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ABSTRACT: Landsat Thematic Mapper digital data were classified into seven native eucalypt forest type classes using a
nonparametric classifier that also calculated the probability of correct classification for each pixel. A digital elevation
model, spaced on a 30-m grid, was generated and used to derive terrain features of gradient, aspect, and topographic
position, which were geometrically co-registered with the TM thematic images. Using the knowledge of local forest
service personnel, the relationships between forest type classes and terrain (i.e., gradient, aspect, topographic position)
were quantified. These relationships were used as rules in a rule-based expert system. The thematic maps of forest
type, probability of correct classification, and terrain features provided data for the expert system to infer the most
likely forest species occurring at any given pixel. In addition, a check of association was made between adjacent pixels
to ensure that pixels were contextually correct in an ecological sense, with the classification being modified (where
necessary) to improve this. The modified thematic map output by the expert system had a higher mapping accuracy
than the thematic map produced by the supervised nonparametric, the maximum likelihood, and the Euclidean distance

classifier.

INTRODUCTION

A FOREST TYPE is an area of forest which exhibits a general
similarity in tree species composition and character. Maps
of native forest that detail the distribution of forest types have
traditionally been made using aerial photographs supported by
ground surveys. This method is labor intensive and subjective,
and may result in inconsistencies in the assignment of forest
type boundaries or names between different aerial photograph
interpreters, and over time with individual interpreters.

The advantages emanating from the objectivity and speed of
computer processing of digital remotely sensed imagery have
been detailed by Hoffer (1981), Skidmore et al. (1986), and Turner
et al. (1988). Thematic maps at Anderson (1976) level I and II
(i.e., discriminating between deciduous and coniferous forests)
from remotely sensed data have been produced with accuracies
of greater than 80 percent (Nelson, 1981; Walsh, 1980), but where
forest types have been discriminated (e.g., Anderson level I1I)
mapping accuracies have been typically below 80 percent (Strahler
et al., 1978; Merola et al., 1983; Hame, 1984). However, Skid-
more (1987) mapped eight forest types (i.e., at Anderson level
IMI) in central Pennsylvania with an accuracy of 90 percent, and
Skidmore and Turner (1988) discriminated five age classes in
coniferous (Pinus radiata) plantations in Australia with an 87
percent mapping accuracy using a supervised nonparametric
classifier, where conventional supervised and unsupervised
classification strategies had been unsuccessful, yielding less than
56 percent overall mapping accuracies.

Combined supervised and unsupervised classification strat-
egies have produced higher mapping accuracies than using only
one of these techniques (Fleming, 1975; Beaubien, 1979; La Per-
riere et al., 1980; Thompson et al., 1980; Walsh, 1980).

Different remotely sensed data types have been combined to
improve mapping accuracies. Skidmore et al. (1986) co-regis-
tered SIR-B radar data with Landsat MSS data. Higher mapping
accuracies were obtained using the combined data sources than
with either data source individually. Richards et al. (1987) used
this data set to show enhanced radar backscatter occurred over
flooded forests.

To further improve mapping accuracies, spatial information
ancillary to the remotely sensed data have been vector-digitized
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from maps or aerial photographs, and geometrically rectified to
overlay the remotely sensed data. In most applications, the vec-
tor data have been rasterized to form a grid of cells of the same
size as the remotely sensed pixels.

Remotely sensed data have been frequently combined with
digital elevation data, and with terrain features derived from
elevation data such as gradient, aspect, and topographic posi-
tion. Digital elevation data can be readily generated in most
parts of the world from contour maps or aerial photographs.
Some countries, such as the U.S., have complete digitial ele-
vation data coverage at various scales. For areas without ele-
vation information, the stereoscopic capabilities of the SPOT
satellite may be used to automatically generate digital elevation
data to within=10-m accuracy for the X, Y, and Z coordinates
(Swann et al., 1988; Rodriguez et al., 1988).

Other data which have been included with remotely sensed
data in multisource digital data analysis include aerial photo-
graph interpreted forest types (Tom and Miller, 1982), forest
volume estimates (Strahler et al., 1979), precipitation and tem-
perature data (Cibula and Nyquist, 1987), and soils (Ernst and
Hoffer, 1979). Such environmental factors are important in de-
termining forest species distribution. Australian researchers have
shown that parent material (Austin, 1978; Austin et al., 1983),
soil chemistry and structure (Kelly and Turner, 1978; Turner et
al., 1978), fire history (Gill et al., 1981), and climate (Austin et
al., 1983; Margules et al., 1987; Booth et al., 1987; Booth et al.,
1988) are factors affecting the distribution of native forest spe-
cies. In combination, these environmental variables create site
conditions which favor a particular suite of forest species.

The importance of ancillary data types in determining species
distribution will vary according to the size of the area being
considered. Topographic data improves mapping accuracies when
combined with remotely sensed data on a local (i.e., tens of
kilometres) to regional scale (Hoffer et al., 1975; Tom and Miller,
1982; Austin et al., 1983). Parent material has been shown to be
an important environmental variable determining forest species
distributions on a local to regional scale (Turner et al., 1978;
Austin et al., 1983). On a regional and continental scale, climatic
information becomes useful (Austin et al., 1983; Margules et al.,
1987; Booth et al., 1987; Booth et al., 1988).
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Following are some specific examples that illustrate the im-
provement in map accuracy made possible by integrating ancillary
data with remotely sensed data. Hoffer et al. (1975) included ele-
vation data with three selected Skylab-2 spectral bands, and input
the resulting four-band data set directly into a maximum likeli-
hood classifier. Mapping accuracies were improved by 23 and 32
percent for a deciduous and a coniferous class, respectively.

Tom and Miller (1982) combined elevation, gradient, aspect,
photointerpreted vegetation cover, Landsat multispectral scan-
ner (MsSS) data, and Landsat ratio bands using a nonparametric
linear discriminant function (described in Duda and Hart, 1973).
They claimed a forest mapping accuracy of 97.3 percent, but
this figure may be inflated as the training area pixels were also
used to test mapping accuracy (see Mead and Szajgin, 1982)
and only 37 pixels were tested for accuracy over nine classes
(i.e., approximately four samples per class) which would lead
to a wide confidence interval around the mapping accuracy es-
timate (Hay, 1979). Using a virtually identical linear discrimi-
nant function procedure, Fox et al. (1985) obtained an overall
mapping accuracy of 78.5 percent when discriminating between
two forest site quality classes and non-forest.

Cibula and Nyquist (1987) combined topographic, climatolog-
ical, and Landsat MSS data using simple Boolean operators to
link the data layers, and distinguished vegetation and land-
cover classes with a 92 percent accuracy. As with Tom and
Miller (1980), many of the classes had a small number of pixels
tested for mapping accuracy, so confidence intervals would be
large.

An alternative strategy for combining multiple data sources
is to stratify a scene using an ancillary data source before or
after classifying a remotely sensed image. For example, Strahler
et al. (1978) initially pre-stratified a forested area into elevation
ranges, and then classified Landsat MSS data within each stra-
tum into land cover and forest type classes. In another study,
Hutchinson (1982) classified an area of desert using Landsat MSS
data, and proceeded to post-classify dark pixels into shadowed
slope, basalt, and desert varnish classes using ancillary topo-
graphic data. Bright dry lake beds (playa) were similarly dis-
criminated from the steep sunny slopes of sand dunes, using
this post-classification technique. Talbot and Markon (1986) also
used this technique, and claimed an improvement in mapping
accuracy when topographic data were used to post-classify a
maximum likelihood classification through the incorporation of
shadow information.

