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ABSTRACT 
 

A novel pan-sharpening algorithm designed for sharpening WorldView-2 (WV-2) imagery is presented.  The WV-2 
satellite was launched by DigitalGlobe on Oct 8 2009.  WV-2 has 8 spectral bands covering the range from 400nm-
1050nm and a panchromatic band covering 450nm-800nm.  The proposed pan-sharpening algorithm accepts any 
number of input bands, and quantitative color comparisons are performed using different band combinations from 
original multi-spectral file.  The pan-sharpening algorithm is found to produce acceptable color recovery and spatial 
recovery for a wide variety of input scenes. 
 
 

INTRODUCTION 
 
The WorldView-2 (WV-2) satellite, launched by DigitalGlobe on Oct 8 2009 represents the first commercial imaging 
satellite to collect very high spatial resolution data in 8 spectral bands.  The multi-spectral bands cover the spectral 
range from 400nm-1050nm at a spatial resolution of 1.84m, while the panchromatic band covers the spectrum from 
450nm-800nm with 4x greater spatial resolution, 0.46m.  The relative spectral responses from each band are shown in 
Figure 1.  

It is often desired to have the high spatial resolution and the high spectral resolution information combined in the 
same file.  Pan-sharpening is a type of data fusion that refers to the process of combining the lower-resolution color 
pixels with the higher resolution panchromatic pixels to produce a high resolution color image. 

Many pan-sharpening techniques exist in the literature [Nikolakopoulos 2008].  One common class of algorithms 
for pan-sharpening is called “component substitution,” where one generally performs the following steps: 

• Up-sampling: the multispectral pixels are up-sampled to the same resolution as the panchromatic band; 
• Alignment: the up-sampled multispectral pixels and the panchromatic pixels are aligned to reduce artifacts 

due to mis-registration (generally, when the data comes from the same sensor, this step is usually not 
necessary); 

• Forward Transform: the up-sampled multispectral pixels are transformed from the original values to a new 
representation, which is usually a new color space where intensity is orthogonal to the color information; 

• Intensity Matching: the multi-spectral intensity is matched to the panchromatic intensity in the transformed 
space; 

• Component Substitution: the panchromatic intensity is then directly substituted for the multi-spectral 
intensity component; 

• Reverse Transform: the reverse transformation is performed using the substituted intensity component to 
transform back to the original color space. 

If the above transformation is perfect, then the resulting imagery will have the same sharpness as the original 
panchromatic image as well as the same colors as the original multispectral image.  In practice, however, it is often 
impossible to meet both of these goals and one often trades sharpness for color recovery or vice-versa.   

A significant factor that affects the color recovery in the resulting image is how well the forward transformation 
models the relationship between the panchromatic and multispectral bands.   
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A very simple algorithm for pan-sharpening is called the Hue-Intensity-Saturation (HIS) sharpening algorithm, 
which utilizes the well known HIS color space.  The conversion from the RGB color space to HIS color space is 
well known (Tu 2004) and is not repeated here.  The HIS color space has the advantage that the three components 
are independent, thus manipulating one component cannot affect the other components.  In the HIS color space, the 
intensity component (“I”) is a simple average of the three color components: 
 

( )BGRI ++= 3
1  Equation 1 

 
where R indicates the pixel value for the red band, G indicates the pixel value for the green band, and B indicates the 
pixel value for the blue band.  However, it is noted (Tu 2001) that the multi-spectral intensity as represented above 
is a poor match for the panchromatic band, even after intensity matching is applied.   

In most cases, the panchromatic intensity is not modeled well by this equation, and the resulting color distortion 
makes the resulting product undesirable.  There are two main reasons why the HIS method does not work well for 
these images: 

• The HSI model presumes a single device dependent wavelength for each of R, G and B when defining the 
transformation RGB to HSI, while the imagery is taken with sensors responding to band of wavelengths in 
each of the R, G, and B regions (i.e., the HSI transformation assumes an infinitely narrow color response); 

• The HIS model only includes the values of the R, G, and B bands in the transformation, while the imagery 
may include more bands of color information, e.g., the QuickBird images also include Near IR information.   

