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An experimental strip has been flown
and tests of various horizontal-bridging
procedures and adjustments are contem­
plated in the spring of 1957. This strip is
eighty miles long consisting of approxi­
mately thirty-five models. Horizontal­
control is spaced five to ten miles apart
along the flight line. The problem consists
of determining photogrammetric positions
of points previously located by second­
order field methods near the center and
along the strip. Several methods are to be
employed in the adjustment. Different
combinations of control stations spaced
at varying intervals are to be used to ad­
just a single instrument run. Another test
will determine the magnitude of instru­
ment deviation at the center using two geo­
detic-control stations 40 to 80 miles apart,
together with an intermediate taped dis­
tance and a known azimuth. Experiments
are being scheduled in an effort to cancel
the bow effect by triangulating the strip
in opposite directions with the diapositives

set in opposite instrument cones. It is
hoped that the results of these tests will
establish a criterion by which control re­
quirements to meet specifications under
special conditions can be predetermined.

Vertical-control for the contouring of
coastal areas is provided by usual methods
and requires little discussion here. In
Alaska most of this contouring is done
with nine-lens photographs. The tidaI"
water surface provides a considerable
amount of vertical-control. information
and additional elevations are established
back from the shore as needed, usually by
trigonometric methods. Vertical-bridging
is generally limited to two and occasionally
three nine-lens models. In the United
States stereoscopic contouring is done with
both nine-lens and single-lens instruments,
and con trol is provided in practically every
model. This vertical-control is usually es­
tablished by spirit leveling, sometimes by
trigonometric leveling from bench marks of
the basic network.

Aerotriangulation Adjustment
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ABSTRACT: A practical method is described for adjusting the instrument­
coordinates of image points in such a manner that they agree with the co­
ordinates of ground-control points appearing in a strip of aerial photo­
graphs where the coordinates are obtained by means of a first-order
stereoscopic plotting instrument. The principal feature of the method lies
in the fact that no model of the strip need have sufficient control for abso­
lute orientation. The method is a general one developed in this country by
the Army Map Service and adapted by the Coast and Geodetic Survey to
fill its needs. The practice permits considerable reduction in the number
of control points required per strip and allows considerable latitude in
their relative distribution.

INTRODUCTION

T HE raw product of instrumental aero­
triangulation of a strip of photographs

is a list of numbers which are the instru­
ment-coordinates of image points, pass
points, center points and control points.
The coordinates are usually expressed in
millimeters, and the reference axes are the
X-, yo, and z-axes of the instrument. The
instrument-coordinate units and axes or-

dinarily have an initially unknown rela­
tion to the geodetic system (the Universal
Transverse Mercator system, or a State
Plane Coordinate system), because of an
insufficient amount of control in the first
model of the strip to enable absolute orien­
tation (as to scale, level, and azimuth).
The operation is based on the known
ground-coordinates of the scattered con­
trol points. The adj ustment of aerotriangu-
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lation consists of transforming the instru­
ment-coordinates into their proper geo­
detic ground-coordinates in a systematic
way, such that the transformed coordinates
of control points are identical respectively
to their known geodetic values. The points
are then plotted on a grid at an appropri­
ate scale using the adjusted instrument­
coordinates, after which the detail map­
ping is performed by means of the same,
or a different, instrument to fit six ad­
justed points in each model.

In the instrumental process of aerotri­
angulation, each additional photograph
(stereoscopic model) is attached and rela­
tively oriented very carefully to fit the
previous one in scale, level and azimuth,
Wherever geodetic points are encountered,
their instrument-coordinates are observed
and recorded just as any other image
point, but no effort is made to fit them at
this stage. The criterion of the procedure
is careful relative orientation without
residual parallax, if possible, and the rela­
tive orientation of a model is not com­
promised to make a better junction with a
previous model. The chain of models is
allowed to deviate without any restraint,
as it is realized that the character of the
deviation should be systematic. Thus the
chain of models may be visualized as a
long, solid figure consisting of model image
points, camera stations and pencils of opti­
cal lines. The systematic deviations may
cause the solid to be curved to the righ t or
left, upward or downward, differentially
stretched or compressed, and twisted. One
might conceivably regard this solid as a
long sausage-like figure suspended more or
less haphazardly, and inclined, curved, or
pointed aimlessly in an odd direction.

