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ABSTRACT 
 
Multispectral satellite images have been utilized in the National Agricultural Statistics Service (NASS) for crop 
cover classification and crop acreage estimation since the 1970's. Though ancillary data is utilized to enhance the 
classification accuracy, there are few applications that maximize the utilization of the feature information of the 
given multispectral images. Every multispectral image band directly provides the specific spectral response to a 
given land cover category. The different combinations of band ratios or vegetation indices enhance spectral 
characteristics of some crops while suppressing others. Therefore, various vegetation indices and image ratios of 
Landsat images have been extensively studied and applied to identify various land cover and land use characteristics 
in the past. However, NASS began using the ResourceSat-1 AWIFS sensor for operational crop classification and 
acreage estimation in 2006. The AWIFS’ bands are different from those of Landsat, and there is sparse literature 
published about research and applications of the spectral characteristics of AWIFS image band ratio and vegetation 
indices.  In this paper, the impact of using band ratio and vegetation indices of the AWIFS images to the crop 
classification accuracy is empirically investigated via supervised classification. The classification results with 
respect to the additional vegetation index and band ratio are presented and compared in terms of the overall and crop 
only classification accuracy. The research indicates that appropriately used vegetation indices and image ratios can 
potentially improve crop classification accuracy though the gain may not be huge. It is concluded that further 
research is needed.  
 
 

INTRODUCTION 

All bands of raw multi-spectral imagery record their spectral responses to all given land cover (material) 
categories. Most crops can be distinguished from each other or distinguished from most other inorganic materials 
using multispectral satellite images by virtue of their difference in notable absorption in the red and blue segments 
of the visible spectrum, their difference in higher green reflectance and, especially, their very strong reflectance in 
the near-IR. Different types of crops or other vegetation often show distinctive spectral signatures owing to 
differences in leaf shape and size, overall plant shape, its vegetative density, its interactions with solar radiation and 
other climate factors, the availability of chemical nutrients, water content, and soil types. This intrinsic 
discrimination among different crops and most other materials results from the fact that the absorption of the 
different vegetation plant pigments, such as chlorophyll concentrated in the palisade cells, varies in the visible blue 
and red bands of the spectrum, and the reflection for visible wavelengths concentrated in the green band depends on 
the greenness of most vegetation’s green-leafy color. Moreover, variations of the strong reflectance in the near-IR 
wavelengths also depend on the cell moisture and the structure of the spongy mesophyll cell of vegetation leafs. 
These properties of vegetation visually determine their tonal signatures on multispectral images: darker tones in the 
blue and red, bands, somewhat lighter in the green band, and notably bright in the near-IR bands. These spectral 
variations provide a foundation for discriminating various crops and other materials, such as forests, grasslands and 
range, shrub-lands, and orchards using multispectral satellite images.  

As mentioned above, many factors combine to cause differences in spectral signatures for the varieties of crops 
and for other materials. To discriminate different crops, we have to differentiate the signature for each crop in a 
region from representative samples at specific times. However, some crop types have quite similar spectral 
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responses at equivalent growth stages. The signature differences between some crop types can be fairly small even 
though other variables, such as soil type and ground moisture are the same. Moreover, in most cases, the satellite 
image sensors used for acquiring data are broadband, which results in crop spectral confusion. These factors cause 
some crop types to be inseparable in spectral signature at some period of time. Therefore, generating accurate crop 
classification in a large area, such as a state using single-date spectral data alone, would be very difficult as 
compared with using multitemporal data (Lo et al., 1986). In order to estimate crop acreage based on the remote 
sensing imagery, NASS has utilized the multi-temporal, multi-spectral images acquired by the Indian ResourceSat-1 
AWIFS sensor, along with other ancillary data for crop cover classification since 2006. However, the classification 
results are still prone to errors and spectral confusions due to the signature inseparability among some crops for a 
given sensor (in our case, the AWIFS), the heterogeneity of the natural environment, such as soil, water regimes, 
topography, and the variations in farming practices. How to maximize the utilization of the information contained in 
the given multispectral images to improve to classification accuracy is of great interest to NASS.  

