A FEATURE-BASED MATCHING STRATEGY FOR AUTOMATED 3D MODEL RECONSTRUCTION IN MULTI-IMAGE CLOSE-RANGE PHOTOGRAMMETRY

Clive Fraser
Ida Jazayeri
Simon Cronk
Department of Geomatics
University of Melbourne
Parkville, Vic 3010, Australia
c.fraser@unimelb.edu.au
jazayeri@unimelb.edu.au
cronks@unimelb.edu.au

ABSTRACT

Feature-based matching is commonly employed for object surface reconstruction in topographic and stereo close-range photogrammetry, but rarely in conjunction with convergent photogrammetric networks. This paper describes a new feature-based matching approach to automated 3D object reconstruction from highly convergent, multi-image networks. Geometric diversity and redundancy in the network design are a distinct advantage with the approach, which commences with automatic exterior orientation. The FAST interest operator is then applied to Wallis-filtered images to extract interest points, and matching of interest points is carried out to yield a dense 3D point cloud. The surface point data is subsequently converted to a triangulated mesh via a Poisson Surface Reconstruction technique, and textured. Three core components of the proposed object reconstruction approach, namely the FAST interest operator, Wallis filtering and Poisson Surface Reconstruction are first described. The results of an experimental test of the approach are then presented, the measurement being an engineering application in which surface modeling is performed to support deformation analysis. The results obtained highlight the practicability, robustness and accuracy of the reported automated multi-image object surface measurement approach incorporating feature-based matching.

INTRODUCTION

Accurate and comprehensive image-based 3D object modeling has applications potential in areas as diverse as industrial metrology, accident scene reconstruction, process plant documentation and cultural heritage recording. Current automated methods for object reconstruction from convergent close-range imagery, however, generally yield high accuracy models only when the object is targeted, the targets nowadays typically being either projected onto the object or made of high-contrast, retroreflective material. Apart from the fact that distinct targeted points are of primary interest in many measurement applications, accuracy and geometric constraints imposed upon area-based image matching within stereo photogrammetry mostly preclude its application for surface reconstruction of unsignalized objects. Within topographic and stereo close-range photogrammetry, feature-based matching offers an alternative approach to area-based matching via cross correlation or least-squares matching, yet this technique has rarely been employed in conjunction with highly convergent photogrammetric networks.

Shown in Fig.1 is a representative example of a multi-image, convergent photogrammetric network geometry for an object surface reconstruction measurement. It is noteworthy that the network geometry renders application of area-based matching impractical because of the excessive perspective disparity and the fact that radiometric similarity cannot be assumed for corresponding feature points. Feature-based matching offers an alternative matching strategy for the recovery of the surface shape to high-resolution and high accuracy, using multi-ray spatial intersection for extracted and matched unsignalized interest points, even in situations where the object shape is relatively complex.

This paper, which is a condensed version of Jazayeri et al. (2010), reports on the development of an automated 3D surface measurement strategy suited to multi-image, convergent photogrammetric networks, and to subsequent high-density surface mesh generation and texturing. Within the proposed approach, the very geometric diversity (highly convergent imagery) and redundancy (multi-ray intersection) that presents difficulties in area-based matching is a distinct advantage in the feature-based matching approach adopted.
The proposed feature-based matching approach requires the precise knowledge of exterior orientation for the multi-image network. This is achieved via coded targets, as is common in industrial vision metrology (e.g. Fraser, 2006; Cronk et al., 2006). Thus, in order to achieve the goal of automated object reconstruction and modeling, attention needs to focus upon two areas: the image scanning/measurement stage, which comprises image pre-processing and interest point detection to provide the features to be matched, and upon mesh generation for the measured object surfaces. These issues are addressed in the following sections. First, the FAST interest operator, which has been found to be optimal for feature point detection, is overviewed. Second, pre-processing via the Wallis filter is described, since this step has been found to enhance the performance of the FAST operator and subsequent feature-based matching. Thirdly, a Poisson Surface Reconstruction approach for mesh generation is described. Integration of these concepts into an automated close-range photogrammetric orientation scheme that utilizes coded targets, and possibly uncoded signalized points as well, has enabled realization of a fully automatic object reconstruction and modeling system. Application of the system will be highlighted, with the chosen example involving surface deformation monitoring.

Figure 1. Example network geometry for object surface measurement.