The method of adjusting this figure to
fit control is a practical one which allows
the control to be purely horizontal or
purely vertical, and which also serves to
isolate gross human mistakes which are
occasionally committed with regard to
such matters as the identification of a con­
trol point. The method is divided into two
principal steps: (1) corrections to all the
image-coordinates for systematic discrep­
ancies indicated at control points, and (2) a
uniform coordinate transformation. In the
Coast and Geodetic Survey the first step
consists of a graphic solution, and the sec­
ond consists of a numerical computation
facilitated by the use of an International
Business Machine (which is not necessary

for the system as desk calculators might
be used instead, without undue difficulty).

Two cases arise depending on the rela­
tive arrangement of control in the strip. If
sufficient control occurs in the first model
for complete absolute orientation, only
the graphic step of the ad} ustment is nec­
essary.' On the other him'd, if absolute ori­
entation of the first model is not possible,
both steps are required. However, a prefer­
ence exists in this Bureau to employ both
steps even where it may not be necessary.
Among the reasons for always using both
are (1) once the system is developed, it is
convenient to repeat the procedure in the
same fashion, and (2) the analysis of con­
trol discrepancies strip-wise is considered
to be more reliable than depending on per­
fect absolute orientation of the first model.

The effects of the adjustment are what
one would logically expect if the distorted
sausage-like figure is to be straightened by
means of a combined operation of syste­
matic bending, stretching, swinging, wid­
ening, etc. For example, the horizontal cor­
rections are exactly analogous to the nature
of the corrections afforded by a radial,
slotted-templet assembly of a strip of pho­
tographs.

THE GRAPHIC PROCEDURE

The graphic procedure for determining
the systematic correction follows a coor­
dinilte transformation of the few control
points by desk calculator, as explained in
the two sections that follow. The hori­
zontal-coordinates are adjusted independ­
ently from the vertical-coordinates.

The horizontal adjustment involves two
principal types of deviations (1) horizontal
bow Ay, and (2) differential scale, Ax (the
diameter, so to speak, of the sausage-like
figure becomes systematically greater or
smaller relative to the number of models
in the strip). Each type in turn has an
associated logical secondary component:
(la) in a bowed strip, not only does a
model require a corrective translation Ay
perpendicular to the flight axis, but it also
requires a rotation or swing AX', which
adjusts the outer points of the model in a
direction parallel to the flight line; and
(2a) not only does a scale correction Ax
adjust a model in the flight direction, but
it also moves the outer points in a direc­
tion Ay' perpendicular to the flight direc­
tion, inasmuch as a scale correction ap­
plies to both dimensions.
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To summarize, these four corrections
are: (1) azimuth, .:ly, (2) x-scale, .:lx, (la)
swing, .:lx', and (lb) y-scale, .:ly'.

An azimuth or x-scale correction is
plotted as an ordinate perpendicular to the
flight axis (the x-axis) of the strip at the
section where the control point lies. Any
convenient scale is used, such as one inch
on the graph equaling one millimeter (or
ten feet) of correction. The graphs of the
two corrections are smooth curves. The
azimuth curve is considered as quadratic.
The x-scale curve is known to be cubic,
but it seldom appears to be different from
quadratic in practice. However, one is not
concerned with the exact nature of the
curves if he uses this graphic method of
adjustment wherein the curves are con­
structed with a long, flexible rod to fit a
series of points (ordinates).

It can be proved that the swing correc­
tion to any point is proportional to (1) the
slope of the azimuth curve and (2) the dis­
tance the point lies from the flight axis.
Hence the swing-curve can be constructed
directly from the azimuth-curve by meas­
uring and plotting the slope of the azi­
muth-curve. It may appear reasonable
from the calculus that, inasmuch as the azi­
muth-curve is quadratic, the swing-curve
will be a straight line. In other words, the
swing-curve is the first derivative of the
azimu th-curve.

Points on the slope graph of a curve are
obtained by a simple graphic procedure.
A scale is laid on the curve so that the zero
of the scale is on the curve at any place,
and the scale lies on one of the longitudinal
graph-paper grid lines, which is parallel to
the flight axis. Opposite 10 on the scale,
the distance (ordinate difference) from the
grid line (and scale) to the curve is ten
times the slope. This is the average slope
effect at the midpoint 5-mark of the scale.
In practice, this ordinate difference can be
tra~sferred with a pair of dividers to the
flight axis: if one leg is o~ the axis, the other
leg defines a point on the swing-curve. Of
course, the enlarged scale of the slope is
taken into consideration, but it is done
later by merely moving a decimal point.
Then the swing correction at any other
image is equal to the product of the ordi­
nate of the swing-curve at that place
(which is the slope of the azimuth-curve)
and the distance the point is from the axis.