It is well known that differences in raw image pixel brightness can be caused by factors such as difference in 
slope, by shadowing, or by differences in the color of surface material. These factors may affect the ability of a 
classification algorithm to correctly identify crop types and other surface materials from the remotely sensed image. 
To reduce these factors, the multispectral image, which characterizes specific crops or other materials, can be 
enhanced or suppressed by image processing techniques such as image transformation, filtering, principal 
components analysis, and band ratioing. The band ratioing method is one of the simplest methods for multispectral 
image enhancement technique (Jain, 1989). It is usually applied to enhance the spectral differences between surface 
covers that are difficult to detect or separate in raw images. It may suppress the effect of variable illumination 
resulting from topographic variations (Mather, 1987), and eliminates slop shadows, seasonal changes, and either 
differences in sunlight angle or intensity (Jensen, 1986). The differences in pixel brightness of the ratio image are 
caused by only differences in reflectance without effects of topography. Thus, ratio images convey only spectral, not 
topographic information. It may also provide unique information not available in any of single bands of the raw 
image that is useful for discriminating vegetation and soils (Satterwhite, 1984). The classification of ratio values will 
produce classes of uniform spectral properties, regardless of topography. 

There are many applications of using image band ratio for identifying a variety of land cover objects.  Nelson 
(1983) used band ratio along with image differencing and vegetation index differencing techniques to delineate 
gypsy moth defoliation in Pennsylvania. Satterwhite, (1984) investigated discriminating vegetation and soils using 
Landsat MSS and Thematic Mapper band ratios and concluded that band ratios provided extra unique information 
for better discriminating vegetation and soils. Lo, et al.(1986) investigated using multitemporal LANDSAT image 
ratio and green vegetation index (GVI) data for agriculture land-cover classification. Musick and Pelletier (1986) 
used band ratios of LANDSAT TM to determine variation in soil water content. Chevaz, et al. (1982) suggested 
using statistical method for selecting Landsat MSS band ratios. Mohd, et al., (1992) evaluated LANDSAT-5 
vegetation indices for detecting forest areas and crops and achieved better classification accuracies by using 
perpendicular vegetation index (PVI). Price, et al. (2002) investigated how to find optimal Landsat TM band 
combinations and vegetation indices for discrimination of six grassland types. Apan et al. (2002) analyzed spectral 
discrimination and separability of agricultural crops and soil attributes, specifically, crop type, crop growth stages, 
soil color and soil texture, using Aster imagery and found the band ratio based vegetation indices had better spectral 
discrimination and separability for crops than the raw image bands. However, very few published literatures have 
focused on the using AWIFS image band ratio and index combinations for improving the crop classification 
accuracy.   

The objective of this study is to empirically evaluate the impact of using band ratio and various band ratio based 
indices of the AWIFS images on the accuracy of the major crop classification. A variety of band ratios and 
vegetation indices calculated and fed into the classifier in addition to the raw images, and the accuracy of the 
classification for different crops using additional band ratio and/or index information will be compared with 
classification results without inclusion of the band ratios and indices.  
 
 

METHODS  

Study Site 
One study site was used to examine the direct impact of using the additional image ratio and index information 

in the crop classification. This site covers the entire State of Indiana plus a 10 kilometer surrounding buffer with 
Lat/Long (ULX =-87.7457 / ULY=42.0723, LRX=-84.8872 / LRY=37.4404). This site was chosen because one 
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AWIFS image scene covers almost the entire state, which is easy to handle, and Indiana is one of major agriculture 
states, and the two major U.S. crops, corn and soybean, are represented.  

 
 

 
 July 8, 2007(070708)  August 1, 2007(070801) 

 
 April 22, 2007(070422)  May 6, 2007(070506) May 21, 2007(070521) 

 
Figure 1. 2007 Indiana State AWIFS images acquired on different date for crop classification analysis 