A number of approaches to remove the effect of shadow on
remotely sensed data by directly combining digital terrain data
and remotely sensed data have been attempted. Areas which
are shadowed as a result of topography will have lower mean
and variance brightness values compared with areas which are
sunlit (Holben and Justice, 1980). Reduction of the shadow ef-
fect prior to classification will reduce the variation in brightness
values within a cover type across the topography (Justice et al.,
1981). Increasing the brightness of shadowed areas (that have
a low variance) will not increase the amount of information
content per se. The brighter class values may still not be dis-
criminated, as the variance is unchanged. The position of the
sun in relation to the aspect of a piece of land is obviously a
major factor in determining the amount of reflectance. The ex-
tent of the shadow problem in remotely sensed data is in part
determined by the steepness of the topography, as Hall-Ké-
nyves (1987) showed that, for gentle terrain in Sweden, there
is only a weak relationship between topography and Landsat
MSS brightness values. Leprieur et al. (1988) also investigated
the relationship between slope and reflectance, but found the
relationship was confused by variations in the forest type cover
(i.e., deciduous or coniferous forest). Reflectance also varies
according to the wavelength band, with shorter wavelength
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bands exhibiting less variation in reflectance across the topog-
raphy compared with longer wavelengths (Leprieur et al., 1988).
Another compounding problem highlighted by Karaska et al.
(1986) was the percentage of tree and shrub cover, which masked
the effect of topographic variables on Landsat Thematic Mapper
(TM) spectral responses. There has been some debate whether
Lambertian (i.e., light is scattered equally in all directions from
a surface) or non-Lambertian models are more suited for mod-
eling topographic shadowing (Malila et al., 1978; Hoffer et al.,
1979; Justice et al., 1981), although Smith ef al. (1980) and Holben
and Justice (1980) showed that ponderosa pine and sand will
exhibit both Lambertian and non-Lambertian scattering at dif-
ferent sun incident angles. Therefore, reducing topographic ef-
fects in remotely sensed data is difficult (Justice et al., 1981),
and much more work needs to be performed to establish it as
a practical method of combining remotely sensed data and dig-
ital topographic data.

In a forest environment not appreciably modified by humans,
a given species or forest type characteristically appears within
a range of environmental variable values (Pryor, 1959; Whit-
taker, 1967; Florence, 1981; Austin et al., 1983). Such a priori
information may be exploited to improve the mapping accuracy
of forested areas when using remotely sensed data. For exam-
ple, Strahler et al. (1978) used a priori probabilities based on
slope and aspect to weight forest class probabilities in a maxi-
mum likelihood classification, and improved mapping accura-
cies. However, the same sample plots were used for generating
the a priori probabilities and calculating mapping accuracies.
This would artificially improve the mapping accuracies as the a
priori probabilities were directly matched to the pixels selected
to test mapping accuracy. Other drawbacks with this approach
are that only two a priori probabilities may be introduced into
the maximum likelihood classification strategy (Bishop et al.,
1975), and the a priori information should be normally distrib-
uted.

In an attempt to integrate disparate data types, expert sys-
tems have been proposed (Lee et al., 1987). Expert systems have
been defined as computer programs that handle complex, real-
world problems and attempt to solve problems by reasoning
like an expert (Forsyth, 1984; Weiss and Kulikowski, 1984). Ex-
pert systems should also reach the same conclusion as a human
expert, given a similar problem (Weiss and Kulikowski, 1984).
The structure of expert systems vary widely, and Stock (1987)
and Goldberg et al. (1985) provide reviews. However, expert
systems have been characterized by two components, viz.:

® A “’knowledge base” that contains the data pertaining to a system
to be modeled, as well as rules (or relationships) linking the data
and the hypotheses (or classes) that are being solved. The data
and the rules are often termed “evidence.”

® An algorithm (the “inference engine’”’) controlling the program
flow, or inferencing, between the evidence and the hypotheses
(or classes) that are to be solved. That is, the algorithm controls
the order in which the rules and the data are considered.

Expert systems have been devised to perform various functions
with respect to digital spatial data, including predicting fire be-
havior in the Northern Territory of Australia (Davis et al., 1986);
identifying objects from remotely sensed digital data (such as
training areas (Goodenough et al., 1987) and buildings and
monuments (McKeown, 1987)); interpreting airports from (dig-
ital) maps and aerial photographs (McKeown, 1987); planning
helicopter routes (Garvey, 1987); updating forestry maps using
remotely sensed data (Goldberg et al., 1985); despatch of forest
fire control resources (Kourtz, 1987); proposing management
strategies for aspen forests using information in a GIS (White
and Morse, 1987); and selection and scheduling of cultural prac-
tices in forests (Rauscher and Cooney, 1986). Gray and Stokoe
(1988) provide a summary of other expert systems that have
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been applied to environmental assessment and management
problems. Forsyth (1984) discussed general concepts in Baye-
sian (statistical) updating of probabilities. Lee et al. (1987) com-
bined the two visible Landsat MSS bands with the two MSS infrared
bands using Bayesian updating. They obtained similar results
by using evidential calculus (Shafer, 1979).

This paper describes a method for combining many diverse
data sources (e.g., gradient and aspect) with remotely sensed
thematic images in order to map forests. The expert system
modifies a thematic map of forest types by using Bayes’ theorem
to integrate the ancillary topographic information with remotely
sensed digital data. The system essentially mimics an experi-
enced ecologist, assigning the most likely forest type to an area,
after considering the area’s gradient, aspect, topographic po-
sition, and remotely sensed data response. If more information
about the area becomes available (e.g., the soil type or parent
material), then that knowledge can be easily incorporated into
the decision making process of the expert system. An additional
feature of this expert system is the inclusion of spatial infor-
mation (Skidmore, 1989a). If an area (in the case of this expert
system, a pixel) is not surrounded by ecologically plausible for-
est classes, the forest type is recalculated for the pixel using a
contextual weighting factor. In simpler executions of contextual
classification, Thomas (1980), Landgrebe (1980), Gurney (1981),
Richards et al. (1982), Saxon (1984), Strahler and Li (1984), and
Gordon and Philipson (1986) have used various moving win-
dow techniques to correct an unlikely central pixel, based on a
measure of homogeneity with adjacent pixels. The expert sys-
tem can also report on the reasoning behind a particular forest
species being assigned to a pixel.

The overall aim of the study was to automatically map forest
types in a complex native eucalypt forest in southeast Australia
using available multisource data, including Landsat T™ digital
data, and digital topographic data including gradient, aspect,
and topographic position (i.e., ridge, midslope, valley). A priori
knowledge about the environmental position in which partic-
ular forest types and species occur, and the forest types that
occur adjacent to one another, have been included as rules in
this classification process. The main differences between this
expert system approach and preceding studies are that

® there is an ability to update class probabilities using more than
two data (i.e., evidence) sources (compare with Strahler et al. (1978));

® a nonparametric classifier (Skidmore and Turner, 1988) is imple-
mented which yields the probability of correct classification for a
class and therefore avoids the assumption of normality in the class
conditional probabilities (Lee et al., 1987);

® ecological knowledge is incorporated into the expert system to
improve forest type mapping; and

® a contextual check is made to ensure the classification is ecologi-
cally consistent.

