines, which are in turn useful in creating derivatives 
such as TINs, contours, DEMs from LiDAR data. Surface water mapping is also essential in many applications such 
as monitoring of river corridor for natural hazard management (e.g. French, 2003; Brügelmann and Bollweg, 2004; 
Hollaus et al., 2005), surveying geomorphological change of floodplains (Thoma et al., 2005, Jones et al., 2007) and 
to improve understanding of wetland dynamics (Jenkins and Frazier, 2010).  

Combining LiDAR elevation and intensity data gives better classification accuracy for water body detection 
(Antonarakis et al., 2008; Brzank et al., 2008; Höfle et al., 2009). Smeeckaert et al. (2013), classified water in 
coastal and river bank areas using Support Vector Machine (SVM) method. However, this method requires historical 
coastline or rough 2D manual plotting of seashore. By supervised fuzzy classification, Brzank et al. (2008) 
delineated water body in Wadden sea area, where the probability of presence of water bodies was attributed to low 
intensity and low elevation. However, this method is not applicable in land areas where water bodies do not 
necessarily have lower elevation. Especially in hilly regions, we can find water bodies located at different altitudes. 
Höfle et al., (2009) used a seeded region-growing algorithm to delineate water surface from land. However, this 
method requires significant pre-processing of LiDAR data such as dropout modelling.  
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2. OVERVIEW OF OUR METHOD 

 In our method, we proposed using LiDAR intensity data as well as an advanced histogram analysis of LiDAR 
elevation data to automatically detect and delineate water bodies with very little pre-processing. The surface of 
water body has the same elevation. So, if we create a histogram based on elevation, we generally notice a peak at the 
corresponding elevation in the histogram. However, small water bodies which typically have fewer pixels with same 
elevation might not result in a peak in the histogram. Hence, LiDAR intensity data is essential to detect smaller 
water bodies. Thus, our algorithm combines intensity and elevation in a unique fashion to detect small and large 
water bodies. The flow chart for the proposed auto hydro break line generation method is shown in figure 1. Our 
algorithm is comprised of two methods to detect water bodies. In the first method, we detected large flat areas 
(larger than half acre in size) as probable candidates for water bodies. Then, using the intensity of the probable area 
and, intensity and elevation of the surrounding areas we eliminated false detections. In the second method, we 
selected low intensity areas using a threshold as probable candidates for water bodies. Then, using the flatness of the 
probable area and, intensity and elevation of the surrounding areas we eliminated false detections. After detecting 
water bodies using the aforesaid methods we merged the detections to get the final detection.   

 
 

 
 

Figure 1. Flow chart for the proposed auto hydro break line generation method 
 
 

3. DETAILED DESCRIPTION OF OUR METHOD  

In this section, we describe in detail how we detected water bodies and generated break lines using both 
intensity and elevation data. We detected only the water bodies that are greater than half acre in size. At first, we 
trained our algorithm in a few training areas in L’Anguille river basin, Arkansas, USA. Thereafter, we applied the 
algorithm in several test areas in the same river basin.  

Here we describe our proposed method step by step for a test area. Please note that the specific numbers, units, 
scales etc. mentioned in this section refer to this specific example. We provide a logical explanation for any general 
conclusions reached as a result of working with this example. 

 
 
3.1 Creating 2m DEM and 2m pixel intensity image  

We rasterized the elevation and intensity data to detect water bodies, since point cloud based approach is 
complex and time consuming. Point cloud based approach can admittedly give us more accurate result. However, if 
higher level of accuracy is needed, we can use point cloud data around the hydro break lines generated using the 
comparatively simpler raster based method.  
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At first we exported the .las file for the test area to ASCII text format and read it in MATLAB. Then we divided 
the test area into a 2m x 2m square grid. Now to create a 2m DEM, in each 2m x 2m square, we kept all the single 
returns and, all the last echoes in case of multiple returns. Thereafter, we calculated the median elevation value of 
those LiDAR returns and assigned it as the elevation of that square. Interpolation methods such as the inverse 
distance weighted method, kriging etc., are generally used for DEM generation. However for our water body 
detection, we took the median elevation value to avoid some high elevation last returns which might not be from 
ground. We gave zero elevation and zero intensity value to squares, from which no LiDAR return was recorded.  

To create the 2m pixel intensity image, we represented each 2m x 2m square by the median of all the intensity 
values of the single returns of the point cloud in that square and, in case of multiple returns, we took the last returns. 
Median intensity value can provide a better approximation of the intensity since it is not affected by the few high 
and low values in the square. The 2m DEM and 2m pixel intensity image for the test area are shown in figure 2 and 
figure 3 respectively. In the image, each pixel represents a 2m x 2m square. 