 
Data Acquisition and Preprocessing 
 The image data used for this experiment are acquired using Advanced Wide Field Sensor (AWIFS) sensor from 
the Indian satellite ResourceSat-1. The AWIFS Sensor is one of three solid-state cameras on-board ResourceSat-1, 
which provide continued remote sensing data services on an operational basis for integrated land and water 
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resources management at micro level, with enhanced spectral and spatial coverage and stereo imaging, and further 
carry out studies in advanced areas of user applications like improved crop discrimination, crop yield, crop stress, 
pest/disease surveillance, and disaster management etc.  The AWIFS camera has a spatial resolution of 56m at nadir 
and 70m at field edge, a radiometric resolution of 10 bits and four spectral bands with the additional feature of on-
board detector calibration using LEDs. The spectral bands of AWIFS include Green (Band 2, 0.52-0.59 μm), Red 
(Band 3, 0.62-0.68 μm), NIR (Band 4, 0.77-0.86 μm), and SWIR (Band 5, 1.55-170 μm). The AWIFS cameras are 
held in two electro-optic modules: AWIFS-A and AWIFS-B, each containing four-band assemblies. These bands are 
similar to LANDSAT Band 2, Band 3, Band 4 and Band 5. However, the AWIFS sensor has a revisit period of 5 
days.  
 In this study, the images have been geo-rectified and registered. All AWIFS images and all training data, and 
ancillary data are re-projected to Albers Equal Area Conic projection, and re-sampled to 56-meter spatial resolution. 
There is no cloud removal or radiometric correction applied. The 10-bit AWIFS images are uniformly rescaled into 
8 bits using nearest-neighbor method. 

The AWIFS images, as shown in Figure 1, used for single scene classification experiments are the images 
acquired on July 8, 2007 and August 1, 2007.  To perform a multitemporal analysis and have full state coverage, the 
additional images acquired on April 22, May 6, and May 21 are also used for generating the classification results, 
which are comparable to the last year’s NASS official remote sensing results.  
 It should be indicated that in this study, all the ratio/index images are all converted to 8-bit gray-scale. The 
spatial resolution remains 56 meter, the same as the raw images.  
 
Training Sample – FSA CLU Data 

To perform the supervised crop classification, the USDA Farmer Service Agency’s (FSA) Common Land Unit 
(CLU) GIS data is used as training and validation data. FSA CLU’s are the smallest land unit with permanent 
boundaries, common land cover and management, common owner (tract) and producer association (farm). The CLU 
data files contain digital shape files and crop planted information and the unique individual farm operator 
identification. It is subject to the NASS confidentiality rules and cannot be released to anyone outside of NASS. The 
CLU data provides a large amount of ground truth. In the classification experiment, the CLU data is sampled in 
strata. 
 
Ancillary Data 

It is well known that ancillary data can be used to mask out uninterested non crop land-cover and can provide 
extra information to enhance the classification process. The original NASS Cropland Data Layer (CDL) 
classification, which makes use of the canopy and impervious cover data from the 2001 National Land Cover 
Dataset (NLCD 2001) as ancillary data, is used as the baseline classification accuracy for comparison to the various 
indices in this study. To make the results using image ratio and indices be comparable with the baseline, the canopy 
and impervious cover data 2001 National Land Cover Data (NLCD) are also used as ancillary data. In addition, the 
data reflecting land surface characteristics, derived directly from the National Elevation Dataset (NED), including 
elevation, slope, and aspect are also used as ancillary data in the classification. It allows for classifying crops in 
terms of specific terrain conditions. Moreover, MODIS 16-day NDVI composite images, which provide more 
temporal information, are also used. These ancillary data have been shown to improve the classification accuracy in 
NASS CDL operations. 

 
 

BAND RATIO AND VEGETATION INDICES 
 
To enhance the vegetation signal in remotely sensed data and provide an approximate measure of live, green 