DESCRIPTION OF THE STUDY AREA

A study area of approximately 7.5 km by 7.5 km situated
approximately 40 km west of the coastal township of Eden in
southeast Australia was selected (Figure 1). The study area was
selected as a pilot project from which it was planned to oper-
ationally map the adjacent forest region. Experiments con-
cerned with the silviculture, hydrology, and fire history of the
forests have been established in the area by the Forestry Com-
mission of New South Wales, yielding ground plot data and
color aerial photographs used in this study.

The study area is covered by mostly dry schlerophyll forest
(Baur, 1965), where the overstory tree canopy is totally domi-
nated by Eucalyptus spp. In gullies, some wet schlerophyll forest
appears (Baur, 1965). The parent material is Devonian granite,
with soil formations being mostly podzolic, though gley soils
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FiGg. 1. Location of the study area.

form in areas of colluvial deposition. The topography is mod-
erate, ranging in elevation from 150 to 600 m.

One major paved road passes through the area, and a number
of fire access trails exist. The area is subject to periodic wildfire,
though the forest generally recovers rapidly (Gill et al., 1981).
The activity of man has been limited to low intensity fires pur-
posely lit to reduce fire fuel loads. In addition, some areas to
the south of the study area have been harvested to produce
sawlogs and woodchips for paper pulp manufacture. These areas
have had a larger number of higher quality roads constructed
for access.

According to Baur’s classification (1965), there are a number
of forest types in this area. Baur (1965) defines a forest type as
an assemblage of forest species that occur together over an ap-
preciable land area. In this study, some sub-types have been
recognized in order to examine the resolution with which the
expert system can automatically delineate forest species. A sub-
type is derived by splitting the types recognized by Baur (1965)
into component species. A summary of the forest types and
sub-types recognized in this study is presented in Table 1. The
forest is a complex mix of forest species, with forest types and
sub-types appearing over small areal extents. For an area to be
recognized as a forest type or sub-type in this study, it had to
have an areal extent of greater than 0.1 ha (i.e., approximately
the size of a T™M pixel).

DEFINITION OF THE EXPERT SYSTEM
CoNCEPTUAL OVERVIEW OF THE EXPERT SYSTEM

The research question to be answered by the expert system
is “what species occurs at a given location in the forest?”, with
location X, ; being defined as the i*" row and j* column position
of a cell (or pixel) in a raster (gridded) GIS database. This re-
search question can be formalized as a research hypothesis that
species S, (for a=1,...,n species) occurs at grid cell location X, ..
Auvailable at each grid cell location X;; are multiple sources of
evidence (or data) in a raster database to assist in testing the
research hypothesis. The raster database can be conceived of as
a stack of layers, with each layer pertaining to a type of evidence
(Figure 2). In this study, the layers were comprised of

® the possible thematic classes (derived from the nonparametric
classifier),

® the probability of correct classification for the classes (derived from
the nonparametric classifier),

® gradient,

® aspect, and

® topographic position (i.e., ridge, upper midslope, midslope, lower
midslope, valley).

Using this database, the expert system infers the most probable
species that would occur at a given grid cell. A priori probabil-
ities for all the items of evidence were incorporated into the
inferencing process using a Bayesian (statistical) rule-based ap-
proach. The a priori probabilities relating to the evidence were
generated from the knowledge of experienced foresters.

The order in which hypotheses or evidence are considered
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TaBLE 1. FOREST TYPES AND SUB-TYPES RECOGNIZED IN THIS STUDY (AFTER BAUR, (1965) AND BOLAND ET AL.

(1984) )

Forest type F.C. N.S.W. Component forest species

and sub-type Type No.* Common name Scientific name

Silvertop Ash 112 Silvertop Ash Eucalyptus sieberi

Yertchuk 102 Yertchuk Eucalyptus consideniana

Stringybark-Gum Yellow stringybark Eucalyptus muelleriana
Mountain Grey Gum Eucalyptus cypellocarpa
White Stringybark Eucalyptus globoidea

Blueleaved Stringybark 121 Blueleaved Stringybark Eucalyptus agglomerata

Tea Tree Tea Tree Leptospermum spp.

Black Oak Black Oak Allocasuarina littoralis

Silvertop Ash-Gum

Silvertop Ash
Mountain Grey Gum

Eucalyptus sieberi
Eucalyptus cypellocarpa

A nonforest class was also recognized that included quarry, road, and clearfallen areas.

i—thematic classes from the nonparametric classifier

i—probability of correct classification

{—overlaid grid cell location

+—slope

—aspect

opographic position

Fic. 2. Data layers used in the raster database.

by an expert system has been used to characterize expert sys-
tems into two types (Naylor, 1984; Weiss and Kulikowski, 1984).
The first is a bottom-up or backward chaining approach, where
a hypothesis is considered to be true and the evidence (data)
relating to the hypothesis are considered in turn. The second
approach is top-down or forward chaining, which is essentially
an evidence (data) driven process. A piece of evidence is se-
lected and applied to each hypothesis in turn. In this study, a
forward chaining strategy was used to schedule the sequence
in which the evidence was combined with the research hy-
potheses.

Naylor (1984) reviews forward and backwards chaining strat-
egies, and concluded that they both require a method of decid-
ing which piece of evidence, or wich hypothesis, will be
sequenced next by the expert system. Without such a meth-
odology, the expert system lacks direction in its search for a
solution, as it glibly proceeds to sequentially evaluate all hy-
potheses or evidence. Deciding upon which piece of evidence
or hypothesis to consider has been called sideways chaining.
Naylor (1984) proposed a “rule value”” approach, while Short-
cliffe (1976) developed a “certainty factor”” approach as side-
ways chaining solutions. Sideways chaining was not attempted
in this study for reasons cited in the discussion.

The decision as to which species would represent the cell
location was made by selecting the (research) hypothesis with
the highest probability. A contextual check was then made to
ascertain whether the adjacent pixels had been classified into
forest types that were ecologically valid for the grid cell being
considered. If the grid cell X;; was not similar to the adjacent
grid cells, then the cells adjacent to X;; form weighting factors
to recalculate X ;.

FORMAL STATEMENT DESCRIBING THE EXPERT ALGORITHM

Let S, be the forest type class (for a=1,..., , classes) occuring
at location X; . Let E, be an item of evidence (for b=1,...,k items
of evidence) known at location X; .. Set up a hypothesis (H,)
that class S, occurs at location X, ;. A rule may be defined thus:

Elv = Hﬂl

that is, given a piece of evidence E,, then infer H,. However,
there may be uncertainty associated with this rule, that is, the
probability of the rule may not be 0 (i.e., false) or 1 (i.e., true),
but rather lie in the continuum {0 — 1}, depending on how
“sure” we are that the rule is true (or false).

Bayes’” Theorem may be used to update the probability of the
rule that the hypothesis (H,) occurs at X; ; given a piece of evidence
(Ey), i-e.,

P(EH)P(H,)
P(E,) @

Note that P(E,:H,) is the probability that there is a piece of
evidence E, (e.g., a southerly aspect) given (a hypothesis H,)
that class S, occurs at location X;; (also known as the class-
conditional probability —see Duda and Hart, 1973). P(H,) is the
probability for the hypothesis (H,) that class S, occurs at location
X;,- This probability is initially obtained from the probability of
correct classification supplied by the nonparametric classifier.
On iterating with further pieces of evidence E, (i.e., for b=2,...,k)
from the database, P(H,:E, | b=1) (i.e., the a posterior probability
of H, given E,, for b=1) replaces P(H,) in Equation 1. P(E,) is
the probability of the evidence alone, or the probability that any
cell has an item of evidence {E,} such as a southerly aspect.
Bayes’” Theorem provides a formula to calculate P(E,):i.e.,

P(H,:E,)=

P(E,) = ZP(E,,:H.,)HH,,),

thereby allowing P(E,) to be continually updated at runtime as
P(H,) is updated. Note that the evidence {E,} must be
independent, otherwise P(E,) would become larger or smaller,
thereby decrementing or incrementing H,, causing the a posterior
probabilities to be incorrect. In this case the evidence {E,,
b=1,...,k} was assumed to be statistically independent, as none
of the evidence was obviously correlated. For example, the
gradient of a pixel is not related to aspect. The most likely
hypothesis (i.e., class) for a cell, is the hypothesis which has
the maximum a posterior probability {max P(H,)|a=1,...,n} at X, ;.

