Coastal Applications of WorldView-2 High Resolution Multi-Spectral Imagery

G. Marchisio, G. Miecznik, F. Pacifici, C. Padwick
Overview

• Information content of WV-2 bands, as applicable to bathymetric retrievals
 • Spectral characterization of WV-2 MS bands
 • Qualitative assessment of WV-2 MS bands
• More that one approach to optical bathymetry
 – Machine learning approach (mono imagery)
 – Rigorous radiative-transfer modeling combined with Bayesian error estimation (mono imagery)
 – Photogrammetric techniques (stereo imagery)
• Will answer the following questions:
 – How accurate?
 – How deep?
 – Which bands?
 – What about sea floor reflectivity?
• Conclusions
Spectral Response Comparison with Quickbird

- Narrower Panchromatic Band
- Broader Multi Spectral Coverage
- Fills Gaps in Spectrum
- Sharper Multi Spectral Channels
Information content in shallow water imagery

- The following sequences of slides illustrate qualitatively how the combination of:
 - Broader spectral coverage
 - Continuous spectral coverage
 - Sharper spectral channels

available in WorldView-2 provide a finer level of spectral penetration than is otherwise achievable with traditional VNIR sensors

- We show this progressive transition at different locations
WorldView-2
First Images
4 band 2m Image
November 23, 2009
Aitutaki Lagoon
Aitutaki Lagoon

wave patterns and submerged aquatic vegetation

linear reefs
WorldView-2
First Images
R, RE, NIR1
2m Image
November 23, 2009

Aitutaki
Lagoon

submerged aquatic vegetation
Aitutaki Lagoon

submerged aquatic vegetation
WorldView-2
First Images
G, Y, R
2m Image
November 23, 2009

Aitutaki
Lagoon
WorldView-2
First Images
B, G, Y
2m Image
November 23, 2009

Aitutaki Lagoon
WorldView-2
First Images
C, B, G
2m Image
November 23, 2009

Aitutaki
Lagoon
Florida Keys
WorldView-2
First Images
2m Image
November 28, 2009
Bathymetry Using Worldview2 Spectral Bands

Governing Equation:
\[L_d = L_b e^{-gz} + L_w \]

- **Ld** - radiance at detector
- **Lb** - radiance sensitive to bottom
- **g** - two way attenuation coefficient
- **z** - depth
- **Lw** - radiance over deep water

- Water absorptivity varies spectrally from band to band
- As the depth increases, the reflected irradiance decreases faster in the high-absorptivity spectral band (e.g. green band) than in the low-absorptivity band (e.g. blue band)
Bathymetry Using Worldview2 Spectral Bands

Governing Equation:

\[L_d = L_b e^{-gz} + L_w \]

- \(L_d \): radiance at detector
- \(L_b \): radiance sensitive to bottom
- \(g \): two way attenuation coefficient
- \(z \): depth
- \(L_w \): radiance over deep water

Observed spectrum is a function of:

1. water depth
2. bottom reflectance spectra
3. water column inherent optical properties (IOPs)
4. viewing geometry
Sensitivity of WV02 bands to seafloor type

Ooid sand – large reflectivity
Coral – small reflectivity

Sensor right above the water surface
Clear water
1m/s wind speed

Generated from lookup tables provided by Anthony Vodacek, Rochester Institute of Technology

Copyright, DigitalGlobe, 2010
Machine Learning Assessment of Worldview2 Potential for Bathymetry Studies

• Input a stack of WV-2 spectral features:
 – Converted radiance values from the 8 WV-2 bands
 – 28 unique pairs of NDVI-style band ratios computed from the above

• Apply supervised machine learning methods:
 – Logistic Regression
 – Classification Trees with k-fold Cross-Validation
 – Tree Ensembles
 – Neural Networks

• Train and validate on independent ground truth
• Generate confusion matrices
• Perform predictor ranking
Classification Agreement