vegetation amount, a number of spectral vegetation indices have been proposed by combining data from multiple 
spectral bands into single values because they correlate the biophysical characteristics of the vegetation of the 
landcover from the satellite spectral signals. Jordan in1969 first presented the Ratio Vegetation Index (RVI) or 
simple ratio (SR). Rouse et al. in1973 further suggested the most widely used Normalized Difference Vegetation 
Index (NDVI) to improve identifying the vegetated areas and their "condition". He also presented a modified 
normalized difference vegetation index (MNDVI) by replacing IR band with SWIR band in NDVI (Rouse et al., 
1973). However, the NDVI index is saturated in high biomass and it is sensitive to a number of perturbing factors, 
such as atmospheric effects, cloud, soil effects, and anisotropic effects, etc. Therefore, a number of derivatives and 
alternatives to NDVI have been proposed in the scientific literature to address these limitations. Tucker (1979) 
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presented a transformed normalized difference vegetation index (TNDVI) by adding a constant 0.5 to NDVI and 
taking the square root. It always has positive values and the variances of the ratio are proportional to mean values. 
TNDVI indicates a slight better correlation between the amount of green biomass and that is found in a pixel 
(Senseman et al. 1996). To reduce the impact to the NDVI from the soil variations in lower vegetation cover areas, 
Huete (1988) proposed a Soil-Adjusted Vegetation Index (SAVI) by introducing a correction factor L.  However, 
how to dynamically estimate the parameters and the correction factor L for the indices is a challenge. Rondeaux, et 
al., (1996) therefore, suggested an optimal soil adjusted vegetation index (OSAVI) with an optimal correction factor.  
Liu et al. (1995) proposed the Enhanced Vegetation Index (EVI) to optimize the vegetation signal with improved 
sensitivity in high biomass regions by incorporating both background adjustment and atmospheric resistance 
concepts into the NDVI. Since the ResourceSat-1 AWIFS sensor does not have a blue band, a 2-band EVI without a 
blue band enhanced vegetation index EVI2 (Jiang et al. 2007) is used instead in this study. Gong et al. (2003) 
proposed a new vegetation index that multiplies RVI with NDVI (RNDVI) to balance sensitivity differences of both 
RVI and NDVI to low LAI and high LAI conditions and to increase the index correlation with LAI. This index gives 
a better linearity. Gitelson et al. (1996) proposed Green Normalized Difference Vegetation Index (GNDVI) and a 
modified version (MGNDVI) by using a green channel instead of red channel to compute vegetation index for 
remote sensing of global vegetation. Lymberner et al. (2000) proposed a specific leaf area vegetation index (SLAVI) 
to correlate the spectral reflectance of Red, NIR and SWIR bands with the specific leaf area. Thenot et al. (2002) 
proposed using the photochemical reflectance index (PRI) to measure the water-stress. This index originally uses 
narrow bands R513 and R570, which are the beginning frequency and ending frequency of the broadband sensor 
AWIFS’ green band. In this study, we defined a modified photochemical reflectance index (MPRI, as shown in 
Table 1) by using AWIFS Green band and Red band to replace R513 and R570 to capture the light use efficiency and 
to reflect water-stress. Gao (1996) proposed a normalized difference water index (NDWI) (or normalized difference 
moisture index (NDMI) by Shaun et al., 2003) to detect the vegetation liquid content. Hunt and Rock (1989) defined 
a moisture stress index (MSI) or RDI (Ratio Drought Index by Pinder and McLeod, 1999) by using near- and 
middle-infrared reflectance ratio to detect changes in leaf water content.  

In this study, the additional image ratios and indices are proposed or included for investigation for their impact 
to crop classification accuracy. We include Modified Ratio Vegetation Index (MRVI), which is defined SWIR/R; 
Green ratio vegetation Index (GRVI) and Modified Green ratio vegetation Index (MGRVI), which are defined by 
NIR/G and SWIR/G. We also define a Brightness Index (BI), which sums all band reflectance, to represent overall 
reflectance strength.  In addition, a Red green ratio index (RGRI) and a Normalized difference red green index 
(NDRGI) defined by R/G and (R-G)/(R+G) are also defined for experiment. Finally, a normalized difference 
vegetation structure index (NDVSI) is introduced as shown in Table 1. This index is proposed in hopes of capturing 
the crop vegetation structure, which is mainly reflected by NIR band.  

The detailed formulas and references of all vegetation indices and image ratios to be included in this experiment 
are listed in Table 1.  
 
 

DECISION TREE CLASSIFICATION WITH VEGETATION INDICES 
  
In order to evaluate the impact of using extra band ratios and various vegetation indices in the cropland coverage 
classification on the classification accuracy, a supervised decision tree classification method was used. A decision 
tree is a logical, predictive model represented as a binary tree that shows how the value of a target variable can be 
predicted by using the values of a set of predictor variables. It represents a multistage decision process. It is a class 
discriminator that recursively partitions the training data set until each partition consists entirely or dominantly of 
examples from one class. Each non-leaf node of the tree contains a split point that is a test on one or more features 
and determines how the data is partitioned. The decision tree is built by recursively partitioning the data.  