As shown in Figure 1 and Figure 2, the multispectral coverage of the red, green, and blue bands does not cover 
the full spectrum of the panchromatic band.  In this case we expect a simple component substitution technique to 
suffer from some color distortion.  To minimize this color distortion, some authors (Strait 2008, Zhang 2004) model 
the panchromatic intensity from the multispectral bands and employ an equation as follows: 
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where “k” indicates a specific pixel in the image, MS[i][k] indicates the multi-spectral pixel for band “i” and 
location “k” in the image (typically derived from the upsampled image, at the same native resolution image as the 
panchromatic band), Panmodel is a “model” of the panchromatic band, and C is a vector of constants. 

The constants “C” can be computed in a couple of different ways usually by purely statistical means.  The 
problem with the technique is that the determination of these constants is often time consuming as it may require a 
lot of computation (as in Zhang 2004 in which the full pan-multispectral covariance matrix is required to be 
computed).  They can also be determined by computing the exact spectral overlap of each multi-spectral band with 
the panchromatic band.  In this case the constants must be computed separately for each sensor under consideration 
and this requires access to the detailed spectral response curves from the satellite provider, and such information 
may not be readily available. 

In this paper we present a new pan-sharpening algorithm called Hyperspherical Color Sharpening (HCS).  This 
algorithm handles any number of input bands and thus is an ideal candidate for sharpening WV-2 imagery.  We first 
present the mathematics required for the forward and reverse transformations to and from the native color space to 
the hyperspherical color space.  Next, we apply the hyperspherical transformation to pan-sharpening and detail the 
operation of the algorithm.  We also present a new pan sharpening quality index that measures both the spectral 
quality and the spatial quality of the pan sharpened image, with respect to the original multispectral and 
panchromatic images.  The quality index is found to correlate with visual observations that we make concerning the 
pan-sharpened imagery.  Finally we run a detailed experiment on 10 different WV-2 images representing a variety 
of land cover types and quantitatively compare the performance of the HCS algorithm to the well known Principal 
Components Algorithm (PCA, Chavez 1991) and the Gramm-Schmidt algorithm (GS, Laben et. al.). 
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WorldView-2 Relative Spectral Radiance Response
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Figure 1. The relative spectral responses of the WV-2 satellite. 

 
QuickBird Relative Spectral Radiance Response
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Figure 2. The relative spectral response of the QuickBird satellite.
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HYPERSPHERICAL COLOR SPACE 
 

The transformation between the native color space and the hyperspherical color space follows the standard 
definition of transformation between n-dimensional Cartesian space and n-dimensional hyperspherical space. 

For an image with N input bands, one forms a single intensity component and N-1 angles on the hypersphere.  
The general transformation into the HCS from an N-band color space is given by the following equations: 
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where χi is the ith component of the native color space.  The reverse transformation is: 
 

11 cosϕχ I=  Equation 7 

212 cossin ϕϕχ I=  Equation 8 

12211 cossinsinsin −−− = nnn I ϕϕϕϕχ L  Equation 9 

1221 sinsinsinsin −−= nnn I ϕϕϕϕχ L   Equation 10 
 

More specifically, for a common four-band image consisting of Blue, Green, Red, and Near IR (BGRN), the 
transformation is: 
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Likewise, for the common four-band BGRN image, the reverse transformation is 
 

1cosϕIB =  Equation 15 

21 cossin ϕϕIG =  Equation 16 

321 cossinsin ϕϕϕIR =  Equation 17 

321 sinsinsin ϕϕϕIN =  Equation 18 
In the transformation to HCS, the angular (φn) variables define the color or hue while the radial (I) component 
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defines the intensity of the color.  Once transformed into HCS, the intensity can be scaled without changing the 
color, essential for the HCS pan-sharpening algorithm. 

The transformation to HCS can be made from any native color space (or pseudo color space in the case of pan-
colorization).  An example transformation is given below where RGB is transformed into HCS and plotted as a 
function of φ1 and φ2 at constant intensity.   
 