<table>
<thead>
<tr>
<th></th>
<th>01m</th>
<th>02m</th>
<th>03m</th>
<th>04m</th>
<th>05m</th>
<th>06m</th>
<th>07m</th>
<th>08m</th>
<th>09m</th>
<th>10m</th>
<th>11m</th>
<th>Acc(%)</th>
<th>Acc[1 m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01m</td>
<td>105</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>88.24%</td>
<td>100.00%</td>
</tr>
<tr>
<td>02m</td>
<td>1</td>
<td>317</td>
<td>24</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90.31%</td>
<td>97.44%</td>
</tr>
<tr>
<td>03m</td>
<td>0</td>
<td>5</td>
<td>357</td>
<td>38</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>88.81%</td>
<td>99.50%</td>
</tr>
<tr>
<td>04m</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>594</td>
<td>200</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>73.61%</td>
<td>99.63%</td>
</tr>
<tr>
<td>05m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>72</td>
<td>1172</td>
<td>201</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>81.00%</td>
<td>99.86%</td>
</tr>
<tr>
<td>06m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>179</td>
<td>1041</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83.88%</td>
<td>99.44%</td>
</tr>
<tr>
<td>07m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>146</td>
<td>289</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65.38%</td>
<td>98.42%</td>
</tr>
<tr>
<td>08m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>21</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43.14%</td>
<td>84.31%</td>
</tr>
<tr>
<td>09m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>10m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
<tr>
<td>11m</td>
<td>0</td>
<td>7</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

More than 99% of the 4,910 validation samples are in the \{+/-1 m\} accuracy.
Classification Agreement for Bathymetry
(Against LIDAR GT – Florida)

<table>
<thead>
<tr>
<th></th>
<th>Acc (%)</th>
<th>Acc[1 m]</th>
<th>Acc[2 m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>179612</td>
<td>352906</td>
<td>82927</td>
<td>360975</td>
<td>598783</td>
<td>127239</td>
<td>5496</td>
<td>442</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>71.28</td>
<td>96.86</td>
<td>99.24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>27665</td>
<td>28206</td>
<td>1539</td>
<td>191</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82.72</td>
<td>99.21</td>
<td>99.93</td>
</tr>
<tr>
<td>5</td>
<td>615</td>
<td>27430</td>
<td>333128</td>
<td>31600</td>
<td>687</td>
<td>95</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>84.64</td>
<td>99.64</td>
<td>99.97</td>
</tr>
<tr>
<td>6</td>
<td>215</td>
<td>2630</td>
<td>48827</td>
<td>430157</td>
<td>36937</td>
<td>1120</td>
<td>117</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>93.10</td>
<td>99.97</td>
<td>100.00</td>
</tr>
<tr>
<td>7</td>
<td>454</td>
<td>3329</td>
<td>8229</td>
<td>90985</td>
<td>556612</td>
<td>108822</td>
<td>10320</td>
<td>1654</td>
<td>335</td>
<td>135</td>
<td>35</td>
<td>6</td>
<td>0</td>
<td>97.12</td>
<td>99.97</td>
<td>99.99</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1096</td>
<td>1818</td>
<td>4131</td>
<td>59775</td>
<td>127239</td>
<td>5496</td>
<td>442</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>85.95</td>
<td>99.56</td>
<td>99.94</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>447</td>
<td>575</td>
<td>1240</td>
<td>6348</td>
<td>80149</td>
<td>674765</td>
<td>59474</td>
<td>1628</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>81.82</td>
<td>98.75</td>
<td>99.72</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>167</td>
<td>356</td>
<td>1384</td>
<td>6232</td>
<td>31926</td>
<td>253858</td>
<td>970762</td>
<td>83048</td>
<td>830</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>71.98</td>
<td>96.97</td>
<td>99.39</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>55</td>
<td>296</td>
<td>500</td>
<td>1598</td>
<td>9255</td>
<td>26054</td>
<td>138817</td>
<td>6309179</td>
<td>121000</td>
<td>7355</td>
<td>1192</td>
<td>210</td>
<td>71.29</td>
<td>95.03</td>
<td>98.60</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>75</td>
<td>512</td>
<td>1875</td>
<td>4924</td>
<td>39824</td>
<td>524400</td>
<td>35399</td>
<td>296</td>
<td>0</td>
<td>86.35</td>
<td>98.73</td>
<td>99.59</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>216</td>
<td>612</td>
<td>1643</td>
<td>6140</td>
<td>34659</td>
<td>2138</td>
<td>75.80</td>
<td>97.80</td>
<td>99.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>254</td>
<td>287</td>
<td>217</td>
<td>520</td>
<td>3727</td>
<td>25748</td>
<td>2748</td>
<td>76.77</td>
<td>96.08</td>
<td>97.63</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>81.03</td>
<td>96.95</td>
<td>98.64</td>
<td></td>
</tr>
</tbody>
</table>