 
 

 
Figure 2. 2m DEM of the test area in L’Anguille river basin  

 
 

 
Figure 3. 2m pixel intensity image in log scale 

 

Digital Elevation Model

median intensity image
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3.2 Creating histogram of elevation and classifying the peaks  

The range of elevation could be different for different areas. For the elevation histogram, if we select the 
number of bins to be proportional to the range of elevation, then for different areas, the number of bins required 
would be different. However, we wanted to use equal number of bins for all the areas and hence we selected a large 
number 1024, as the number of bins for better resolution. L’Anguille river basin is a comparatively flat area. For 
hilly area, the number of bins should be higher for proper detection of water bodies. 

 In order to create a 1024 bin histogram from the 2m DEM (shown in figure 2), we multiplied the elevation 
values of the DEM with a constant scale where  
    
        Scale   = 1023/highest elevation value in the DEM 

 
We calculated the scale for the test area to be 12.0851ft-1. The resulting DEM now has elevation ranging from 0 to 
1023. We rounded the elevation values to the nearest whole number and we got a modified 2m DEM. We created a 
1024 bin histogram using this modified 2m DEM. In the histogram, each bin represents an elevation and frequency 
of a bin represents the number of pixels with same elevation represented by the bin. We smoothed the histogram 
using a low pass filter with coefficients: [0.25, 0.5, 0.25]. The smoothed histogram is shown in figure 4. In the 
smoothed histogram, we determined the peak locations. If the frequency of any bin is not significantly higher than 
its adjacent or alternate bin, then we didn’t consider it to be a peak. Therefore, if in the histogram, any bin has a 
frequency greater than that of the adjacent bins and, if the frequency is greater than 20 from adjacent bins or greater 
than 50 from alternate bins on both sides, then we defined the bin location as peak location. From the histogram, we 
calculated the peak locations, which are:      [1   50   129   138   143   148   152   168   176] 
 

If f(i) is the frequency of ith bin then ith bin location will be considered as a peak location if the following criteria 
are fulfilled 
 

f(i)>f(i±1) AND [f(i)-f(i-1)>20 OR f(i)-f(i-2)>50] AND [f(i)-f(i+1)>20 OR f(i)-f(i+2)>50] 
 

 

 
 

Figure 4. Smoothed histogram of the modified DEM  
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We classified the peaks into three main classes. We considered a peak in ith bin location as class 2 peak if it fulfills 
the following criteria    

f(i-1)-f(i-2)>200 AND f(i-1)-f(i+1)>200 AND scale>5.5  
 

We considered a peak in ith bin location as class 3 peak if it fulfills the following criteria  
 

f(i+1)-f(i+2)>200 AND f(i+1)-f(i-1)>200 AND scale>5.5 
 

We considered all the rest of the peaks as class 1 peak. In figure 5, we showed different types of peaks. We 
classified the peaks and varied the range of elevation taken for water body detection based on the class of the peak to 
increase the accuracy of detection.  
 
 

 
 

Figure 5. Different classes of peaks 
 
 
3.3 Detecting water bodies using method one 

The flow chart of the water body detection in method 1 is shown in figure 6. In the histogram shown in figure 4, 
each bin represents an elevation. It is highly probable to find surface of some water bodies in a certain range of 
elevation around peak bins. For three different classes of peaks, we calculated the range of elevation differently to 
detect water bodies. 

 
For class 1 peak, the range is: (𝑝𝑒𝑎𝑘 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 −  �𝑠𝑐𝑎𝑙𝑒

3
�) to (𝑝𝑒𝑎𝑘 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + �𝑠𝑐𝑎𝑙𝑒

4
�)  

 
For class 2 peak, the range is: (𝑝𝑒𝑎𝑘 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 −  �𝑠𝑐𝑎𝑙𝑒

3
� − 1) to (𝑝𝑒𝑎𝑘 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + �𝑠𝑐𝑎𝑙𝑒

4
�) 

 
For class 3 peak, the range is: (𝑝𝑒𝑎𝑘 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 −  �𝑠𝑐𝑎𝑙𝑒

3
�) to (𝑝𝑒𝑎𝑘 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + �𝑠𝑐𝑎𝑙𝑒

4
� + 1) 
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Figure 6. Flow chart for Water body detection in method 1  
 
 
       For each of the peaks, we detected all the pixels in the modified DEM that falls in the corresponding elevation 
range. For example, for the LiDAR data shown in figure 2 following are the specific steps. For the peak (figure 4) at 
bin location 143 (which is a class 3 peak) we detected all the pixels that fall in the range (143 −  �12.0851

