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ABSTRACT 
 
The Fort Lewis Military Base in west central Washington State covers 35,025 hectares, 23,404 of which have 
significant tree cover (forests, woodlands, savannas). The undeveloped portion of the base is highly diverse 
ecologically relative to other western Washington forests. It is west of the Cascades Mountains yet its ecology is a 
blend of that found on both the east and west sides of the Cascades. Forest management balances the protection of 
the unique ecological niches found here with military training, fire management, timber production and human uses. 
A sparse grid of permanent forest inventory plots is used to monitor forest growth and conditions. Augmentation of 
the permanent forest inventory with aerial LIDAR measurements is currently under examination by the Fort Lewis 
Forestry Branch. The basic LIDAR-based inventory technique is to model inventory parameters with plot based 
LIDAR metrics. Application of models to the landscape results in a spatially explicit complete inventory of the 
forest.  Preliminary inventory analysis in which only basal area was considered resulted in a linear model with an R2 
of 0.86. The implication of this result is that the success found in modeling this variable at Fort Lewis may translate 
to similar success for other complex multi-use public forests where knowledge of landscape patterns is needed for 
planning and monitoring. 
 
 

INTRODUCTION 
 

Fort Lewis Military base is a complex mixture of forest types managed for an assortment of military (primary), 
civilian and ecological objectives. Monitoring of forest conditions to inform management decisions is performed 
with a relatively sparse, grid-based system of permanent fixed-area plots. Recent acquisition of high density discrete 
return aerial LIDAR for the entire installation provides complete, fine scale, spatially explicit information of forest 
canopy structure over Fort Lewis. In this study we evaluate the use of airborne LIDAR-based inventory techniques 
for Fort Lewis’s forest landscape.  

 
 

STUDY SITE 
 

Fort Lewis Military Installation is located at the southeast edge of Puget Sound in western Washington State. 
The 35,025 hectare installation has 23,404 hectares of land with significant tree presence. The forests are dominated 
by coniferous forests, predominately dry Douglas-fir but include some moist forest types (Douglas-fir, redcedar, 
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western hemlock, red alder, bigleaf maple, cottonwood, and a variety of additional minor deciduous and coniferous 
species). Oregon white oak and ponderosa pine woodlands and grassland ecosystems are interspersed with the 
coniferous forests, forming a complex forest-prairie mosaic.  
 

 
METHODS AND MATERIALS 

 
Continuous Forest Inventory Plots 

The continuous forest inventory (CFI) plots on Fort Lewis are located on a grid of regularly visited fixed-area 
(0.081 hectare) circular plots. There are 131 plots located in the forested area of Fort Lewis.  For this study, forested 
area was mapped from the LIDAR data assuming areas with vegetation lower than 5 m are non-forested (Fig. 1).  
Each plot is associated with a plot record that describes the individual trees on the plot. Each time a plot is revisited 
all trees on the plot are re-measured. Diameter is measured for every tree and height is recorded for the site tree. All 
of the trees are examined for defects.  The CFI plots were last re-measured in 2005.   

 
Figure 1.  Fort Lewis forested and non-forested areas and CFI ground plot locations. 

 
Plot Georeferencing  

To properly align the ground sample plots with the LIDAR data, plot locations must be determined to within 
approximately +/- 1 m. This is complicated by the fact that precise plot positions under canopy are difficult to obtain 
with GPS (Clarkin, 2007). Approximate coordinates for the CFI plots are available but the range of error can exceed 
the diameter of the plot. In order to obtain the desired accuracy for plot coordinates georeferencing was performed 
using survey grade GPS units with differential post processing (Ensemble, 2002). 

A Javad Navigation Systems MAXOR GGDT model receiver with GPS/GLONASS L1/L2 signal capabilities 
was used to determine plot coordinates. Receiver accuracy was assessed under canopy using these same receivers at 
Capitol State Forest within 50 km of Fort Lewis. Results at Capitol State Forest indicate that this receiver achieves 
positions with an RMSE of 0.86 m under coniferous canopy (Clarkin, 2007). The range of canopy densities at Fort 
Lewis is similar to that tested at Capitol State Forest. The positional accuracies measured at Capitol State Forest 
provide a reasonable indication of the range of accuracies that may be expected for GPS occupations at Fort Lewis.  
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LIDAR Data 
In this study, a discrete-return, small-footprint airborne LIDAR dataset was acquired that consists of a three-

dimensional “cloud” of 2.9 billion data points that describe the shape and structure of the terrain, infrastructure, and 
vegetation on Fort Lewis.  LIDAR coverage was flown using the mission specifications shown in Table 1. The 
average density of LIDAR points for the base is 6.19 per square meter (Fig. 2).  
 

Table 1.  Fort Lewis LIDAR mission specifications. 
 
Flight dates September 19-21, 2005; leaf-on 
LIDAR scanner Optech ALTM 3100* 
Scan pulse rate 71 kHz 
Maximum returns per pulse 4 
Scan angle +/-14 degrees 
Beam divergence 0.3 mrad 
Flight above ground level 1,100 m 
Flight line configuration Opposing parallel lines 
Flight line overlap 50% sidelap 
Average LIDAR point spacing <40 cm 
* The use of commercial names is for the convenience of the reader and does not imply any endorsement by the 

USDA Forest Service. 
 