A contextual check is performed to ensure that the class {S,}
selected at X, ; is ecotonally similar to the adjacent cells during
a second pass through the image. A matrix (Table 2) is set up
that provides contextual information about the species
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TABLE 2. MATRIX SHOWING THE FOREST TYPES THAT MAY OCCUR
ADJACENT TO THE CLASSIFIED FOREST TYPE

Forest type classified by the expert system

STA Y S/G BLS TT ALT SA/G CC Q
o & STA X X X X X X X X
| X X X X X
. 5% sG X X X X X X X
£ 8.8 BLS X X X X X
b=/ 3 T X X X X
8 5& ALT X X X X
=8 ¢ SAG X X X
$ .9 CC X X
SEEQ r
KEY
STA - Silvertop Ash TT - Tee Tree

Y - Yurtchuk

S/G - Stringybark/Gum

BLS - Blueleafed Stringybark
Q - Quarry/road

ALT - Black Oak
SA/G - Silvertop Ash/Gum
CC - Clearcut forest

{TJa=1,...,n} that naturally occur adjacent to the most likely
class {max P(H,)} at X, ,. The context of the eight cells adjacent
to the central cell X, ; are checked in sequence, using the matrix
(Table 2). If, according to the matrix table, the adjacent cells can
occur naturally alongside the central pixel X; , then the algorithm
proceeds to the next cell. However, if one (or more) of the
adjacent cells may not occur next to the central cell X;; (according
to the matrix Table 2), then {P(H,:E,)} is updated by assigning

P(E, : H) = {1/8*T}.

Note that T is the number of cells of species “a”" in the 3 by 3
matrix adjacent to X, (i.e., T = {T, |i=(i—1),i,(i+1); j=(—
1),j,(j+ 1); NOT (i,j)}.

The expert system was written in FORTRAN-77 and executed
on a DEC VAX 8700 computer cluster at the Australian National
University. The evidence was prepared as described in the next
sections, and stored in the SPIRAL geographic information system
(Myers, 1986), while the a priori data were stored as an ASCII
file. The thematic maps output from the various classification
strategies were plotted on Tektronix hardware using Uniras
software (European Software Contractors, 1982) and Map
Analysis Package software (Tomlin, 1987).

PREPARATION OF THE EVIDENCE AND A PRIORI
PROBABILITIES FOR INPUT INTO THE EXPERT SYSTEM

REMOTELY SENSED DiGITAL DATA

A Landsat Thematic Mapper image (Path 90, Row 86) was
obtained for the study area. This cloud-free scene was collected
on 1 October, 1986. The analysis of the Landsat T™M data began
with the geometric rectification of the T™M scene to a contour
map. The contour map was a New South Wales Department of
Lands 1:25,000-scale series map with a 10-m contour interval
(“Mount Imlay” sheet 8823-1V-S) which conforms to the Aus-
tralian National Mapping Council standards of accuracy. A sec-
ond-order polynomial was calculated using ten ground control
points located on the map and the T™ image. The image was
resampled to a 30-m square grid by nearest neighbor interpo-
lation, using program SUBGM in the ORSER image processing
system (Turner et al., 1982), and the study area was subset to
yield a grid of 239 rows by 239 columns.

Overlapping sets of 1:40,000-scale black-and-white and 1:10,000-
scale color aerial photographs, flown in 1977 and 1988, respec-
tively, were obtained from the Forestry Commission of New
South Wales. Extensive ground truth reconnaissance combined
with interpretation from the aerial photographs allowed three
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or more training areas representative of each forest type to be
located in the study area. Mean and covariance matrices of the
forest classes for all seven TM bands were extracted for these
training areas using the STATS program in the ORSER system
(Turner et al., 1982). From this information, plots of band bright-
ness levels (i.e., DN values) were prepared for each class, in
order to study the spectral distribution of the training area data
sets. The mean and the standard deviation around the mean
were plotted for each class.

Unsupervised classification strategies was used to isolate areas
of spectral homogeneity in the image. These methods included
a minimum distance clustering algorithm (program CLUS), and
an algorithm that finds the norm of each observation and trans-
forms the norm into a percentage of the maximum possible
value for the norm (program NMAP) (see Turner et al., 1982).
An unsupervised nonparametric strategy that incorporates con-
textual information was also used to delineate training areas
(Skidmore, 1989a).

In an iterative process, the unsupervised classification results
were compared with the aerial photographs and field notes,
and the training area boundaries were adjusted to improve the
homogeneity of the cover classes on the thematic maps.

The approximate areal extent of each forest cover type was
estimated by inspecting the unsupervised classification results
and from discussions with local forestry staff. Thus, the a priori
probability “P(i)” (as notated by Skidmore and Turner (1988))
could be estimated.

A principal components analysis was performed on the seven
™ bands, in order to reduce the number of features and thereby
improve computational efficiency. The first two principal com-
ponents, which accounted for 91 percent of the total scene var-
iance, were classified by a supervised nonparametric strategy
(Skidmore, 1987; Skidmore and Turner, 1988). The principal
components were rescaled to range in brightness (i.e., DN val-
ues) from 0 to 63 in order to improve the computational effi-
ciency of the supervised nonparametric classifier. The supervised
nonparametric classifier generated a thematic image of the class
with the highest probability of occurrence at each pixel. This
program was modified so that all the classes (S,) that occur at
pixel location X, ; were output to a raster database, along with
the probability of correct classification for each class.

Using notation from Skidmore and Turner (1988), all the classes
(i.e., S,) that occured at vector position (X) in N-dimensional
feature space were written into a lookup table. The vector po-
sition in N-dimensional feature space of the pixel being consid-
ered {X, ;} was equated with the appropriate lookup table value
{X}. All the probabilities of correct classification and the classes
that occured at X in the lookup table were written into the raster
database location X ;.

The probability of correct classification for class ‘a’ is the class
conditional probability {P(E,:H,)}, defined as the probability of
the spectral response {X} occurring (where X is a vector position
in N-dimensional feature space and is equivalent to a piece of
evidence (E,)) given class {H,}.

ToPOGRAPHIC DATA

Topographic variables may be readily generated in digital form
and merged with other digital data, such as remotely sensed
data. Skidmore (1989c) described the method for generating the
regular digital elevation grid that was used in this study.
Streamlines and high points were digitized from the Mount
Imlay map sheet (which was also used to geometrically rectify
the remotely sensed data). 3306 spot heights were selected, as
well as 2115 points along streamlines. An interpolation program
developed by Hutchinson (1988) was used to calculate elevation
values to 1 m on a regular 30-m grid. This program imposes a
global drainage condition which automatically removes spurious
“sinks.”” This ensures that all streams apparently flow downhill
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without ponding or damming, a reasonable assumption for the
study area as no significant surface ponding occurs.