 
Fig 1. Transformation from RGB to HCS at constant intensity.  This figure is a shell of constant radius (intensity) in 
the positive octant.  As all color components are positive, the angular components of HCS span the space [0, π/2].   
At (φ1,φ2)=(0,0), the HCS represents pure red, as φ1 is swept down to 90o, the color changes along what would be 

the Red-Green axis in the RGB space, and sweeping φ2 to 90o is equivalent to movement along the Green-Blue axis 
in RGB space.  Intensity is represented as the distance from the origin, which is constant in this figure.  It is 

important to remember that the transformation into HCS is completely general and the final result depends on the 
native color space. 

 
 

HYPERSPHERICAL PAN-SHARPENING 
 

We describe two modes of operation of the HCS pan-sharpening algorithm.  The first mode is called the naïve 
mode and simply replaces the multi-spectral intensity component with an intensity matched version of the pan band.  
Naïve mode has the advantage that it is simple to implement.  Generally this provides a sharp image but some color 
distortion is noticeable in the resulting pan-sharpened image, as we are assuming that each multispectral band 
contributes equally to the panchromatic intensity. 

The naïve mode proceeds as follows.  We make a first pass through the data and compute the mean and 
standard deviation of both the square of the multispectral intensity and the mean and standard deviation of the 
square of the panchromatic intensity, given by: 
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Let the mean and standard deviation of P2 be denoted by μ1 and σ1, and let the mean and standard deviation of 

I2 be denoted by μ0 and σ0.  These quantities can be computed at a lower resolution to save time without adversely 
affecting the results.  Next, we perform the forward transform from the native color space to the hyperspherical 
color space using equations 3-6. 
 
Next, we intensity match the P2 signal to the I2 signal using the following equation: 
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The sharpening step is performed by forming the adjusted intensity by taking the square root of the P2 band as 
follows: 
 

2PIadj =  Equation 21 
 

The resulting Iadj is the pan-sharpened intensity.  The sharpening algorithm proceeds by directly substituting the 
quantity Iadj for I in equations 7-10 in the reverse transformation from HCS color space back to the original color 
space. 

The second mode is called the smart mode.  We have found that this mode does an acceptable job of replicating 
the original multi-spectral colors.  The reason for this is that this mode models the difference between the pan and 
multispectral intensity and accounts for this difference during the pan sharpening process while naïve mode does 
not. 

Smart mode proceeds as follows.  Prior to sharpening the image we form a smoothed version of the 
panchromatic band as follows: 
 

)( panSMOOTHPansmooth =  Equation 22 
 
where the SMOOTH operation is simply a sliding window convolution filter, performed with a 7x7 square window, 
in which the value of the middle output pixel is the mean of all pixels in the window.  The dimensions of the 
window may be adjusted; however, we observe the fewest spatial artifacts3 in the resulting pan-sharpened image 
when the size of the window is set to 7x7. 

Next we compute the mean and standard deviation of both the square of Pansmooth band (PS2) and the square of 
the multispectral intensity (I2), given by 
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Let the mean and standard deviation of PS2 be denoted by μ1 and σ1, and let the mean and standard deviation of I2 be 
denoted by μ0 and σ0.  As in naïve mode, computation of these quantities requires a pass through the data, but can be 
computed at a lower resolution to save time without adversely affecting the results.  Next, we perform the forward 
transform from the native color space to the hyperspherical color space using equations 3-6. 
                                                           
3 The goal is to match the multi-spectral resolution as best as possible.  Using smaller or larger window sizes can 
cause spatial artifacts like ghosting and blurring in the resulting products. 



ASPRS 2010 Annual Conference 
San Diego, California  April 26-30, 2010 

 

Next, we intensity match both the P2 and the PS2 signal to the I2 signal using the following equations: 
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Next we form a quantity called the adjusted intensity as follows: 
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The resulting Iadj is the pan-sharpened intensity.  The sharpening algorithm proceeds by directly substituting the 
quantity Iadj for I in equations 7-10. 

 
 

PAN-SHARPENING PERFORMANCE EVALUATION 
 

An obvious question is how to evaluate the performance of a given pan-sharpening algorithm.  A good pan-
sharpening result will exhibit excellent spatial quality (i.e. recovery of edges) and also will maintain the colors of the 
original multispectral image.  But how does one evaluate these quantitatively? 