The direction of the correction has un­
derstandable significance. The direction

of the azimuth correction should be obvi­
ous at once upon examination of the y­
discrepancies at control points. The proper
direction of the swing correction can be
ascertained by visualizing how the rectan­
gular model lying on, and aligned with ref­
erence to, the azimuth error curve must
be shifted (.:ly) and swung (rotated, .:lx') in
order to move it onto the flight axis. The
swing correction will be to the right for
points lying on one side of the flight axis,
and to the left on the other side. Moreover,
the direction of the swing correction is re­
versed where the swing curve crosses the
fligh taxis. "Error" and "correction" are
defined for clari ty as they differ only in
algebraic sign:

An error is equal to a derived instru­
ment value minus the corresponding
known geodetic value, where one of
the values has been transformed so
that the two values are expressed in
the same units.

A correction is equal to known correct
geodetic value minus the correspond­
ing instrument value.

The y-scale curve is constructed from
the x-scale curve in the same manner as the
swing-curve is constructed from the azi­
muth-curve. The directions of the correc­
tions, however, are not so evident. The
correction in the x-coordinate is zero at
the first control point, and if the correc­
tions to images to the right of the first
model are plus, then the model undergoes
an enlargement. Thus, the points need to
be moved outward also in .:ly' perpendicu­
larly away from the axis. A reversal of
this condition in the center of the strip may
seem confusing unless one considers that
the use of the mathematical transforma­
tion to fit the end points automatically
corrects the scale at the center of the strip.
Points must be moved the same direction
in .:lx for the entire strip to correct for the
scale errors accumulated during the first
half of the strip. The scale of the indi­
vidual models may be too small at one end
of the strip and too large at the other. The
y-scale curve indicates this change by
crossing the axis. Thus, one can usually
solve the problem by considering the ques­
tion "Does this model req uire enlargement
or reduction?"

The y-scale correction, like swing, is
equal to the product of the ordinate of the
y-scale curve (which is the slope of the x-
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scale curve) and the distance the point is
from the axis.

Elevation corrections for vertical bridg­
ing may also be considered as consisting
of two components but, ironically, these
two curves are not related to each other.
In this Bureau, the components that have
been selected are (1) the vertical bow (BZ
curve) of the flight axis and (2) the twist
of the ribbon of models. These corrections
are determined by considering pairs of
vertical-control points located on opposite
sides of the axis. The vertical bow Llz is
represen ted by a curved line (theoretically
quadratic) whereas the twist LlZ' usually
is a nearly-straight line.

The value of an ordinate on the twist­
curve is the quotient of the difference in
the z-corrections required for a pair of
vertical-control points divided by the
graph paper (model) distance between
them. (This distance is reckoned perpen­
dicular to the flight axis if the two points
are not exactly opposite each other.) The
value of an ordinate on the bow-curve is
the value prorated from one of the control
points onto the axis, utilizing the twist
value already determined. Consequently, if
the control points are equal distance from
the axis, the bow ordinate is the average
of the two corrections. The algebraic sign
of the bow correction is obvious; that for
the twist is determined by comparing the
corrections required at the two control
points. The sign for the twist is plus on
one side of the axis and minus on the
other, and reverses if the twist-curve
crosses the axis. The twist correction for
any other image is the product of the or­
dinate of the twist-curve at the point and
the distance the point is from the axis.

These six corrections are summarized:
Corrected x = (instrument x) ± (ordinate

of the x-scale curve) ± (product of or­
dinate of swing-curve and the distance
the point is from the axis).

Corrected y = (instrument y) ±(ordinate
of the azimuth-curve) ± (product of
the ordinate of the y-scale curve and
the off-axis distance).

Corrected z = (instrumen t z) ±(ordinate
of the vertical bow-curve) ±(product
of ordinate of twist-curve and the off­
axis distance).

In this Bureau the graph consists of the
actual instrument plot of the strip at
model scale on a low-grade translucent
paper (vellum) which is laid on a long table

covered with cross-section paper. The dis­
tance a point is from the axis is measured
at the vellum scale. The selection of the
flight axis is arbitrary and does not affect
the accuracy of the work-it is simply a
useful reference line.