Acc (%)	Acc[1 m]	Acc[2 m]
86.09 | 97.96 | 99.35 |
99.36 | 98.08 | 97.31 |
99.65 | 98.73 | 99.28 |
WorldView-2
First Images
4 band
2m Image
November 28, 2009

Florida Keys
Bathymetry and Sea Bed Modeling

WorldView-2
First Images
4 band
2m Image
November 28, 2009

Florida Keys
Classification Agreement for Bathymetry + Sea Bed

Input Node - Predict: Tree Ensemble (363)

<table>
<thead>
<tr>
<th>Observed</th>
<th>Predicted</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>01_A</td>
<td>1285</td>
<td>0</td>
</tr>
<tr>
<td>02_B</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>03_C</td>
<td>0</td>
<td>1727</td>
</tr>
<tr>
<td>04_D</td>
<td>0</td>
<td>633</td>
</tr>
<tr>
<td>05DEPTH9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>06DEPTH6</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>07DEPTH9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>08DEPTH12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>09DEPTH15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10DEPTH15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11DEPTH18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12shiptrac</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>1293</td>
<td>1315</td>
</tr>
</tbody>
</table>

Observed

<table>
<thead>
<tr>
<th>% Agree</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.4%</td>
<td>100.0%</td>
</tr>
<tr>
<td>99.3%</td>
<td>99.3%</td>
</tr>
<tr>
<td>98.7%</td>
<td>99.3%</td>
</tr>
<tr>
<td>99.3%</td>
<td>99.7%</td>
</tr>
<tr>
<td>98.9%</td>
<td>98.6%</td>
</tr>
<tr>
<td>99.7%</td>
<td>99.3%</td>
</tr>
<tr>
<td>99.3%</td>
<td>99.5%</td>
</tr>
<tr>
<td>100.0%</td>
<td>99.3%</td>
</tr>
</tbody>
</table>
Bathymetry and Sea Bed Modeling

WorldView-2
First Images
4 band
2m Image
November 28, 2009

Florida Keys

(rectilinear edge guides discharges from channels 1 and 2)

(sewage water collects here)
Bathymetry and Sea Bed Modeling

rectilinear edge guides discharges from channels 1 and 2

sewage water collects here
How Deep Can We See?

WorldView-2
true color image
San Diego, CA
February 14, 2010
Cumulative Error for Bathymetry

Graph showing the cumulative error in depth (m) as a function of depth (m). The error is represented by vertical bars with a mean line at zero. The graph indicates a trend of increasing error with depth, with some fluctuations.
Cumulative Error for Bathymetry (20 m depth)
Where is Most of the Predictive Power?

- NIR bands play little role except in the near surface
- C, B, G most useful for pure bathymetry
- Y, R, RE track submerged aquatic vegetation and coral, which in turns correlate with depth levels
Physical Modeling vs. Machine Learning

• Machine learning models need to be retrained with GT for each individual scene making it currently impractical for automated and unsupervised application.

• Radiative-transfer approach combined with optimal estimation retrieval methodology offers more flexibility.
 – Top of the atmosphere (TOA) radiances are modeled using rigorous radiative transfer equations in water (HYDROLIGHT) and atmosphere (MODTRAN).
 – Bayesian approach, with real (TOP radiances) and pseudo (a-priori) measurements is used to derive unknown water depth.
Lee- Stocking Island test site
Sounding data acquired in June 2001
Image collected in December 2010
Spectral libraries from Lee-Stock Islands used to simulate the environment

Accuracy (RMS error < 30 cm)
Conclusions

- There is sufficient information content in WV02 spectral bands to retrieve water depths with 1-2m errors for waters as deep as 18 m.
- Coastal, Green, and Blue bands help with near-shore bathymetry
- Coastal, Green, Yellow and RE bands help with Benthic Habitat and Substrate/Sea Floor Mapping
 - Habitat maps can have accuracy ~90%
- Accuracy may not be high as Lidar or Sonar but wider geographic coverage and high refresh rate at a fraction of the cost
- Physical retrievals require very small training set (bottom reflectance and water IOP) compared with supervised classification methods.
 - Rich spectral libraries are available
 - Spectral libraries are typically representative of millions of square kilometers.