 
 

Figure 2. Color-coded map of LIDAR point density per square meter over Fort Lewis. 
 
LIDAR Metrics 

LIDAR metrics are descriptive structure statistics calculated from the raw XYZ LIDAR point cloud. Metrics 
were calculated with the program FUSION (McGaughey and Carson, 2003). The first step in generating LIDAR 
metrics is to select only the raw data corresponding to the plots of interest using the FUSION module ClipData. 
ClipData requires spatial parameters describing the plot location and size and then outputs the subset of LIDAR 
points that was collected within the plot area. CloudMetrics is then used to calculate metrics for the plot at a user 
defined resolution. A third utility, GridMetrics, calculates metrics for the entire landscape (Table 2).  Fig. 3 
illustrates how the canopy transparency metric is computed.     
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In addition to calculating canopy metrics, a raster of maximum heights for 15-m pixels was used to indicate for-
ested areas. Analysis in ArcMap (ESRI, 2007) classified the raster into forested and non-forested pixels based upon 
the criteria that a forested cell must have a maximum height of greater than 5 meters. The result of this procedure 
was used to tabulate the total forested area and map forested and non-forested areas across Fort Lewis (Fig. 1).  

 
Table 2.  LIDAR metrics computed by FUSION utilities (McGaughey, 2007). 

 
LIDAR Metric Description 

Total number of returns Total number of discrete LIDAR measurements for a plot. 
Minimum Minimum height of all LIDAR data for a plot. 
Maximum Maximum height above ground of all LIDAR data for a plot. 
Mean Mean height above ground of all LIDAR data for a plot. 
Median Median height above ground of all LIDAR data for a plot. 
Standard deviation Standard Deviation of heights of LIDAR data for a plot. 
Variance Variance of heights of LIDAR data for a plot. 
Interquartile distance Interquartile distance for heights of LIDAR data for a plot. 
Skewness Skewness of distribution of LIDAR heights for a plot. 
Kurtosis Kurtosis of distribution of LIDAR heights for a plot. 
AAD (average absolute 
deviation) 

Average absolute deviation of LIDAR heights from the mean of LIDAR height 
for a plot. 

Percentile height values  
(5th, 10th , 20th, 25th,…, 
95th percentiles) Height above ground at which a specified percentage of returns fall below. 
Mean intensity Mean intensity of those returns above a user specified height above ground. 
Maximum intensity Max. intensity of those returns above a user specified height above ground. 
Canopy Cover Percentage (0 - 100) of first returns 3 meters or more above ground. 

Canopy Transparency 
Percentage (0 - 100) of first returns above 6 meters after removal of points 
below 3 meters. 

 

 
Figure 3.  Example of FUSION canopy transparency metric computation. 
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REGRESSION ANALYSIS 
 

Analysis of data was performed using the open source public domain statistical software R (R, 2006). The 
platform is a robust statistical programming environment capable of complex data manipulations and customizable 
with a wide variety of modules. Additional, non-standard R modules, Leaps (Lumley, 2006) and Ipred (Peters, 2007) 
were also used in this analysis.  

The aerial LIDAR data are not sufficient for direct measurement of stem diameter. Instead stem diameter is 
predicted using regression analysis (Naesset, 2001) with LIDAR metrics that describe canopy size and vertical 
distribution. The resulting prediction model quantifies the allometric relationship between canopy parameters 
described by LIDAR metrics and stem basal area.  
 
Response and Predictor Variables 

The predictor variables for the regression analysis are the metrics derived from raw LIDAR point clouds for 
each plot.  There are 44 LIDAR-based predictors that fall into three groups. The first group of metrics consists of 
point height above ground metrics. These describe the vertical distribution of raw LIDAR points relative to a given 
ground surface (usually a LIDAR-derived digital terrain model). The second group is derived from LIDAR intensity 
values. The last group of predictive metrics consists of measures of the relative density of points above a given 
height.  

The response variable in this study is total basal area for a plot. This value, calculated per plot, is the sum of 
stems’ cross-sectional areas measured at 1.37 meters height above the ground for all trees larger than 11.5 cm in 
diameter. 
 
Automated Model Selection  

There are many LIDAR-derived predictors from which to choose a model. Choice of an acceptable model was 
facilitated with a subset regression routine (Lumley, 2006). The optimized routine indicates potentially acceptable  
models ranked by the number of variables in the model and the specific model’s coefficient of determination (R2) as 
shown in Table 3.   
 

Table 3.  Comparison of the fit statistics and independent variables for three basal area models  
developed using the subset regression method. 