The curves have a differen t appearance
depending on whether or not the computa­
tional step is employed. If the computa­
tion is used, each of the primary curves
cross the axis near each end of the strip
where the end control points are located;
and each curve forms a large bow or arcl-..
If the computation is not used, the curves
are tangent to the flight axis in the first
model, and deviate gradually away from
the axis, never crossing it.

As the graphic procedure is relatively
new, it is not performed in a well-estab­
lished routine. Each analyst conceives and
solves the problem in a slightly different
manner, but utilizes the same fundamental
ideas given here. Undoubtedly, future de­
velopments will simplify, streamline and
systematize the procedure so that it will
be easier for others to apply.

Drawing the curves consists of a succes­
sive approximation procedure, involving
redrawing at least one of the quadratic
curves. One method is to plot first the
quadratic horizontal-correction curve hav­
ing the greatest magnitude, and its derived
slope curve next. The slope curve gives
corrections to be applied to the second
quadratic curve as explained above. After
the second curve and its derivative are
plotted, the first curve can be redrawn to
incorporate the second slope correction.
Further approximations usually have an
insignifican t effect. I n practice, a pre­
liminary vertical bow curve is also fre­
quently constructed prior to the twist
curve, and finally the bow curve is redrawn
taking both vertical components into con­
sideration.

THE COMPUTATIONAL LINEAR TRANS­

FORMATION PROCEDURE

The computational procedure is used to
adjust the coordinates in a uniform (linear,
proportional) manner so that the instru­
ment values are converted into correct geo­
detic values at the two horizontal control
points at opposite ends, and at two vertical
control points near one end and one at the
other. No further corrections are then re­
quired at these end points, but all the other
control points between the ends require
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(6)

(7)

(8)

(15)

(14)

(9)

(10)

(11)

(m, if needed, is a factor for the conver­
sion of units, such <J..S 3.2808 for converting
metric units into English units.)
II = Za - gZa

k, = Z4 - gZ4 - h

k5 = Z5 - gZ5 - h

k'(Y5 - Ya) - k5(y, - Ya)
e = (X4 _ Xa)(Y5 - Ya) - (X5 - Xa)(Y4 _ Ya) (12)

k5(X4 - xa) - k4(X5 - xa)
J (13)

= (X4 - Xa)(Y5 - Ya) - (X5 -Xa)(Y4 -Ya)

The inverse transformation may be re­
quired, especially for the analysis of diag­
onally-flown strips:

X = C2: b2) X + C2 ~ b2) Y

- C2 : b2) c - C2 ~ b2 ) d

Y = C2~bb2) X + C;: b2) Y

- C2: b2) d + C2 ~ b2) C

Z = (1. g) [Z - e(x - xa) - J(y - Ya) - II]. (16)

The equations are not derived here: they
are direct applications of the translation
and rotation equations derived in every
text on plane analytic geometry. The idea
of scale change, however, is usually not dis­
cussed in such texts.

It may be helpful to know that the con­
stant g is the scale factor of the strip. The
angle () of rotation is given by

sin () = b/(a2+ b2)1/2

cos () = a/(a2+ b2) 1/2.

The values c and d are the horizontal-trans­
lation constants, whereas h is vertical­
datum shift or vertical-translation con­
stant. The value e is the tangent of the
average angle 7J of inclination of the instru­
ment flight axis, andf is the tangent of the
angle ~ of inclination of the transverse
or y axis at the cross-section of the two
vertical-control points X4, Y4 and X" Yo. The
values k4 and k, are auxiliary constants;
they indicate the elevation discrepancies at
points 4 and 5 referred to point 3.

OUTLINE OF PROCEDURES

Two complete procedures are outlined
for utilizing the graphic and computa­
tional operations described heretofore. In
the first procedure, the instrument-coor­
dinates are transformed into ground units
of measurement before the graphic adjust­
ment.

a = (Xl - X2)(Xl - X2) + (YI - Y2)(YI - Y2) (4)

(XI - X2)2 + (Yl - Y2-)2

b = (XI - X2)(YI - Y2) - (YI - Y2)(Xl - X2) (5)
(XI - X2)2 + (Yl - Y2)2

C = XI - aXI + bYI

d = YI - bXI - aYI

= mva2 +b2

HeI:e x, y, z are instrument-coordinates for
a point, X, Y, Z are the corresponding
ground-coordinates for the same point,
and a, ... , h are the constants of trans­
formation.