The decision tree classification method, as compared with other methods, has several advantages: (1) it is easy 
to understand and interpret with a brief explanation; (2) it requires little data preparation. Other techniques often 
require data normalization, dummy variables need to be created and blank values to be removed; (3) it is able to 
handle both numerical and categorical data; (4) it is a white box model. If a given situation is observable in a model 
the explanation for the condition is easily explained by Boolean logic; (5) it is possible to validate a model using 
statistical tests. That makes it possible to account for the reliability of the model; (6) it is robust and noise resilient. It 
tolerates to training sample errors and cloud pixels to some extent; (7) there is no assumption of data distribution 
required; (8) it scales well for varying numbers of training samples and considerable numbers of attributes in large 
databases; (9) it is quick and performs well with large data sets. Large amounts of data can be analyzed using 
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personal computers in a short time; (10) there is no limit in data attributes. The number of image data layers, 
ancillary data, and training data is unlimited.  

 
 

Table 1. Image ratios and vegetation indices included in the experiments. 
 

Vegetation Index/Image Ratio Formula Reference 
Ratio normalized difference vegetation 
Index (RNDVI) 

RNDVI = (NIR2-R)/(NIR+R2) Gong et al., 2003 

Modified ratio vegetation index (MRVI) MRVI = SWIR/R - 
Modified Photochemical reflectance Index 
(MPRI) 

MPRI = (G-R)/(G+R) This study 

Normalized difference vegetation index 
(NDVI) 

NDVI = (NIR-R)/(NIR+R) Rouse et al., 1973 

2-band Enhanced vegetation index (EVI2) EVI2 = 2.5(IR – red)/(IR + red +1) Jiang et al. 2007 
Modified green normalized difference 
vegetation index (MGNDVI) 

MGNDVI = (SWIR–G)/(SWIR+ G) Gitelson et al., 1996 

Ratio vegetation index (RVI) RVI = NIR/R Jordan, 1969 
Modified normalized difference vegetation 
index (MNDVI) 

MNDVI = (SWIR – R)/(SWIR + R) Rouse et al., 1973 

Brightness index (BI) BI = G+R+NIR+SWIR  This study 

Red green ratio index (RGRI) RGRI = R/G - 
Green normalized difference vegetation 
index (GNDVI) 

GNDVI = (NIR –G)/(NIR + G) Gitelson et al., 1996 

Normalized difference red green index 
(NDRGI) 

NDRGI = (R –G)/(R + G) This study 

Normalized difference vegetation structure 
index (NDVSI)  

NDVSI = [NIR - (R+G) x 0.5]/  
               [NIR + (R+G) x 0.5] 

This study 

Ratio drought index (RDI)  
RDI = SWIR/NIR Hunt & Rock 1989, 

Pinder & McLeod 1999 
Transformed NDVI (TNDVI) TNDVI = [(NIR-R)/(NIR+R)+1]½ Tucker, 1979 

Green ratio vegetation Index (GRVI) GRVI = NIR/G - 
Optimal soil adjusted vegetation index 
(OSAVI) 

OSAVI = (NIR–R)/(NIR+R+0.16) Rondeaux et al., 1996 

Modified green ratio vegetation Index 
(MGRVI) 

MGRVI = SWIR/G - 

Specific leaf area vegetation index (SLAVI) SLAVI = NIR/(R+SWIR) Lymberner et al., 2000 
Normalized difference moisture index 
(NDMI)  

NDMI = (IR - SWIR)/(IR+SWIR) Gao 1996, Shaun et al., 2003 

 
There are many very powerful and popular software implementations of decision tree classifiers available, 

which construct decision trees for classification. In this study, one of the well-known programs for constructing 
decision trees Rulequest’s See5 (Release 2.05) (C4.5) (Quinlan 1993) is used for crop classification. The See5 
decision tree classifier, as compared with others, has friendly user interface, better performance and multiclassifier-
based boost algorithm implemented, and has been integrated with Erdas Imagine. 