There exist many methods to assess both the spectral and spatial quality of the pan-sharpened image.  Currently 
there is no consensus in the literature (Li 2000) on the best quality index for pan-sharpening.  The reader is referred to 
Strait et. al. (2008) for a survey of many of the methods employed in the literature.  One of these methods is the Wang-
Bovic (Wang, Bovic 2002) quality index.  Borel et. al. (2009) demonstrates utility of the Wang-Bovic quality index for 
evaluating pan-sharpening performance.  The Wang-Bovic quality index for two images f and g is defined as 
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where the variances are represented as σf and σg and the means are represented as μf and μg.  Following Wang-Bovic, 
the first term is the spatial cross correlation between f and g, the second term is a comparison of the means between f 
and g, and the third term is a comparison of the contrasts.  The index goes between -1 and 1.  When the image f is 
considered to be the original, unaltered image, and the image g is considered to be the altered image, then QWB is 
considered to measure the quality of g with respect to f. 

In order to apply the Wang-Bovic quality index, one must have a reference image.  This presents a problem for 
pan-sharpening since no reference image exists at the pan-sharpened resolution.  Invariably one must downsample the 
pan-sharpened image to the original multispectral resolution, which allows direct computation of the quality index.  
The QWB can be computed at a certain scale, or block size.  Following Borel we use a block size of approximately ¼ of 
the image. 

The Wang-Bovic quality index can be computed for each band in the original multi-spectral image, producing a 
vector of values.  We define the quantity Qλ as follows 
 

[ ]),(),...,,(),,( 2211 NNWBWBWB PSMSQPSMSQPSMSQQ =λ  Equation 27 
 
where MS indicates the original multispectral band in the image, and PS indicates the pan-sharpened band 
(downsampled to the multispectral resolution), and N is the number of bands in the image. 
 

However, we argue that the computation of QWB alone is unsatisfactory to fully evaluate pan-sharpening quality.  
Since the computation is carried out at the same spatial resolution as the multispectral image, the QWB index cannot 
evaluate the spatial quality of the image at the panchromatic resolution. 
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For evaluating the spatial performance of a pan-sharpening algorithm, we have found that simply computing the 
cross correlation of the original pan band with each band of the pan-sharpened image provides an effective measure of 
spatial quality.  The cross correlation of two signals A and B is defined as: 
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where μA and μB are the means of signals A and B, and the summation runs over all elements of each signal.  The CC 
metric goes from -1 to 1. 
 

The cross correlation can be computed between the pan band and every band in the pan-sharpened image 
producing a vector of values.  We define the quantity CCλ as: 
 

[ ]),(),...,,(),,( 21 NPSPanCCPSPanCCPSPanCCCC =λ  Equation 29 
 
where Pan indicates the panchromatic band, and PS indicates the pan-sharpened band, with the subscript indicating the 
band index, and N is the number of bands in the image. 

In this work we propose a new quality metric for pan-sharpening.  The quality metric has two elements, spectral 
quality and spatial quality.   The spectral quality is the Wang-Bovic quality index and the spatial quality is simply the 
cross correlation.  We define the quantity QPS as follows: 
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where Qλ and CCλ are defined above. The index ranges from -1 to 1.  A good pan-sharpening quality index will provide 
a natural mechanism to evaluate and compare the performance of different pan-sharpening algorithms.  As an example, 
we apply four different pan-sharpening algorithms to the same dataset and compute QPS for each algorithm and 
compare and contrast the results. 
 

Table 1. Pan-sharpening quality computed for four different pan-sharpening algorithms for the same WV-2 input 
image. 