THE FAST INTEREST POINT OPERATOR

Interest operators detect features of interest in an image, such as corners, edges or regions, and in photogrammetric object reconstruction they are employed to find interest points for matching across multiple images (see overviews of interest operators in Schmid et al., 2000 and Remondino, 2006). High quality interest points are required as a preliminary step in this surface measurement process. The FAST (Features from Accelerated Segment Test) algorithm, developed by Rosten and Drummond (2006), is a high speed feature detector with strong repeatability properties suited to real-time frame-rate applications. A notable attribute of the FAST operator, which is very important for image-based modeling from convergent networks, is its invariance to rotation and changes in scale. This allows better performance than many preceding algorithms, including the SIFT operator (Lowe, 2004).

Similar in operation to the more familiar SUSAN algorithm developed by Smith and Brady (1997), the FAST algorithm examines a small patch in an image and assesses whether or not it ‘looks’ like a corner. A circular window is scanned across the image and the intensity values of the pixels within or around the window are compared to that of the central pixel. The algorithm considers a circle of 16 pixels around the corner candidate \(p \), and an interest point is indicated when a set of \(n \) contiguous pixels in the circle are all brighter than the candidate pixel \(I_p \) plus a threshold \(t \), or all darker than \(I_p \leq t \). For each location on the circle \(x \in \{1..16\} \), the pixel at that location relative to \(p \) (denoted \(p \rightarrow x \)) can have one of the three states:

\[
S_{p \rightarrow x} = \begin{cases}
\text{darker}, & I_{p \rightarrow x} \leq I_p \leq t \\
\text{similar}, & I_p < I_{p \rightarrow x} < I_p + t \\
\text{brighter}, & I_p + t < I_{p \rightarrow x}
\end{cases}
\]

For each \(x \), \(S_{p \rightarrow x} \) is computed for all \(p \in P \), the set of all pixels in all training images. This divides \(\mathcal{P} \) into three subsets \(P_d, P_s, \) or \(P_b \) where each interest point candidate \(p \) is assigned a \(PS_{p \rightarrow x} \) value. A Boolean variable \(K_p \) is then assigned a true value for \(p \) being an interest point and a false value otherwise. Following determination of the optimal \(x \)-value, which is based on the entropy of \(K_p \), the process is applied recursively on all three subsets and it
only terminates when the entropy of a subset is zero. This means that when all p values in the subset have the same value as K_p, they are all either interest points or non-interest points. A decision tree that classifies all detected points is created from the output of this process, and this is then converted into computer code which is compiled twice for optimisation and used as a corner detector.

The final computation stage of the implemented FAST algorithm involves computation of a score function V for each detected interest point, with non-maximal suppression being applied to remove points that have an adjacent point with a higher V-value:

$$V = \max \left(\sum_{i=1}^{m} \left| f_{i-x} - f_{i-y} \right|, \sum_{i=1}^{m} \left| f_{i-x} - f_{i-y} \right| \right)$$

The V score can be used as a quality control measure in post-processing to remove interest points below a chosen threshold. Higher quality interest points, ie points with the highest V-value or absolute difference between pixel intensities in the contiguous arc and the centre pixel, are retained. Jazayeri et al. (2010) have reported upon the performance of the FAST operator, in comparison to the SUSAN and often adopted Foerstner operators.

WALLIS FILTER

Enhancement of the images forming the photogrammetric network through pre-processing is often warranted for subsequent feature extraction and image matching (e.g. Baltsavias, 1991; Baltsavias et al., 1996). The Wallis filter (Wallis, 1976) is applied for this purpose in the reported 3D modeling approach, since studies have shown that interest operators typically find more suitable points on imagery that has been pre-processed with this filter (e.g Remondino, 2006; Ohdake & Chikatsu, 2005; Seiz et al., 2002). The Wallis algorithm is adaptive and adjusts pixel brightness values in local areas only, as opposed to a global contrast filter, which applies the same level of contrast throughout an entire image. The resulting image contains greater detail in both low and high level contrast regions concurrently, ensuring that good local enhancement is achieved throughout the entire image. As a result of testing a number of smoothing filters, it was found that the Wallis filter is a most suitable choice for use in conjunction with the FAST interest operator, considering its ability to provide greater detail in shadowed areas and saturated areas simultaneously. This allows a greater number of interest points to be detected. Further details on the Wallis filter in the context of the present investigation are provided in Jazayeri et al. (2009).