The first step in building a decision tree is to collect a set of ground truth data. This data is called the "training" 
dataset because it is used for a decision tree classifier to learn how the value of a target variable is related to the 
values of predictor variables. In our case, the FSA’s CLU data is our training samples. We then use the training data 
set to train the decision tree classifier to automatically build the decision tree that models the data for further 
classification.  
 To incorporate the derived extra band ratios and various vegetation indices in the classification process, they 
can be stacked into the original raw image as extra layers.  
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EXPERIMENTAL RESULTS AND DISCUSSION 
 
Classification Results of Single Date Scenes with Different Vegetation Indices  
 The purpose of the first experiment in this study is to examine how every individual vegetation index affects the 
classification results of a single scene. In this experiment, a single scene is used without MODIS data and other 
ancillary data. The training data is the same as that used in the original CDL production with the corresponding area 
coverage. From this scene, various vegetation indices and band ratio images are generated. These generated images 
are first rescaled to 8-bit. The newly generated index or ratio images are then stacked with the original scene one by 
one for classification experiment, and then all indices and ratios are stacked altogether with the original scene 
classification evaluation. In this experiment, the classifications are carried out separately by date. The classification 
accuracy results are tabulated by crop only and overall. All of experimental classification results using single date 
scenes acquired on July 8, 2007 and August 1, 2007 are tabulated in Table 2.  

As shown in Table 2, the classifications of the original scenes without adding vegetation index or image ratio 
are highlighted with bold. The classification accuracies of the original image with or without vegetation index from 
the July 8, 2007 scene are significantly better than those from the August 1, 2007, and the accuracy results for crops 
only are much better than those overall accuracy results for both dates. This is an interesting and unexpected result. 
It is not clear why the results from August are inferior to those from July. This is a question to be answered in future 
research. 

In Table 2, all vegetation indices are ordered according to the overall classification accuracy with respect to the 
different scene dates. As observed from Table 2, the ranks of the accuracy performance of the vegetation indices or 
image ratios are consistent for both overall and crops only accuracies for a given scene date.  

It is observed that the top two vegetation indices are RNDVI, MRVI and RNDVI, ALL respectively for July 8 
and August 1 dates, and the best performing vegetation index for both dates is the RNDVI, a product of ratio 
vegetation index and normalized difference vegetation index. However, the ranks of the accuracy performance of 
most vegetation indices from the scenes acquired on different dates are different.  
 By comparing the accuracy of the scene only classification with the accuracy of the scene with vegetation index 
added for July 8 image scene, we find that most of vegetation indices and ratios including RNDVI, MRVI, MPRI, 
NDVI, EVI2, MGNDVI, RVI, MNDVI, BI, RGRI, GNDVI, NDRGI, NDVSI, RDI, ALL, TNDVI, and GRVI, help 
to improve the classification accuracy, with a maximum 0.5% improvement from RNDVI. These 16 indices 
constitute a better performer list. As shown in Table 2, only 5 indices GRVI, OSAVI, MGRVI, SLAVI, and NDMI 
have insignificant impact to the classification accuracy (within ±0.05% change). Therefore, the optimal soil adjusted 
vegetation index (OSAVI), modified green ratio vegetation index (MGRVI), specific leaf area vegetation index 
(SLAVI), and normalized difference moisture index (NDMI) are dropped from further experiment because of no 
help in improving or even deteriorating (as SLAVI and NDMI did) the classification accuracy.  
 Doing the same comparison for August 1 image scene, it is found that the better performer list has only 6 
vegetation indices, including RNDVI, all indices (running the original scene with all indices altogether), RVI, 
NDVSI, BI, MGNDVI, and MGRVI. They all help improving the classification accuracy, with a maximum 0.6% 
improvement from RNDVI. The indices RVI, NDVSI, BI, MGNDVI, MGRVI, NDRGI, NDMI, RGRI, MPRI, 
MRVI, RDI, GNDVI, and GRVI have little impact the classification accuracy (within ±0.05% change). The 
vegetation indices NDMI, RGRI, MPRI, MRVI, RDI, GNDVI, GRVI, NDVI, TNDVI, MNDVI, EVI2, OSAVI, and 
SLAVI reduce either overall or crops only classification accuracy or both, within which NDVI, TNDVI, MNDVI, 
EVI2, OSAVI, and SLAVI significantly reduce the accuracy by at least 0.1%. Thus, they are excluded for further 
experiment.  

As shown in Table 2, the new indices introduced in this paper including NDVSI, BI and NDRGI all have 
positive impact on the accuracy for both dates. The index RGRI is positive for the July scene and has no significant 
impact for the August scene.  