 
Algorithm Qred Qgreen Qblue CCred CCgreen CCblue Ave(Qλ) Ave(CCλ) QPS 

PCA 0.891 0.878 0.898 0.847 0.859 0.816 0.889 0.841 0.747 
GS 0.898 0.886 0.900 0.882 0.869 0.853 0.895 0.868 0.777 
HIS 0.920 0.860 0.780 0.960 0.996 0.984 0.853 0.980 0.836 

HCS Smart 0.929 0.904 0.878 0.929 0.946 0.909 0.904 0.928 0.839 
 

The results are summarized in Table 1.  The four algorithms compared are the Hue-Intensity-Saturation (HIS) 
algorithm, the Principal Components Analysis (PCA) algorithm, the Gramm-Schmidt (GS) algorithm, and the HCS 
smart algorithm.  Analyzing the table we see that the algorithm’s performance can be ranked quantitatively in terms of 
the QPS metric, and we can make several quantitative observations concerning each algorithm’s performance.  The PCA 
algorithm scores the lowest of the four, and is the least sharp of all the algorithms.  The GS algorithm is sharper than 
PCA, and retains the spectral quality better than PCA, and thus scores higher than PCA.  The spectral quality for the 
HIS algorithm is very poor, with the blue band being the worst (0.78), but the spatial quality is quite high (0.98).  Thus 
the poor spectral performance is offset by the excellent spatial performance and the algorithm scores higher than both 
PCA and GS.  The HCS algorithm scores high in both spectral and spatial performance and scores the highest out of all 
four algorithms.   
 

Thus we conclude that spectrally speaking, HCS produces the best result, followed closely by GS and PCA, while 
HIS produces the worst result.  Spatially speaking, HIS is the sharpest algorithm, followed by HCS, then GS, then 
PCA.  Overall the HCS algorithm maintains the best balance between spectral and spatial quality of the 4 algorithms. 
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How do these quantitative observations correlate with quantitative observations that we may make about the 
imagery?  Referring to Figure 3, we see that the HIS algorithm produces sharp imagery and visually speaking looks as 
sharp as the panchromatic image, but there is an overall blue color to the vegetation that looks very different from the 
original multispectral image.  The PCA, GS, and HCS algorithms all exhibit much better color recovery than the HIS 
algorithm.  The PCA algorithm exhibits some visible artifacts, notably some discoloration around the white building 
near the top right, and the overall result is blurrier than the original pan image.  The GS algorithm has fewer artifacts 
than PCA, but still exhibits some discoloration around the white building near the top right.  The overall result looks 
sharper than the PCA result, but is not as sharp as the panchromatic image.  The HCS result exhibits no discoloration 
around the white building near the top right, and exhibits the fewest visible artifacts.  The HCS result is sharp and looks 
nearly as sharp as the panchromatic image. 

In summary, we conclude that the pan-sharpened quality index proposed here correlates with qualitative 
observations we may make concerning the imagery and is a useful measure of pan-sharpening performance.
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Figure 3. Comparison of performance between the HIS, PCA, GS, and HCS pan-sharpening algorithms for a WV-2 image.
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EXPERIMENTAL RESULTS 
 

We performed the following experiment to evaluate and compare the performance of the HCS smart algorithm 
against both the GS and PCA algorithms available in ENVI.  We collected 10 scenes with the WV-2 satellite of a 
variety of different types of land cover, including Desert, Urban, Coastal, Forest, Rock, and Snow scenes.  Each 
image measured 10,000 pixels by 10,000 lines.  All the WV-2 imagery was ordered as Pan-MS1-MS2 bundle 
products.  In this configuration the panchromatic and multispectral imagery are stored in separate image files.  The 
WV-2 multispectral data, when ordered in this configuration, contains the bands ordered by increasing wavelength.  
The band order for a Pan-MS1-MS2 product is listed in Table 1. 

 
Table 2. WV-2 band order for an 8 band bundle product. 

 
Band Name Band Index Spectral Characteristics (nanometers) 

Coastal 1 400-450 
Blue 2 450-510 

Green 3 510-580 
Yellow 4 585-625 

Red 5 630-690 
Red Edge 6 705-745 
Near IR 1 7 770-895 
Near IR 2 8 860-1040 

 
The data was prepared for pan-sharpening using the following process.  The multi-spectral data was up-sampled 

to the same resolution as the panchromatic resolution (0.5m) using a bilinear resampling kernel.  This kernel is used 
to suppress high frequency spatial artifacts in the up-sampled multispectral imagery that can cause visual artifacts in 
the pan-sharpened imagery.  No explicit registration step was performed to align the panchromatic and multispectral 
data. The imagery was pan-sharpened using the HCS smart algorithm, the PCA algorithm, and the Gramm-Schmidt 
algorithm.  The spatial and spectral quality indices were then computed in an automated fashion.  The results of the 
experiment are presented in Table 3. 