The modeling of topographic variables from a regular grid of
digital elevation data was reviewed by Skidmore (1989b), who
proposed that either the third-order finite difference method,
or multiple linear regression models, were suitable for calculating
gradient and aspect. Consequently, a third-order finite difference
method was used to calculate gradient and aspect. The modeling
of terrain position (i.e., ridge, upper midslope, midslope, lower
midslope, and valley) from gridded digital elevation data, using
an algorithm proposed by Skidmore (1989c), was also
implemented.

The DTM (digital terrain model) data were geometrically
corrected to the same geometric projection and scale as the
remotely sensed data, using a second-order polynomial with
ten ground control points and nearest neighbor interpolation
(Turner et al., 1982).

The remotely sensed thematic images and the topographic
data (i.e., gradient, aspect, topographic position) were now
geometrically corrected to the same map base and resampled
to a regular 30-m grid. These data sets were input as separate
layers into a raster database using the SPIRAL GIS system (Myers,
1986).

A PRIORI PROBABILITIES OF EVIDENCE

Assigning the a priori probability of occurrence for a piece of
evidence is the most subjective aspect of an expert system
(Forsyth, 1984). The probability of an item of evidence occurring,
given a particular hypothesis (i.e., {P(E,:H,)}, must be ascertained
in order to calculate Equation 1. In an ideal situation, {P(E,:H,)}
may be derived statistically, though in most applications this is
not possible, so {P(E,:H,)} is a heuristic, estimated from the
“feeling” or “knowledge” of experts. In this study, {P(E,:H,)}
was estimated by qualitative methods including interviewing
experts, field observations, and a number of unpublished internal
documents from the Forestry Commission of New South Wales.

Foresters and forest workers employed by the Forestry
Commission of New South Wales in the Eden region have
substantial local knowledge about the location of particular forest
tree species in the environment, and have sound observations
on the natural factors which influence the distribution of species.
This knowledge was captured by a series of personal interviews
and a written questionnaire designed to ascertain the probability
of a particular species occurring given a piece of evidence. The
a priori probabilities detailed in Table 3 were collated by averaging
the probability responses of the various experienced foresters,
observations from field plots, and the unpublished documents.

The quantitative description of the position of a forest species
in the environment was considered by Whittaker (1967), who
described the concept of gradient analysis as the variation in
the occurrence of a species along an environmental gradient
(such as elevation or moisture availability). Occurrence of a species
at different positions in the environment was measured in
convenient units such as “’stems per hectare” or “percentage of
stand.” Generating the a priori probability of occurrence for a
species at a position along an environmental gradient was not
attempted by Whittaker. Austin et al. (1983) used a generalized
linear model to predict the probability of eucalypt species
occurrence. Their model required a number of dependent
environmental parameters to successfully predict a eucalypt
species. However, the expert system used Bayes’ theorem which
operates on the probability of a species occurring given a single
piece of evidence (or environmental parameter) only. Austin et
al. (1984) calculated the probability of occurrence for Eucalyptus
species within environmental zones (that included 100-m altitude
zones, and 100-mm rainfall estimate zones) based on the
proportion of (sample) sites within each zone at which the species
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were found. Such probability estimates require a large number
of samples that are well distributed over all zones.

CONVENTIONAL METHODS FOR CLASSIFYING THE REMOTELY
SENSED DATA

In order to compare the expert system with conventional
methods of analyzing remotely sensed data, maximum likelihood,
nearest neighbor (based on Euclidean distance), and supervised
nonparametric classifications of the study area were performed
using statistics from the same training area boundaries. Maximum
likelihood and Euclidean distance classifications were performed
on the geometrically corrected seven-channel T™M data set. Apart
from resampling, no additional radiometric corrections were made
to the TM data. Only the first two principal components were
utilized for the supervised nonparametric classifier as principal
components 4 to 7 contained noise, and a reduced number of
features increased the efficiency of computation (Skidmore and
Turner, 1988). Principal component 3 was discarded as a result
of inconsistencies in the image (see Discussion).

MAPPING ACCURACY ASSESSMENT

Mapping accuracies for the thematic maps output by the three
supervised classification strategies and by the expert system
were calculated. Eighty-four field sample plots had been ran-
domly located within the study area as part of a major research
project undertaken by the Forestry Commission of New South
Wales to study the effects of logging and fire on the forests of
southeast Australia. A large number of variables were measured
at each plot: information collected included the species of all
trees greater than 10-cm diameter at 1.3 m above ground level,
and the dominance of those trees (on a scale of 1=trees that
totally dominate other trees, through to 9= trees that are totally
suppressed). A FORTRAN-77 program was written to calculate
the forest class name for each plot based on the definitions in
Table 1. All trees with a dominance of 1, 2, or 3 were included
in the calculation, with the forest class name being determined
by the species with the highest frequency in the plot.

The “name” to be given to a particular mix of species in a
natural forest is a perennial problem for ecologists and foresters.
After discussing the problem with colleagues and local forestry
staff, the following naming conventions were developed. For a
species to contribute to the forest class name, it had to have a
frequency of greater than 25 percent within the plot. In some
cases, the proportion of species in a plot did not equate with
one of the forest type names. There were three options available
to deal with this problem. The first option was to generate a
large number of class names by creating names to represent
each new species mix. This option could theoretically create an
infinite range of forest type names along a forest gradient as
the proportion of species changed (Whittaker, 1967). In addi-
tion, during the field checking of randomly selected plots for
mapping accuracy, the rarer forest type classes would have rel-
atively few samples collected, given limited resources (time and
money) to undertake field checking. A second option was to
broadly generalize the forest types into a few “catch-all” group-
ings such as gully type, stringybark type, etc. However, it was
felt that such course mapping would not show the full potential
of the method. As a compromise, the species name(s) with the
highest frequency determined the forest class name for the plot.
For example, a plot may have Yertchuk (50 percent), Silvertop
Ash (30 percent) and Blue-leaved Stringybark (20 percent), so
the forest class name would be Yertchuk. Theoretically, a plot
may have contained Blue-leaved Stringybark (52 percent) and
Silvertop Ash (48 percent), and would be called Blue-leaved
Stringybark, while an adjacent plot may have contained Blue-
leaved Stringybark (48 percent) and Silvertop Ash (52 percent)
and be called Silvertop Ash. Even though such situations were
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TABLE 3. TABLE SHOWING THE PRIOR PROBABILITIES OF THE EVIDENCE
FOREST TYPES
Q Y TT YSM BLS STl STD cC STM ALL

% N 0.4 0.4 0.3 0.4 0.4 0.4 0.3 0.3 0.2 0.2
=} W 0.4 0.5 0.4 0.5 0.4 0.3 0.4 0.3 0.4 0.3
§ S 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.3 0.4 0.3
= E 0.4 0.4 0.3 0.5 0.5 0.4 0.3 0.3 0.3 0.3
Q F1 0.4 0.4 0.6 0.5 0.3 0.1 0.1 0.3 0.1 0.1
Z R 0.4 0.5 0.05 0.1 0.7 0.6 0.6 0.3 0.4 0.1
= Um 0.4 0.5 0.08 0.2 0.6 0.5 0.5 0.3 0.5 0.1
E M 0.4 0.5 0.1 0.3 0-5 0.3 0.5 0.3 0.6 0.2
) Lm 0.4 0.3 0.2 0.7 0.4 0.2 0.2 0.3 0.6 0.3
% G 0.4 0.1 0.6 0.8 0.1 0.01 0.01 0.3 0.5 0.3
8 <10 0.4 0.5 0.4 0.2 0.2 0.2 0.2 0.3 0.2 0.1
= 10-20 0.4 0.3 0.1 0.35 0.3 0.4 0.4 0.3 0.4 0.3
< >20 0.4 0.2 0.01 0.3 0.2 0.4 0.4 0.3 0.4 0.3

Key

N - North

W - West

S - South

E - East

Fl - Flat i.e. no aspect

R - Ridge

Um - Upper midslope

M - Midslope

Lm - Lower midslope

G - Gully

<10 - Slope less then 10 degrees
10 - 20 - Slope 10 to 20 degrees
>20 - Slope greater than 20 degrees

not common in the actual field plot measurements, errors may
have been recorded in the error matrix when in fact the pixel
being checked was “almost”” correct.