From Table 2, it is observed that the accuracy performance of TNDVI, OSAVI, and SLAVI are consistently 
ranked in the bottom for both July and August scenes. Therefore, they may not appropriate for classification. It is 
also found that the performance of vegetation indices NDVI, MNDVI, EVI2 and MRVI change dramatically for 
scenes acquired on different dates. Why NDVI, MNDVI, EVI2 and MRVI perform poorly in August scene is not 
clear. 

It should be indicated that to determine the better performers, any index that had better "overall" AND "crops 
only" accuracy numbers than the original single scene accuracy is included. 
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Table 2. Classification Results of Single Scene with Different Vegetation Indices. 
 

Accuracy Accuracy 
Scene Date July 8, 2007 Scene Date August 1, 2007 
Evaluated by Overall Crops only Evaluated by Overall Crops only 
No Indices 79.04 81.04 No Indices 65.83 67.53 
RNDVI 79.55 81.56 RNDVI 66.41 68.14 
MRVI 79.34 81.35 ALL 66.21 67.93 
MPRI 79.27 81.28 RVI 65.87 67.58 
NDVI 79.25 81.25 NDVSI 65.87 67.57 
EVI2 79.22 81.22 BI 65.85 67.56 
MGNDVI 79.21 81.22 MGNDVI 65.85 67.56 
RVI 79.21 81.22 MGRVI 65.84 67.56 
MNDVI 79.21 81.21 NDRGI 65.83 67.54 
BI 79.21 81.2 NDMI 65.82 67.54 
RGRI 79.2 81.2 RGRI 65.82 67.53 
GNDVI 79.2 81.2 MPRI 65.82 67.53 
NDRGI 79.19 81.19 MRVI 65.81 67.52 
NDVSI 79.15 81.16 RDI 65.81 67.51 
RDI 79.14 81.15 GNDVI 65.79 67.5 
ALL 79.14 81.13 GRVI 65.79 67.49 
TNDVI 79.12 81.13 NDVI 65.71 67.42 
GRVI 79.07 81.06 TNDVI 65.7 67.4 
OSAVI 79.04 81.04 MNDVI 65.67 67.38 
MGRVI 79.03 81.04 EVI2 65.64 67.35 
SLAVI 79.03 81.02 OSAVI 65.64 67.35 
NDMI 78.99 81 SLAVI 65.59 67.29 

 
Multitemporal Classification Results of with Selected Vegetation Indices  

Multitemporal analysis always outperforms single temporal analysis in terms of crop classification accuracy. 
Therefore, the purpose of this part of the experiment is to see how vegetation indices and band ratios along with 
other ancillary data impact the accuracy of the multitemporal crop classification results, and to see if any vegetation 
indices and their combination provide extra information under multitemporal condition.  

In this part of experiment, the Indiana 2007 multitemporal Cropland Data Layer (CDL) is reproduced by using 
the original inputs (those used in producing the official Indianan 07 CDL) plus a combination of the selected 
vegetation indices from the July 8, 2007 (070807) and August 1, 2007 (070801) AWIFS scenes. It should be 
indicated that in the original input data there are 5 scenes from 5 different dates. However, only the vegetation 
indices from July 8, 2007 and August 1, 2007 scenes are used in the experiment. 

As shown in Table 2, the vegetation index RNDVI performed the best for both scenes. Therefore, classifications 
were run for the CDL's with original data plus the individual RNDVI's of either 070801 or 070801 AWIFS scene, or 
plus both RNDVI's from 070801 and 070801 AWIFS scenes. All of vegetation indices in the better performer list 
from each scene, and all of better performer indices from both scenes are then added to the original input data 
respectively for classification. 
 Table 3 lists all original inputs and vegetation index combinations and their corresponding classification 
accuracy results. As shown in Table 3, after adding vegetation indices, the overall classification accuracy of all data 
combinations have dropped with a maximum of 2%. But the crops only accuracy varies with different data 
vegetation index combinations. 
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Table 3. Multitemporal Classification Results with Vegetation Indices. 
 