 
Models 1 2 3 
Independent variables  25th Percentile Ht.** 75th Percentile Ht.*** 75th Percentile Ht.*** 
  75th Percentile Ht.*** Max Intensity+ Canopy Cover*** 
  Mean Intensity** Canopy Cover*** Canopy Transparency*** 
  Canopy Cover*** Canopy  Transparency***   
  Canopy Transparency***     
Dependent variable ln (basal area, m2) ln(basal area, m2) ln (basal area, m2) 
Model p-value < 0.001 < 0.001 < 0.001 
R2 ln(Basal Area) 0.87 0.86 0.86 
Stand. error ln(Basal Area)  0.29 0.30 0.30 
Significance codes:  “***”  = 0.001; “**” = 0.01; “*” = 0.05; “+” = 0.1 

 
Cross Validation 

The subset selection process is a biased procedure (Miller, 2002). The best subset regression model does not 
distinguish true correlation from bias resulting from random errors.  This means that a best model in terms of 
residuals may not be the best predictive model.  

The true error for the model is estimated using k-fold cross validation (Mevik and Cederkvist, 2004). K-fold 
cross validation is an iterative process in which the data are partitioned into k segments and the model is fitted using 
k-1 of the segments. In this study, we used five segments (20 percent of data withheld each iteration). The residuals 
for iteratively excluded segments are used to generate the root-mean-square-error (RMSE) for the model (Table 4).   
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Table 4. Comparison of residual-based RMSE using k-fold cross validation for basal area models. 
 

 Model  1 2 3 
k-fold RMSE (m2) 0.31 0.32 0.31 
RMSE using entire 
dataset (m2) 0.28 0.29 0.30 

 
Selected Model 

The best linear model is a description of the relationship between basal area and the selected metrics. There is 
not a consensus on the right way to select the best model (Miller, 2002). Each method has its own pitfalls. The 
method of best subset selection employed here is biased; however, the k-fold RMSEs are essentially equal to the 
model RMSE, indicating stability in the three models tested.  Model 3 is the simplest of the models and the tradeoff 
for predictive ability is negligible.  In this analysis emphasis was placed upon simplicity, hence model 3 is deemed 
the most acceptable model for our purposes (Eq. 1). 

 
Eq. 1:  321 017.018.036.29.3)ln( XXXBA +++−=  

 
Where, ln(BA) = predicted natural logarithm of basal area (m2) 

X1 = 75th percentile height (m)  
X2 = canopy cover (percent) 
X3 = canopy transparency (percent) 

 
Mapping Basal Area with Regression Model 

The selected linear model (Eq. 1) is in units of ln(m2). These units are not easily interpreted so it is necessary to 
back transform the model to basal area units of m2. This process, however, introduces a systematic bias (Sprugel, 
1983). A simple data dependent correction factor accounts for this bias in the back-transformation process.  A 
second type of bias was introduced because the linear regression was performed on 809 m2 plots but was applied to 
900 m2 area square pixels.  Eq. 2 includes a composite correction factor for the two biases. Eq. 2 was used to predict 
basal area over the entire forested portion of Fort Lewis (Fig. 4).   
 

Eq. 2:    )017.018.036.29.3( 321* XXXeCFBA +++−=
  
where,  BA = basal area (m2) 

CF = composite bias factor, in this case:  1.04(log bias)*1.10(pixel bias) = 1.14 
 

Total Basal Area Estimates.  The LIDAR estimate of total basal area for the entire Fort Lewis forested area was 
calculated by summing all pixel values in the predicted basal area raster (Table 5). A simple random sample (SRS) 
total basal area estimate based on the ground plots was calculated by multiplying the average plot’s basal area (2.82 
m2 per plot) by the LIDAR-determined total forest area (26,224 hectares).  The population size or total forested area 
required for the SRS ground estimate was calculated using LIDAR-derived canopy heights; therefore, it is likely 
more accurate than would be found without use of the LIDAR data.     
 

Table 5. Predicted total basal area:  SRS ground plot estimate versus LIDAR basal area model estimate mapped 
over total LIDAR-derived forested area on Fort Lewis. 

 
   CI 95%

Method SE (m2) Total Basal Area (m2) From TO 
SRS 49,355 913,086 816,351 1,009,821 
LIDAR 26,256 663,471 612,007 714,934 

  
The predictions displayed in Table 5 were performed on the entire base including housing areas or other regions 

with low density of trees. This may be responsible for the elevated SRS estimate of total basal area relative to the 
LIDAR estimate because the CFI plots were installed only in areas with significant presence of trees from a forest 
management perspective.  
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Figure 4.  Basal area (per 30m pixel) for entire base (top); southwest section (bottom).  White areas are non-
forested.  Note: blue rectangular areas are private non-forested ownerships within the base perimeter.   
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CONCLUSIONS 
 

Results from this study indicate that LIDAR-based prediction of stand parameters is feasible even for complex 
forests. This is notable because most related studies in this field were performed on homogeneous managed forests. 
The LIDAR estimate of total basal area for Fort Lewis is significantly better than the SRS estimate and the standard 
error for the SRS is likely even a gross under-estimate of the true standard error. This is indicated by the fact that the 
SRS estimate does not include the likely better LIDAR estimate of total basal area. Basal area was the only 
parameter considered here, but future work will involve estimating parameters such as stem volume, biomass, 
quadratic mean diameter and crown base height.  This work has implications in that managers of complex forest 
systems can measure and monitor forest change at very high resolution for the entire landscape.  
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