Additional randomly located plots were visited and the dom-
inant forest type noted. In all, this yielded 135 field plots. The
higher frequency of some forest types such as Yertchuk and
Gum/Stringybark classes in the study area is reflected in the
higher numbers of those forest types in the error matrix due to
the simple random selection of forest plot locations.

The field plots were manually located on the geometrically
corrected thematic images using the road and stream networks
as reference points. The class name associated with each plot
was checked against the classes predicted on the thematic im-
ages produced by the four classifiers. The mapping accuracies
were summarized as error matrices (Kalensky and Scherk, 1975).
Overall mapping accuracies were calculated for the thematic
images produced by the four classifiers using the conventional
measure of the number of correctly classified pixels divided by
the total number of pixels checked.

Thomas and Allcock (1984) proposed a method for calculating
the confidence intervals for a mapping accuracy statement using
the binomial distribution theory. An assumption is that the
minimum number of samples should be greater than 50, with
a sample in the hundreds being more acceptable. The total sam-
ple size in this study was 135. The mapping accuracies for the
four classification stragtegies (i.e., Euclidean distance, maxi-
mum likelihood, supervised nonparametric, and expert system)
were calculated at the 95 and 99 percent confidence intervals.

Congalton et al. (1983) applied discrete multivariate analysis
techniques proposed by Cohen (1960) to test whether two error
matrices were significantly different. In this study, the type of
classifier was varied, while other factors such as date of image
collection, training areas, etc., were held constant. Bishop et al.
(1975; p. 396-397) express the ideas of Cohen (1960) as follows.
They detail a measure of overall agreement between the image

and the reference data called Kappa or “K": i.e.,
6, — 6,
1-6
where 6, = X p; and 6, = 2 Pie Peiv

K=

Note that p;, is the sum of the ith row and p.; is the sum of
the ith column. p is the simple proportion obtained by dividing
the observed counts in the error matrix by the total number of
observations N.

They go on to detail the estimated asymptotic variance of K:
ie.,

2 [f(] = %[01(1-9!)

(1-6,

2(1 — 01)(201 92 &= 93)
(1-6)

(1— 0,26, 463
T ey }

where 6, and 6, are as above,

0, = 2 Pi (piv + p.), and 6, = zpij (pie + p))y*

To test for a statistically significant difference between two error
matrices, Cohen (1960) proposed using K values (K, and K;) and
their associated variance by evaluating the normal curve de-
viate: i.e.,

K1 — Kz
e
\/ﬁ?,\,2
This test statistic was applied to the paired combinations of the
four error matrices in order to ascertain whether any of the error
matrices were significantly different.

Three of the cover type classes were relatively rare in the
study area (viz. Tea Tree, Gum/Silvertop Ash, and Black Oak),
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and consequently were poorly represented in the error matrices
as a result of the simple random sampling design. Information
was not available to stratify the study area into forest type classes
in order to improve sampling efficiency, nor could the infor-
mation be rapidly generated within the time and cost con-
straints of the project. Therefore, procedures for generating
confidence intervals for categories could not be used due to low
sample numbers (Rosenfield et al., 1982).

RESULTS

The geometric correction of the remotely sensed data resulted
in all T™ pixel locations being fitted by the regression with an
error of less than+0.6 of a pixel from the true map value. The
root-mean-square planimetric error (RMSE, and RMSE,) values
were =13 m and *15 m respectively (i.e., the standard error
multiplied by the pixel size of 30 m). Results for the geometric
correction of the DTM data were better, with the maximum error
being less than +0.4 of a pixel and RMSE,, values being = 10m
and *+11 m, respectively.

The number of pixels trained per class ranged from 32 (quarry/
road) to 354 (Blue-leaved Stringybark), with an average number
of pixels per class of 187 (i.e., approximately 17 hectares).

The plots of band brightness levels (i.e., DN values) for each
species (Figure 3) show that some cover type classes were spec-
trally different (e.g., compare the clearfallen class with the Sil-
vertop Ash/Gum class). Forest classes appeared to be mostly
similar in all channels, though the sunlit Silvertop Ash class
had higher DN values than the other forest classes in channel
4.

Table 4 shows the eigenvector matrix generated by the prin-
cipal components analysis, as well as the eigenvalues for each
principal component.

A thematic map showing the output from the expert system
is included as Figure 4. Figures 5 to 7 are thematic maps pro-
duced by the three supervised strategies (viz. the maximum
likelihood classifier, the Euclidean distance classifier and the
supervised nonparametric classifier). Figure 8 is a thematic map
showing the probability of correct classification generated by
the supervised nonparametric classifier (Skidmore and Turner,
1988).

Error matrices detailing the quantitative overall mapping ac-
curacy assessments for the Euclidean distance classifier, the
maximum likelihood classifier, the supervised nonparametric
classifier, and the expert system were calculated (see Tables 5
to 8, respectively). In addition, the mapping accuracy was cal-
culated at 95 and 99 percent confidence intervals. A summary
of the mapping accuracy results are listed in Table 9. Table 10
lists the results for the pairwise comparisons between error ma-
trices for the four classification strategies. Note that the shad-
owed and sunlit Silvertop Ash cover types were amalgamated
into one class during the quantitative mapping accuracy as-
sessment.

DISCUSSION

The geometric correction of the digital terrain model and the
remotely sensed data was satisfactory, with an RMSE,, of ap-
proximately less than half a pixel. The sample plots could be
accurately located on high quality ink jet plots of the thematic
maps, using an overlaid transparency of the stream and road
networks.

The plots of band brightness levels (DN values) for each spe-
cies (Figure 3) indicate that many of the forest types have similar
spectral properties. For example, the Tea Tree and Blue-leaved
Stringybark types exhibit close spectral characteristics.

The thematic maps resulting from the unsupervised classifi-
cations were useful as aids for delineating training areas. The
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unsupervised nonparametric classifier (Skidmore, 1989a) in par-
ticular produced a useful map with classes that were less het-
erogeneous compared with those produced by other methods.
The utility of this algorithm for identifying suitable training areas
had previously been demonstrated for plantation forests.

In order to improve the computational efficiency of the su-
pervised nonparametric classifier, the seven feature thematic
mapper data was reduced to two features, by taking the first
two principal components produced by a principal components
analysis. As detailed in Table 9, the first principal component
was dominated by channels 5, 4, and 7 (i.e., near infrared and
middle infrared) and represented 86 percent of the total scene
variance. The second principal component was also dominated
by channels 4, 5, and 7 and represented nearly 10 percent of
the variance.