POISSON SURFACE RECONSTRUCTION

As a result of the photogrammetric triangulation phase, a dense, unstructured 3D point cloud is obtained. For the purposes of surface modeling, and later texturing and visualization, a 3D mesh needs to be generated from the point cloud. A Poisson Surface Reconstruction technique, developed by Kazhdan et al. (2006), has been adopted for mesh generation. The technique is a novel approach that expresses surface reconstruction as the solution to a Poisson equation. The adopted algorithm, which employs an implicit function framework, computes a 3D indicator function; that is, a function that is defined as ‘1’ at points inside the model and ‘0’ outside. It then obtains the reconstructed surface by extracting the isosurface. The algorithm is based on an observation that there is an integral relationship between oriented points sampled from the surface of a model and the indicator function of the model. More specifically, the gradient of the indicator function is a vector field that is zero almost everywhere, except at points near the surface, where it is equal to the inward surface normal. A relationship between the gradient of the indicator function and an integral of the surface normal field is derived in order to compute the vector field \vec{F} of the oriented points.

Kazhdan et al. (2006) have transformed the computation of the indicator function into a standard Poisson problem. The scalar function χ, namely the indicator function, whose Laplacian (divergence of gradient) equals the divergence of the vector field \vec{F}, is computed via

$$\Delta \chi \equiv \nabla \cdot \chi = \nabla \cdot \vec{F}$$

ASPRS 2010 Annual Conference
San Diego, California • April 26-30, 2010
The input data \(S \) is a set of samples \(s \in S \), where each sample consists of a point \(s \) and an inward-facing normal \(s \cdot N \). Each sample is assumed to lie on or near the surface \(\partial M \) of an unknown model \(M \). The input set of oriented points provides precisely enough information to approximate the surface integral with a discrete summation. The input point set \(P \) is used to partition \(\partial M \) into distinct patches \(P_s \subset \partial M \), and to approximate the surface integral over a patch \(P_s \) by the value at point sample \(s \cdot P \), scaled by the area of the patch:

\[
\nabla \left(\mathbf{X} \cdot \mathbf{P} \right) = \sum_{s \in S} \int_{\partial P_s} \mathbf{P}_s(q) \cdot \mathbf{N}_{\partial M}(q) \, dq
\]

Here \(\mathbf{P}_s(q) \) is a smoothing filter and \(\mathbf{N}_{\partial M}(q) \) is the inward surface normal at \(s \in \partial M \). Following determination of the vector field \(\mathbf{F} \), the Poisson Surface Reconstruction can solve for the indicator function \(\mathbf{X} \) such that \(\nabla \mathbf{X} = \mathbf{F} \).

However, since \(\mathbf{F} \) is not integrable, the algorithm cannot find a direct and explicit solution, and instead adopts a least-squares solution, after which the divergence operator is applied to form the standard Poisson equation:

\[
\Delta \mathbf{X} = \nabla \cdot \mathbf{F}
\]

An advantage of the Poisson Surface Reconstruction is that it can be extended to reconstruct non-uniform samples, which is of particular importance since the point clouds generated from the FAST operator are sporadic. A further advantage to formulating surface reconstruction as a Poisson equation is that Poisson systems are well known for their resilience in the presence of imperfect data. In addition, the Poisson Surface Reconstruction recovers the global best-fit model that considers all the input data at once, creating very smooth surfaces that robustly approximate noisy data and require very little or no post-processing. The Poisson Surface Reconstruction algorithm is implemented in the Computational Geometry Algorithms Library (CGAL, http://www.cgal.org).

EXPERIMENTAL TESTING PROGRAM

The experimental testing program conducted to evaluate the multi-ray feature-based matching approach to close-range photogrammetric object reconstruction comprised three phases. The first assessed both the Wallis filter and the degree to which it enhanced interest operator performance, the second evaluated the FAST operator for high-accuracy photogrammetric object reconstruction, and the third assessed the Poisson Surface Reconstruction approach for high-accuracy 3D mesh generation. The object used in the experimental testing was a deformed aluminium plate with graph paper affixed to the surface for quantitative assessment, as illustrated in Fig. 2. These plates are used as surface protection layers in various engineering applications. The plate was then imaged using the convergent network arrangement shown in Fig. 1. Coded targets were placed around the object to facilitate fully automatic network orientation and self-calibration. The resulting exterior orientation was then utilized to determine a dense array of 3D surface points through a feature-based matching of extracted interest points which centered on multi-image point correspondence determination (e.g. Otepka et al., 2002; Sabel, 1999).
The Wallis filter was first applied to the images of the aluminium plate, and the FAST operator was then run on both the Wallis filtered and original images to ascertain if superior results are obtained when an image enhancement algorithm is applied. For the second phase of testing, the FAST operator was run with different filtering parameters set for the algorithm in order to determine which values would result in the highest accuracy solution with a sufficient number of 3D points. Finally, the Poisson Surface Reconstruction was applied to the resulting point cloud to evaluate its applicability for generation of a high-definition wireframe for the aluminium plate surface.