Equations showing how to determine the
constants of transformation are given
where: x, y, z, are instrument-coordinates
of a horizontal-control point near one end
of the strip; X2, Y2, Z2 are for a horizontal­
control point at the opposite end of the
strip; X3, Y3, Z3 are the instrument-coordi­
nates of a vertical-control point near one
end of the strip (X3, Y3, Z3 is considered for
convenience here as different from Xl, Yl, Zl,
but a single horizontal and vertical-control
point may well serve both roles if Zl is
known); and X4, Y4, Z4 and X" Yo, z, are the
coordinates of two vertical-control points
located on opposite sides of the axis at the
opposite end of the strip (X4, Y4, Z4 may well
be identical to X2, Y2, Z2 if Z2 is known).

the corrections by the graphic proced ure
already explained.

The computational procedure rotates
the instrument coordinate axes into the
cardinal geodetic system, expands the
instrument units scale-wise into ground
units, and translates the instrument origin
to correspond to the origin of the geodetic­
coordinate system. More briefly, the com­
putational system rotates, translates and
changes the scale of the instrument-co­
ordinates. The procedure is called a "trans­
lormation" of coordinates from the instru­
men t system in to the ground or geodetic
system. This transformation is "linear," as
it does not warp nor distort the strip in any
way. The transformation facility allows the
instrument models to be propagated
through space without any reference to
ground-coordinates until after the instru­
ment bridge is completed.

Three transformation equations are em-
ployed:

X = ax - by + c (1)

Y = bx + ay + d (2)

Z = e(x - xa) +J(y - Ya) + gz + II (3)
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1. The constants of transformation are
derived by desk calculator based on
the control points at the ends.

2. The instrument-coordinates of all the
points of the strip are transformed
into equivalent ground coordinates.
(I n practice, the control points are
transformed in Step 1 by de;;k calcu­
lator, as they are but few in number,
the results can be used immediately,
and the other points will not be used
until later. The other points are
transformed by means of IBM.

3. The corrections (not errors) that need
to be applied to the transformed in­
strument-coordinatesof control points
are computed.

4. The six systematic correction curves
are plotted using the corrections of
Step 3.

5. The total correction of each image
point is computed from the graphs.

6. The final photogrammetric ground­
coordinates of all the image points are
computed by applying the total cor­
rection of Step 5 to the transformed
values of Step 2.

7. Using the final photogrammetric
ground-coordinates, positions of all
the images are plotted at a suitable
scale, and on a suitable medium, for
the use of the detailing instrument.

In the second procedure, total graphic
corrections in millimeters are applied di­
rectly to the instrument-coordinates, after
which the corrected values are transformed
into the final photogrammetric ground­
coordinates. (The vertical phase is treated
in the same manner as in the first procedure
at the present time.) The second procedure
is preferred in the Coast and Geodetic Sur­
vey and is being used in essentially all ap­
plications. Few, if any, advantages may be
gained from the use of the second proce­
dureif the strips of photographs are flown in
a north-south or east-west direction. How­
ever, the use of diagonally-flown strips
seem to be the rule rather than the excep­
tion in this Bureau. The strips are flown so
as to be parallel to a coastline or to connect
series of control points which are distrib­
uted nearly in a straight line.

The necessity for the use of the second
procedure for diagonal strips is due to the
principle that the systematic discrepancies
are associated with the direction of flight

(the direction of instrument aerotriangula­
tion) rather than the axes of the ground­
control coordinates. The procedure is but
slightly different from the first one:

1. The constan ts of transformation are
determined as in the first procedure,
except that the coefficients of the in­
verse transformation are also com­
puted from Equations 14 and 15.

2. Using the inverse coefficients of Equa­
tions 14 and 15, the known ground­
control coordinates are transformed
into corresponding instrumental val­
ues in millimeters. (The vertical
phase may be omitted.)

3. The corrections in millimeters that
need to be applied to the instrument
coordinates of ground control points
are computed, regarding the trans­
formed ground values as correct.

4. The corrections are used to construct
the systematic corrections graphs.

5. The total corrections are compu ted
for all the images as in the first pro­
cedure.

6. The total corrections are applied to
the observed instrument-coordinates.

7. All the corrected instrument-coordi­
nates are then transformed into their
corresponding final photogrammetric
ground-coordinates using the direct
transformation constants and Equa­
tions 1, 2 and 3.

8. As in the first procedure, using the
final photogrammet'ric ground-coor­
dinates, the position of all the images
are plotted at a'suitable scale and on a
sui table medium for the use of the de­
tailing instrument.