3
�) to 

(143 + �12.0851
4

� + 1)  or 139 to 147. The pixels detected for peak at bin location 143 are shown in figure 7(a). We 
assigned zero elevation to all the 2m x 2m squares from which no LiDAR return was recorded, so we got a peak at 
zero elevation (bin #1) in the histogram. The pixels detected for peak at bin location 1 are shown in figure 7(b). We 
added the areas with zero elevation to the areas detected around peak at 143. After adding the areas, the resultant 
image is shown in figure 7(c). Then we performed a connected component analysis (4-connectivity based) and 
rejected all the areas less than half acre in size. The resultant probable water body areas are shown in figure 7(d). 
Many false detections also appeared in figure 7(d) and to filter out those false detections, we used the elevation and 
intensity of detected areas and their surrounding areas as well.  
In our earlier reported work (Toscano et al. 2013), less number of sharp peaks were chosen for probable water body 
detection and thus a few water bodies were not detected. In the method proposed in this paper, more peaks were 
selected. In addition, the peaks were also classified into three different classes. For each of these classes different 
elevation range was assigned. This resulted in almost all the water bodies to be detected with more precision. 
However the number of false detection also increased. To eliminate those false detections, we used strong four stage 
nonlinear filtering algorithm, described in the following section.  
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Figure 7. Steps of detecting probable water bodies before eliminating false detections for a particular peak  
   
 
3.3.1. Stage 1 of filtering: Comparing elevation with surrounding area 
 

The elevation of the surrounding area of a water body must be higher than that of the water body. We 
determined the elevation of each probable water body by calculating the median of all the elevation values of the 
pixels, where LiDAR returns were available. We postulated that a sampling of the surrounding area could be 
obtained from a chain of pixels approximately 4 meters away from the probable area.  If more than 80% of this 
chain of pixels have elevation greater than the median elevation of the probable water body and, if the median 
elevation of the chain of pixels is greater than the median elevation of the probable water body by at least 2/3*scale 
(almost equivalent to 8 inches) then we did a continuity test on the probable area in the next stage for filtering. 
Ideally 100% of the pixels in the surrounding area should have greater elevation than the water surface. However, 
the LiDAR data we used has a 9.25 cm RMSE and so we lowered our criteria to 80%. 

 
3.3.2. Stage 2 of filtering: Continuity test 
 

Water bodies must be continuous and should not contain too many non-water body pixels. The non-water body 
pixels inside a probable water body area appear as voids. Closing the voids inside the water bodies will increase the 
size of the water body. We closed all the voids in probable water bodies which have radii less than 4 meters. After 
closing the voids if the area of the probable water body increases by more than 20%, then we rejected that area as 
false detection. We took all the other probable water body areas for the next stage of filtering. Inside a water body 
there might be large islands, and closing those voids might increase the size of the water body by more than 20%. 
So, we closed only the voids which have smaller radii. 
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3.3.3. Stage 3 of filtering: Comparing intensity with surrounding area 
 

Water absorbs a significant portion of light energy in the near infra-red range. So the LiDAR intensity from 
water body is low compared with that of surrounding areas, especially when the deflection angle is high. We 
calculated the median intensity of every probable water body using the 2m pixel intensity image. We took a 10 
meter wide (10 meters is an optimum value, neither too narrow nor too wide) buffer around each of the probable 
water bodies and calculated the median intensities of the surrounding areas. If the median intensity of the 
surrounding area exceeded the median intensity of a probable water body by a threshold t then we took that area to 
the next stage of filtering and rejected the rest of the areas. We calculated the threshold t by equation 1.  
 
 
     t = m/12  if  m≥18 
         = 1.5  if m<18            …                 (1) 
 
where m is the median intensity of the 2 m pixel intensity image. 
 
3.3.4. Stage 4 of filtering: Analyzing intensity of the probable area 
 

If the median intensity of a probable water body is less than the median intensity of the 2m pixel intensity 
image, then we considered it as a water body. Sometimes, median intensity of the water body might be higher than 
the median intensity of the 2m pixel intensity image, when intensity values fluctuate significantly inside the 
probable area (this high fluctuation is observed when the deflection angle is low). At this stage, we calculated 
intensity fluctuation of each probable water body using the 2m pixel intensity image to classify probable candidate 
areas as water bodies that don’t fall in the criterion mentioned above. To calculate the intensity fluctuation, we did a 
2-level decomposition of the image using biorthogonal 4.4 wavelet filters and reconstructed the diagonal 
coefficients. We set a threshold of 4 to extract high fluctuation points from the diagonal coefficients. If, in any 
probable water body, more than 20% of the pixels are found to be high fluctuation points, then we considered that to 
be a water body. 