RESULTS

Image Enhancement Results

The results from the first phase of the experiment indicated that the Wallis filter is indeed a necessary pre-processing function that enables the FAST interest operator to find a greater number of suitable interest points. By applying the Wallis filter, the shadowed areas are brightened and local enhancement is achieved throughout the entire image, as illustrated in Fig. 3a and further discussed in Jazayeri et al. (2009). The result of applying the filter is a normalized image, where the interest operator is able to detect suitable corresponding points in all areas. Issues arising from changes in contrast and illumination are overcome, leading to more repeatable and reliable results.

Interest Operator Results

The impact of applying the Wallis filter was further assessed in the second phase of the experimental testing, where the results showed that the FAST operator detected on average seven times more interest points on pre-processed images, as highlighted in Figs. 3a to 3c. The results also clearly indicated that the FAST operator is both a very fast and robust algorithm and it yields good localization (positional accuracy) and high point detection reliability, as illustrated by the results presented in Tables 1 and 2. Table 1 shows the speed and detection rate of the FAST operator when applied to both the original and filtered images. The computation time of the algorithm is a fraction of a second for both images, with over 30,000 interest points being found in the original image and over 200,000 points being detected in 0.3 sec in the Wallis filtered image. The algorithm found points with excellent localization and very few erroneous points were detected. For a camera with a pixel size of 0.006mm, such as the Nikon D200 used in this test, the localization accuracy of the FAST operator was found to be in the range of 3 to 6μm and thus clearly suitable for high-accuracy measurement.
Table 1. Speed and detection rate of the FAST operator applied to the aluminium plate

<table>
<thead>
<tr>
<th></th>
<th>Original Image</th>
<th>Wallis Filtered Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed (s)</td>
<td>Detection Rate (#pts)</td>
<td>Speed (s)</td>
</tr>
<tr>
<td>0.1</td>
<td>30578</td>
<td>0.3</td>
</tr>
</tbody>
</table>

In order to have more control over the number of interest points detected by the FAST operator, a filtering function was added to the algorithm. The filter works by assessing the quality of each interest point found, and eliminating all points below a user-defined quality threshold. The quality measure is based on the score function value V (Eq. 2), where interest points with high score values are regarded as being of high quality. As the score function values vary with different images, and since the user would not know which values for V constitute high scores, the filtering function works as a percentage filter. This allows the user to determine what percentages of points are to be retained, based on the score function values of all the points detected. This ensures that only interest points of optimal quality are used in subsequent feature-based matching.

Object Point Accuracy

Shown in Tables 2 and 3 are summaries of the object point determination results from the multi-image feature-based matching and photogrammetric triangulation of interest points detected via the FAST operator. For each of four Quality Filter values, 80%, 90%, 95% and 99%, the tables list the RMS value of image coordinate residuals, the mean standard error of object point coordinates, the corresponding relative accuracy, the number of points resulting from the final bundle adjustment and the number of erroneous points. The erroneous points comprise those which met image matching criteria but were rejected in the final bundle adjustment. In all cases, the minimum number of imaging rays for an object point was set at 4, the maximum possible being 8.

Table 2. Object point accuracy for network of original (unfiltered) images

<table>
<thead>
<tr>
<th>Quality filter value (%)</th>
<th>RMS of image coord residuals (pixels)</th>
<th>Mean std. error of 3D surface points (mm)</th>
<th>Relative object point accuracy</th>
<th>Number of 3D matched points in bundle adjustment</th>
<th>Number of erroneous points</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.45</td>
<td>0.044</td>
<td>1:18,000</td>
<td>1518</td>
<td>36</td>
</tr>
<tr>
<td>90</td>
<td>0.33</td>
<td>0.040</td>
<td>1:20,000</td>
<td>895</td>
<td>4</td>
</tr>
<tr>
<td>95</td>
<td>0.28</td>
<td>0.038</td>
<td>1:21,000</td>
<td>504</td>
<td>0</td>
</tr>
<tr>
<td>99</td>
<td>0.28</td>
<td>0.029</td>
<td>1:26,000</td>
<td>193</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3. Object point accuracy for network of Wallis filtered images