CONTROL REQUIREMENTS

The basis for ~pecifying a given number
and distribution'of control points is related
to the requirements for the construction
of the correction graphs and to the required
map accuracy. Theoretically, only three
horizontal-control points per strip are
needed to' construct the curves, where one
poin t is near each end, and the third near
the center of the strip. As one can construct
a smooth curve through any three points, a
mistake arising from any source would be
adjusted throughout the strip without any
fault being evident. If four points per strip
are used, a mistake in one point would pos­
sibly be revealed by the fact that the
smooth curves would not pass through all



AEROTRIANGULATION ADJUSTMENT 327

four points, but the curves could be made
to pass through any three of the four
points without any difficulty. Therefore,
trouble is indicated, but it cannot be iso­
lated. Consequently, five points per strip
are preferable as a fault in one of them is
both indicated and isolated, and it is un­
likely (although not impossible) that two
mistakes will occur together. This means
that five horizontal-control points plus five
pairs of vertical poin ts are desirable to
yield a rigid analysis.

ACCURACY

Frankly, the accuracy of the system has
not been well established. I t has been dem­
onstrated repeatedly that strips of 40 pho­
tographs taken at 30,000 feet can be aero­
triangulated satisfactorily for 1: 200,000
scale mapping by using only alternate
strips. As mentioned in the accompanying
paper of Mr. Charles Theurer, an extensive
series of tests is in progress in an effort to
determine the relative magnitude of re­
sidual errors. It is fairly evident that the
residual errors are related to the flight alti­
tude, the length of the strip, and the cer­
tainty of control identification.

Several other factors are considered to
have pronounced effects on accuracy: (1)
the quality of the adjustment of the instru­
ment and its mechanical condition; (2) the
work habits of the organization, such as
designating one operator to be responsible
for the entire triangulation of a specific
strip; (3) the use of numerical relative ori­
entation; (4) the application of non-syste­
matic corrections to cross tilts and height­
tilt factors mentioned previously, and (5)
the practice of pre-marking control points.

A few numerical quantities are men­
tioned to give an idea of the accuracy that
might be obtainable. If photographs are
taken from 10,000 feet with a six-inch
camera, the preferred model scale is double
the negative scale, or 1: 10,000. A first­
order instrument is read in units of 0.01
mm., which corresponds to about four
inches on the ground. Repeated readings
on very sharp images usually do not differ
more than ±0.02 mm. The residual paral­
lax after relative orientation is ordinarily
less than 0.03 mm., where half the amount
presumal::.ly derives from each photograph.
The connection of one model to another
may have a horizontal discrepancy of 0.02

mm., and 0.04 mm. vertically. The stand­
ard error summation for horizontal points
is still less than ± 0.03 mm., and ± 0.05
mm. for vertical points in a single model.
This corresponds with the findings in prac­
tice. These errors are of an accidental na­
ture appearing haphazard in a single model,
and they do not include the cumulative
quadratic, systematic tendencies of the
aerotriangula tion proced ure.

Consequently, the coordinates of a point
in any given model may be expected to
have a standard horizontal ground-error of
only about one foot, with a vertical-error
of less than two feet for the accidental ef­
fects under the best conditions. The syste­
matic effects can only be corrected with the
use of ground-control. Naturally, the re­
sidual systematic errors have a tendency to
vary inversely with the number of properly
identified control points.

For the 1:200,000 scale project, the
Bureau specified a horizontal-control point
in not more than every tenth model (40
miles) and a pair of vertical-control points
in not more than every eighth model (32
miles). The scheme proved to be more than
adequate wherever extra control was en­
countered. The standard residual errors
after adj ustment were less than 50 feet, or
1/600 of the flying height. It should be
noted that the control was sparsely dis­
tributed, was not pre-marked, that the fine
analyses mentioned above were not needed
as the results were adequate for the pur­
pose, and that only alternate strips were
triangulated.

On more recent work on photographs
taken from 15,000 feet with a six-inch
camera, with scattered control in shorter
strips (10 to 20 models), the standard re­
sidual horizontal error was less than five
feet, or 1/3,000 of the flight altitude with­
out using pre-marked control. The very
best results that one should have reason to
expect ideally would be about two feet.

Experience is not yet sufficient to pre­
dict the standard error to be expected un­
der any given set of conditions. In any
event, the photogrammetric control re­
quirements for Bureau mapping are con­
siderably more lenient than formerly when
a field elevation was required in the corner
of each model for leveling and two hori­
zontal points were always considered as
necessary in the first model in order to ad­
just its scale.