 
Table 3. WV-2 8 band pan-sharpening experimental results. 

 
PCA GS HCS Land Cover 

Type Qλ QCC QPS Qλ QCC QPS Qλ QCC QPS 
Desert -0.67 -0.85 0.56 0.94 0.84 0.80 0.83 0.94 0.78 
Urban 0.94 0.78 0.73 0.94 0.79 0.74 0.82 0.90 0.74 
Desert 0.96 0.98 0.94 0.96 0.98 0.95 0.96 0.98 0.94 
Coastal 0.46 0.15 0.07 0.92 0.70 0.65 0.90 0.73 0.65 
Snow -0.77 -0.96 0.74 0.98 0.96 0.94 0.96 0.99 0.95 
Forest 0.92 0.86 0.80 0.94 0.87 0.82 0.92 0.88 0.80 
Rocks 0.85 0.90 0.76 0.85 0.90 0.76 0.60 0.97 0.59 
Desert 0.76 0.98 0.74 0.75 0.98 0.74 1.00 0.98 0.97 
Desert -0.60 -0.87 0.52 0.91 0.88 0.81 0.83 0.93 0.77 
Flood Basin 0.93 0.91 0.84 0.93 0.92 0.86 0.91 0.94 0.85 
Average 0.38 0.29 0.67 0.91 0.88 0.805 0.87 0.92 0.805 
 

Referring to Table 3, we note that the performance of the PCA algorithm is widely variable, often producing 
negative correlations when compared to the input multi-spectral or input panchromatic images (see the 1st, 5th, and 9th 
rows in the table).  We assume this is due to a significant amount of energy being distributed into other bands for these 
scenes rather than just the 1st band of the principal components transform, a situation which is not modeled by the PCA 
sharpening algorithm.  Note that the algorithm is not penalized by the quality index if both Qλ and CCλ are negative, as 
is the case for all the PCA examples that show negative spectral or spatial quality indices.  The Gramm-Schmidt 
algorithm shows much better performance than the PCA algorithm over all cover types, and shows no evidence of 
negative correlations.  This is due to the fact that the GS algorithm models the input bands in a better fashion than PCA 
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does, and is better equipped to handle histograms in which one multispectral component may overwhelm the other 
components.  The HCS algorithm also performs well over all the input scenes (especially Desert, row 8).  The overall 
quality index of HCS is tied with that of Gramm-Schmidt.  We observe that GS appears to be stronger spectrally (0.91 
versus 0.87) while the HCS algorithm appears to be stronger spatially (0.92 versus 0.88).  Visual comparisons of the 
images confirm this observation regarding the sharpness (Figure 3). 

It is interesting to note that sharpening all eight bands is not only possible, but also works quite well.  Some 
examples of different band combinations displayed in RGB format are shown in Figure 4.  This may be somewhat 
surprising to the casual reader who may expect that the sharpening would be naturally limited to only those 
multispectral bands which offer significant spectral overlap with the panchromatic band.  The reality is that the HCS 
algorithm models the data statistically instead of employing a physical model involving the exact spectral band passes 
of the sensor in question.  Thus the spectral overlap of the bands is not a strong determining factor in the quality of the 
pan-sharpened image. 

 
 

CONCLUSIONS 
 

In this work we have presented a new pan-sharpening algorithm called Hyperspherical Color Sharpening (HCS) 
and have detailed the implementation of this algorithm.  In addition we have presented a new quantitative measure 
of pan-sharpening performance that measures both spatial and spectral quality of the resulting pan-sharpened image, 
and agrees very well with visual observations that we might make about the imagery. We have quantitatively 
evaluated the performance of the HCS, PCA, and GS algorithms on WV-2 imagery collected over a variety of cover 
types.  The results indicate that the HCS algorithm is the strongest spatially of the three algorithms while 
maintaining a reasonable color balance.   
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Figure 4: Different Pan-Sharpening band combinations, sharpened with the HCS algorithm. 