Displaying the seven principal components generated from
the TM bands as separate images yielded an unusual result. The
third principal component image had a north-south lineation
running through the middle of the study area, with the western
half being dark and the eastern half being light. The two weeks
preceding the collection of the TM imagery were wet and cool
with low evapotranspiration rates. The lineation may be related
to different soil moisture levels on either side of the lineation,
as the thermal band (channel 6) dominated the third principal
component eigenvectors. The fourth principal component con-
tained striping, while the last three principal components ap-
peared to be noise and contained less than one percent of the
total variance.

The supervised nonparametric classifier used only the first
two principal components, but still yielded a higher mapping
accuracy than that of the Euclidean distance and maximum like-
lihood classifiers that operated with the full seven T™ channels
(Table 9). The robustness of the supervised nonparametric clas-
sifier for discriminating between spectrally similar classes had
previously been demonstrated for a mixed broadleaf/conifer for-
est in Pennsylvania using Landsat MSS data (Skidmore, 1987)
and for a number of age classes in Pinus radiata plantations in
Australia using SPOT XS data (Skidmore and Turner, 1988). All
available features had been used by the supervised nonpara-
metric classifier in these two studies.

Three measures of mapping accuracy based on error matrices
(Tables 5 to 8) were calculated. The first method was the overall
mapping accuracy, which for the expert system was 76.2 per-
cent (Table 9). The second measure of mapping accuracy cited
was the mapping accuracy calculated within nominated confi-
dence intervals (Thomas and Allcock, 1984). From Table 9 it can
be seen that we are 95 percent confident that at least 68.6 per-
cent of the pixels classified by the expert system had been cor-
rectly classified, and 99.9 percent confident that at least 61.3
percent of the pixels were correctly classified. The third method
of evaluating mapping accuracy was a measure of association
termed “K” (Cohen, 1960), and was used by Congalton et al.
(1982) to quantify the agreement between an image (or map)
and ground truth reference data (Table 10). “K” ranges in value
from 0 (no association) through to 1 (full association). A dis-
advantage with these measures of mapping accuracy is that
classes that have a high mapping accuracy are considered in
conjunction with classes which may have a low mapping ac-
curacy, giving an average figure which does not reflect between
class differences.

The mapping accuracies and “K” values for the three classi-
fication strategies that only used remotely sensed data (i.e., the
supervised nonparametric, maximum likelihood, and Euclidean
distance classifiers) are summarized in Tables 9 and 10. Con-
firming previous studies, the supervised nonparametric classi-
fier yielded the highest mapping accuracy, while the maximum
likelihood classifier generated a thematic map of higher accu-
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TABLE 4. EIGENVECTORS AND EIGENVALUES GENERATED BY THE PRINCIPAL COMPONENTS ANALYSIS

Eigenvectors

i 2 3 4 5 6 7
1 0.1726 0.0831 0.3763 —0.4379 —0.4380 —0.6477 —0.1362
2 0.1479 0.0263 0.2711 —0.2255 —0.0970 0.2296 0.8904
™ 3 0.1811 0.0538 0.4734 —0.3865 0.0698 0.6344 —0.4284
Channel 4 0.4134 —0.9068 0.0173 0.0345 0.0506 —0.0501 —-0.0171
5 0.7942 0.3514 —0.1995 0.3446 —0.2733 0.1021 —0.0450
6 0.1588 0.0387 —0.6823 —0.6986 0.1368 0.0280 0.0120
7 0.3006 0.2057 0.2347 0.0016 0.8354 —0.3341 0.0521
Principal
component 1 2 3 4 5 6 7
Eigenvalue 436.49 50.52 8.18 6.99 2.07 1.16 0.61
Percentage of the 86.26 9.98 1.62 1.38 0.41 0.23 0.12
total variance
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Fig. 8. Thematic map showing the probability of correct classification
produced by the nonparametric classifier.

racy than the Euclidean distance classifier because the assumed
Gaussian distribution more accurately parameterizes the class
training areas in N-dimensional feature space (Estes et al., 1983;
Skidmore et al., 1988). In contrast, Hudson (1987) and Ince (1987)
claimed that the maximum likelihood classifier did not always
produce the highest mapping accuracy; in fact, they found little
difference between maximum likelihood classification and near-
est neighbor type classifiers. However, Ince (1987) and Hudson
(1987) noted that a number of factors effect mapping accuracies
of different classifiers including the quality and quantity of
training area data and the composition and distribution of for-
ests.
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The expert system yielded a higher mapping accuracy than
any of the other three supervised classifiers (Table 9), while
from Table 10 it can be seen that the expert system had the
highest measure of association between the image and the ground
truth information. This is not surprising as topographic and
contextual information were being combined with the thematic
information output from the nonparametric classifier using a
set of ecological rules. The ability to discriminate between spec-
trally similar forest cover types is therefore increased. The in-
clusion of the ecological rules in the expert system allows forest
types classified incorrectly from the remotely sensed data to be
reclassified according to the environmental position supplied
by the topographic information. For example, the Gum/Strin-
gybark type is less likely to occur on ridges or midslope posi-
tions, so that a priori information was included in the set of
rules (see Table 3). The highest mapping accuracy obtained by
the expert system was aided by the fact that its input thematic
maps were produced using the nonparametric classifier, which
itself has a higher mapping accuracy than the maximum like-
lihood and euclidean distance classifiers.

Cohen (1960) described a Z test based on “K,” that examined
whether there was a statistically significant difference between
two error matrices. The results in Table 10 show that at the 90
percent confidence interval there is a statistically significant dif-
ference in mapping accuracies between all the classifiers. At the
95 percent confidence interval there is a significant difference
between all the classifiers, apart from the expert system and
the supervised nonparametric classifier. In addition, there is a
significant difference between the supervised nonparametric
classifier and the maximum likelihood classifier at the 95 percent
confidence interval, but not at the 99 percent confidence inter-
val. In other words, we are 99 percent certain that the expert
system and supervised nonparametric classifier have a different
(higher) mapping accuracy than the maximum likelihood and
Euclidean distance classifiers, and we are 90 percent confident
that there is a statistically significant difference between the
expert system and the supervised nonparametric classifier.

TABLE 5. ERROR MATRIX FOR THE MAXIMUM LIKELIHOOD CLASSIFER

Number of pixels (Image)
Class I II 111 v \' VI Vil VIII IX Total
B I 14 3 7 2 5 7 38
g I 14 3 3 4 1 25
E I 1 16 1 1 1 1 21
e v 4 8 3 2 1 3 21
% b 2 16 1 19
Lo VI 1 1 2
5 VII 1 3 3 7
£ VIII 2 2
2 IX
Total no. 20 19 38 6 17 8 8 17 2 135
of pixels
Overall 50.4%
classifcation
accuracy”

Table Legend: I = Yertchuk

II = Gum/Stringybark
IIl = Silvertop Ash

I

V = Blueleafed Stringybark

V = Clearcut/road

VI = Tea Tree

VII = Gum/Silvertop Ash
VIII = Black Oak

IX = unclassified

*Ratio of the sum of correctly classified pixels in all classes to the sum of the total number of pixels tested.
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TABLE 6. ERROR MATRIX FOR THE EUCLIDEAN DISTANCE CLASSIFIER