<table>
<thead>
<tr>
<th>Quality filter value (%)</th>
<th>RMS of image coord residuals (pixels)</th>
<th>Mean std. error of 3D surface points (mm)</th>
<th>Relative object point accuracy</th>
<th>Number of 3D matched points in bundle adjustment</th>
<th>Number of erroneous points</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.79</td>
<td>0.077</td>
<td>1:10000</td>
<td>6798</td>
<td>3051</td>
</tr>
<tr>
<td>90</td>
<td>0.43</td>
<td>0.051</td>
<td>1:16000</td>
<td>3826</td>
<td>177</td>
</tr>
<tr>
<td>95</td>
<td>0.29</td>
<td>0.048</td>
<td>1:17000</td>
<td>2278</td>
<td>6</td>
</tr>
<tr>
<td>99</td>
<td>0.30</td>
<td>0.038</td>
<td>1:21000</td>
<td>248</td>
<td>0</td>
</tr>
</tbody>
</table>

In applying feature-based matching to the eight images of the plate network, without any quality filtering, some 64,000 points were found to meet the criteria of acceptable matches for subsequent 3D determination. The minimum number of rays set for this matching was three. The results, as anticipated, were not acceptable, with possibly 60% or more of the 3D points constituting gross errors. When the FAST quality filter was applied, the number of resulting surface points dropped quite dramatically, as did the number of erroneous points. It can be seen from Tables 2 and 3, that retention of only 20% of the candidate 2D FAST-detected interest points results in 1518 3D points in the original, unfiltered images, with only 36 of these being wrong point solutions. The corresponding figures for the Wallis filtered case are 6800 and 3050, i.e. 50% of the points were still erroneous. However, when the quality factor was set to 0.95, the resulting number of valid surface points for the Wallis filter case fell to a still quite dense coverage of 2280, while the number of rejected points dropped to less than 10. The corresponding number of surface points for the unfiltered case is lower, at 500, but here there are no erroneous 3D point determinations. The retention of only the best 5% or so of the detected interest points produced a very reliable 3D point cloud, as judged by the absence of point rejections in the final bundle adjustment process.

As the quality tolerance on the FAST interest points tightens, so the RMS value of image coordinate misclosures in the final bundle adjustment reduces and the internal photogrammetric accuracy thus improves, again as expected. This has a scaling effect on the a posteriori standard error estimates for the 3D surface points, which in the case considered reached a level of between 0.03 and 0.05mm for the best 5% of matched interest points. The corresponding proportional accuracy range for the 0.8m diameter aluminium plate segment were 1:16,000 to 1:26,000. The majority of this variation was accounted for by variations in the overall image misclosure values (RMS of image coordinates) rather than by differences in ray intersection geometry. For the 5% of retained interest points, the image coordinate residuals again suggested a matching accuracy in image space of about 0.3 pixels.

Although higher accuracy can be achieved when more points are filtered, the resulting point cloud can become too sparse to meet the requirements for fine resolution mesh generation. On the other hand, if less than 90% of the points are filtered, too many erroneous points may result, thus reducing the final accuracy of the network. This is highlighted by the 80% quality filter case in Table 3 for which almost half of the 3D points determined from the Wallis filtered images are rejected as erroneous matches.

Poisson Surface Reconstruction Results

The mesh generation results indicated that Poisson Surface Reconstruction is a very fast and effective solution for fine resolution, high-accuracy mesh generation. In the case of the aluminium plate measurement test, the surface mesh (Fig. 4a) was obtained fully automatically, with no post-processing required. The results from other test objects also indicated that the Poisson Surface Reconstruction is well suited to the task of fully automatic mesh generation for accurate 3D surface modeling and representation.
CONCLUDING REMARKS

In its examination of three operational stages required to realize fully automatic 3D object reconstruction from convergent multi-image photogrammetric networks, this investigation has highlighted the benefits of the Wallis filter for image pre-processing and the applicability of the FAST operator as an ideal interest point detector for feature-based matching. The performance of the FAST operator is very impressive in terms of the number of interest points detected, speed of detection and the accuracy of localization. Also, the Poisson Surface Reconstruction results indicated that this algorithm is well suited to the task of mesh generation for accurate 3D surface modeling and representation. Finally, it is noteworthy that the surface representations in Fig. 4 were generated fully automatically from image mensuration, through network orientation, feature-based matching and object point triangulation, to mesh generation and texturing, thus illustrating the viability of the concept of a feature-based matching approach for high-accuracy, detailed surface reconstruction and modeling within convergent, multi-image close-range photogrammetric networks.

REFERENCES

Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson Surface Reconstruction, Eurographics SGP, pp 61-70

ASPRS 2010 Annual Conference
San Diego, California • April 26-30, 2010