Data combination Overall Crops only 
Original CDL with no indices added 91.80 91.76 
Original Inputs + 070708 RNDVI 89.70 91.75 
Original Inputs + 070708 Top 16 Indices 90.19 92.21 
Original Inputs + 070801 RNDVI 89.85 91.91 
Original Inputs + 070801Top 6 Indices 89.87 91.91 
Original Inputs + RNDVI’s from Both Scenes 89.67 91.72 
Original Inputs + Better Performer Indices form Both Scenes 90.22 92.22 

 
As shown in Table 3, adding the 070708 RNDVI alone does not improve the overall or crops only accuracy. 

The reason that adding the 070708 RNDVI alone did not improve the accuracies is unknown. To figure out the exact 
reason needs further investigation. However, adding 070801 RNDVI alone did increase the crop only classification 
accuracy though only 0.15% improvement. When both 070708 RNDVI and 070801 RNDVI are added, the crops 
only accuracy remains roughly unchanged, in fact, it dropped a little (0.04%). These results have shown that the 
individual best performer indices may or may not help to improve the accuracy in a multitemporal classification 
depending on how they are used. It needs further investigation to conclude whether including RNDVI from every 
scene will further improve the accuracy. 

However, when all better performer indices from either July scene or August scene are added to the original 
input data, the crops only accuracy improved. When 16 July indices were added, the crops only accuracy was 
improved by 0.45% while 6 August indices yielded 0.15% improvement. The best crops only performer of this 
group was the one that used all of the better performer indices from both scenes. This combination had 0.46% 
improvement in crops only accuracy and the best overall accuracy of 90.22%, which is still 1.58% lower than the 
original CDL result. This result seems to imply that when performing multitemporal classification, all available 
better-performing vegetation indices from different dated scenes should be included. However, whether including all 
indices of positive impact from each scene still needs to be further investigated.  
   

 
CONCLUSION 

  
This paper reported a preliminary research on the impact of using vegetation indices and image ratios on the crop 
classification accuracy. In this research, we evaluated 20 vegetation indices and image ratios, including some widely 
used, known vegetation indices, and a few new indices introduced in this paper. The purpose of this research is to 
find out whether the vegetation index and image ratio have any impact on crop classification accuracy, and which 
index has positive impact and which has negative impact so that the appropriate vegetation indices can be best used 
at the most appropriate times and conditions.  

From this research, it is found that the vegetation indices and image ratios do have impact on the crop 
classification accuracy. It is found that not all vegetation indices have positive impact. Some indices have 
insignificant impact to the classification accuracy while others have negative impact. The impact on the 
classification accuracy for most vegetation indices is scene dependent. It is found that for single scene classification, 
the vegetation index RNDVI has the best performance in classification accuracy improvement for both test scenes 
while the vegetation indices TNDVI, OSAVI, and SLAVI are consistently ranked in the bottom of the accuracy 
performance for both July and August scenes. It is also found that the performance of vegetation indices NDVI, 
MNDVI, EVI2 and MRVI are very sensitive to scenes. In general, the ranks of the accuracy performance of most 
vegetation indices from the scenes acquired on different dates are different. 

It is also found that the new indices introduced in this paper, including NDVSI, BI and NDRGI, have positive 
impact to the accuracy for both dates. The index RGRI is positive for July scene and has no significant impact for 
August scene.  

For the multitemporal classification, adding vegetation indices lead a 1.58% to 2% drop in the overall 
classification accuracy for any vegetation indices and original input data combinations. But the impact on the crops 
only accuracy varies with different vegetation indices applied. The experimental results have shown that using the 
individual best performer index the crop only accuracy improvement depends on the index used. When using all 
better performer indices from either the July scene or the August scene, the crops only accuracy improved. The best 
crops only performer of this group was the one that used all of the better performer indices from both scenes.  
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Finally, it is concluded that appropriately used vegetation indices and image ratios can potentially improve crop 
classification accuracy though the gain may not be huge. This preliminary research also brings up some questions 
that need to be further addressed in future research. It is suggested that the future research should focus on 
determining whether the individual vegetation index can increase spectral separability of a specific crop, how the 
image/date affect the performance of the vegetation indices, how each vegetation index impacts the classification 
accuracy of individual major crops, why the best performing single scene RNDVI can not further improve the 
multitemporal classification accuracy, and how we best utilize the information contained in the vegetation indices 
and image ratios to enhance the crop classification accuracy.   
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