Using these four stages of filtering we eliminated false detections and detected the water body for a particular 
peak. For each peak, we detected water bodies in the same way described in section 3.3 to obtain the final detection 
in method 1 as shown in figure 8. 

 
 

3.4 Detecting water bodies using method 2 

Sometimes small water bodies might not get detected by the method we proposed using method 1. For example, 
if the size of the water body is too small (which means that there are very few pixels with the same elevation), we 
might not get a peak. Hence, LiDAR intensity data should be used for detecting small water bodies. To detect a 
water body from intensity data, we identified all the pixels in the 2m-pixel intensity image, the intensity of which 
falls below 20th percentile. Using connected component analysis (4-connectivity based), we rejected areas less than 
half acre in size and assumed rest of the connected areas to be probable water bodies. We took a chain of pixels 
surrounding each of the probable water bodies and calculated the median elevation of the chain as described in 
section 3.3.1. If the median elevation of the chain is greater than that of a probable water body by at least 2/3*scale, 
we performed a continuity test on the probable area as described in section 3.3.2. If the probable area passes the 
continuity test, we considered the area to be a water body. If it fails the continuity test, we compared the median 
intensities of the probable water body and its surrounding area as described in section 3.3.3 and set the threshold t to 
be the median intensity value m of the 2m pixel intensity image, instead of the threshold described by equation 1. If 
the median intensity of the probable area was less than that of the surrounding area by at least the threshold t, we 
considered it to be a water body. Water body detected for the test area using method 2 is shown in figure 9. 

 
 



ASPRS 2014 Annual Conference 
Louisville, Kentucky ♦ March 23-28, 2014 

 
Figure 8. Water body detected using method 1. 

 
 

 
Figure 9. Water bodies detected using method 2 

 
 

3.5 Merging detections from both methods  

After detecting water bodies using both method 1 and method 2, we merged the detections using a logical OR 
operation. We rejected areas less than half acre in size using connected component analysis and for the rest of the 
areas, we performed a continuity test as described in section 3.3.2. Then using morphological operations, we closed 
small gaps or voids in the detected water bodies. The final detected water bodies are shown in figure 10. 

waterbody detected using method 1

waterbody detected using method 2
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Figure 10. Water body detected after merging detection from method 1 and method 2 

 
 

3.6 Creating 3D break lines for detected water bodies  

After detecting water bodies, we identified vertices from the edges of the detected water bodies to create vectors 
for the break lines. To generate 3D break lines, the median elevation of each water body (calculated from 2m DEM) 
is chosen as the z value. 3D break lines for the detected water bodies are shown in figure 11.  

 
 

 
Figure 11. 3D break lines for water bodies shown in figure 10 

 
 

4. RESULTS AND DISCUSSIONS 

We compared the hydro break lines generated automatically by our method with the break lines drawn in a 
semi-automated way by a vendor. In figure 12, our break lines are shown by thin, black lines and the break lines 
drawn in semi-automated way are shown by thick, blue colored lines. From the comparison in figure 12, we found 
that the auto generated hydro break lines closely matched with the break lines drawn in semi-automated way. All the 
water bodies greater than half acre in size were detected by our method. In case of the two water bodies shown by 
green arrows, some part of the land along the edge of the water bodies was misclassified as water body because of 
the small elevation difference between the water body and adjacent land area. 

We applied our method in another test area in L’Anguille river basin and compared our auto generated break 
lines with their semi-automated counterparts, which is shown in figure 13. At the bottom right corner of the large 
water body we found that the break lines did not match well. And we also found that at the middle of the small water 
body, there is a little mismatch between the two break lines. The mismatched areas are shown by green arrows. In 
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this case also the mismatch occurred due to the small elevation difference between the water body and its adjacent 
surrounding area. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Comparison between break lines generated in our fully automated method (thin black line) and break 
lines drawn in semi-automated method (thick blue line). 

 
 

 
 
Figure 13. Break line comparison between our fully automated method (thin black line) and semi-automated method 

(thick blue line). 
 
 

5. CONCLUSIONS  

In general, feature detection work in rural areas is somewhat sparse. Detecting water bodies from LiDAR data is 
a very challenging task due to high dropout rate from both water bodies and mudflats and due to high intensity 
variation caused by rough water surface and specular reflection from water bodies.  

In this paper, we used a non-linear heuristic method to detect and delineate water bodies and generate break 
lines primarily in a rural area, using both LiDAR elevation and intensity data. We found the break lines generated 
using our fully automated method closely matched with the break lines drawn in a semi-automated way. As a future 
work, we propose the use of LiDAR point cloud data in the areas around the hydro break lines generated by our 
method to improve accuracy and remove much of the drudgery associated with the manual elements of this work. 
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