Number of pixels  (Image)
Class I I III v \% VI VIl VIII IX Total
T I 17 B 5 1 2 2 5 1 38
g 1 7 6 3 1 2 5 1 25
3 11 2 1 13 4 1 21
= v 4 2 1 3 fe) 2 3 1 21
T \4 1 7 11 19
= VI 1 1 2
5 \4L 5 1 1 7
£ Vil 2 2
2 IX
Total no. 31 14 27 4 0 15 12 15 17 135
of pixels
Overall 31.1%
classification
accuracy
TABLE 7. ERROR MATRIX FOR THE SUPERVISED NONPARAMETRIC CLASSIFIER
Number of pixels  (Image)
Class I II I v \% VI VII VIII IX Total
] 1 27 6 1 2 i pE 38
g i} 3 20 2 25
§ I 1 2 16 1 i 21
= v 3 2 3 12 1 21
Fl \Y 3 1 15 19
£ VI 1 1 2
g Vil 1 1 2 3 7
2 VIII 1 1 2
3 IX
Total no. 39 32 25 17 17 1 1 3 0 135
of pixels
Overall 66.7%
classification
accuracy
TABLE 8. ERROR MATRIX FOR THE EXPERT SYSTEM CLASSIFICATION OF THE TM DATA
Number of pixels (Image)
Class I I 111 VI \' VI VII VIII X Total
:a; [ 35 2 1 38
g I 1 23 1 25
E I 4 1 15 1 21
= v 4 1 1 15 21
i \% 3 3 13 19
5 VI 2 2
c VII 1 6 7
£ VIII 2 2
2 IX
Total no. 39 32 25 17 17 1 1 3 0 135
of pixels
Overall 76.2%
classification
accuracy

In an attempt to confirm that the qualitative a priori proba-
bilities used during the expert system classification were rea-
sonable, a count of trees with a dominance of 1 to 3 was tallied
by plot (from the set of 84 measured field plots-see Mapping
Accuracy Assessment section for details) for each species ac-
cording to environmental (dependent) variables (for example,

the number of Silvertop Ash (E. sieberi) trees occurring on plot
number 7 that had an easterly aspect was nine). The average
number of trees over all plots was then calculated for each en-
vironmental variable (for example, the average number of Sil-
vertop Ash trees on plots with an easterly aspect was 5). These
calculations were performed after the mapping accuracy as-
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TABLE9. SUMMARY OF MAPPING ACCURACY RESULTS

Overall .

mapping Mapping accuracy at:
Classifier accuracy (%) 99.9% C.I. 95% C.I.
expert system 76.2 61.3 68.6
supervised nonparametric 66.7 50.5 58.0
maximum likelihood 50.4 333 41.9
euclidean distance 311 15.2 22.6

TABLE 10. RESULTS OF THE PAIRWISE COMPARISONS BETWEEN ERROR
MATRICES FOR THE FOUR CLASSIFICATION STRATEGIES

““Variance of

Error matrix "K' statistic “K”
expert 0.705 0.00195
supervised nonparametric 0.587 0.00242
maximum likelihood 0.422 0.00236
euclidean distance 0.210 0.00181
Results
Pairwise comparison Z Statistic 90% 95% 99%
expert & sup. nonparametric 1.78 st NS NS
expert & maximum likelihood 4.31 S S S
expert & euclidean distance 8.07 S -] S
sup. nonparametric & 2.39 S S NS
maximum likelihood
sup. nonparametric & 5.80 S S S
euclidean distance
maximum likelihood & eu- 3.28 5 ] S

clidean distance

IS - significant; NS - not significant

sessments, and were not used to modify the a priori probabilities
used during the expert system classification. Rather, the results
were used to check that the a priori probabilities proposed by
the experienced foresters and ecologists were reasonable.

The a priori probabilities generated by the qualitative and
quantitative methods were similar. There was general agree-
ment between the qualitative and quantitative methods over the
relative importance of the dependent variables in determining
the occurrence of the species. For example, Silvertop Ash was
more likely to occur on a ridge than in a gully. In addition, the
likelihood of different species occurring given a particular de-
pendent variable was similar between the qualitative and quan-
titative methods (i.e., Silvertop Ash was more likely to occur
on a ridge than a mix of Yellow Stringybark and Monkey Gum).

It should be noted that the estimated area of the forest type
classes within the study area (i.e., P(i) required as a priori prob-
abilities by the supervised nonparametric classifier) were not
used again as evidence by the expert system, because the expert
system evidence must be independent. In this case, P(i) mod-
ified the supervised nonparametric classifier results that were
subsequently input into the expert system. Therefore, the direct
use of P(i) as evidence in the expert system may contravene the
assumption of independence.

The introduction of spatial information into the expert system
meant that forest classes could be corrected in situations where
the classes do not occur naturally adjacent to each other in the
field, but were adjacent on the thematic map. This contextual
approach is especially useful where it is known that the position
of forest species in the topography is controlled by environ-
mental variables.

For management purposes, such as an environmental impact
statement (Forestry Commission of N.S.W., 1988), the number
of forest types is often reduced by generalizing the class types
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into broader categories. In such a situation, one would expect
the mapping accuracy to improve because similar types previ-
ously confused in the error matrices would be generalized to
one broad type name. The error matrix for the expert system
classification was recalculated for four classes. The classes in-
cluded gully (i.e., classes Il and VII in Table 7 were combined),
mixed eucalypt (classes I and III combined), stringybark (class
IV), and nonforest/unclassified (classes V, VI VIII, and IX com-
bined). The overall mapping accuracy for these four classes in-
creased to 80 percent. Using the methodology of Thomas and
Allcock (1984), a mapping accuracy of 66.7 percent was calcu-
lated for a 99.9 percent confidence interval, and a mapping
accuracy of 73.3 percent of for a 95 percent confidence interval.
Todd et al. (1980) also reported an increase in forest mapping
accuracy when forest type classes where aggregated.

As the size of the study area increases, data layers other than
those used in this study may become important in determining
the distribution of a forest species. Environmental variables such
as parent material, soil type, elevation, latitude and longitude,
climate, soil moisture, etc., may increasingly dominate on a
regional or continental scale (see Introduction). The effective
extrapolation of the expert system approach to a larger area or
a different region requires that the principal environmental fac-
tors affecting forest species distribution are recognized and
modeled in a suitable format, such as Table 3.

The choice of auxiliary data sets to complement the classifi-
cation of remotely sensed data is determined primarily by the
availability of such data. Topographic data are especially useful
as they are readily available for most areas or they can be au-
tomatically generated if not readily available (see Introduction).
Topographic data are also relatively constant factors in the en-
vironment over a time scale of hundreds of years in most parts
of the world, so that once obtained the data can be repeatedly
used over a number of decades for different applications. Sim-
ilarly, parent material is another data type that is reasonably
constant, though substantial field work by expert geologists is
often needed to successfully map geological boundaries.

In contrast, other data layers such as vegetation structure,
species composition, ease of harvesting the forest, and wildlife
habitat may change over a time scale of several decades to sev-
eral hundred years. These factors may be derived using an ex-
pert system, with topographic data, remotely sensed data, and
a set of rules as input. Indeed, a derived thematic product, such
as the vegetation type map generated in this study, may be
used as an input layer by the expert system to derive additional
thematic maps showing factors such as soils or wildlife habitat
potential.

In the expert system developed for this study, forward chain-
ing was used with a complete enumeration of the data (i.e., a
blind search terminated by running out of evidence) because

e Conventional expert systems undertake an interactive dialogue
with a user to extract answers (i.e., evidence for the system). This
dialogue would appear aimless to the user if there were no direc-
tion in the method of asking questions, because the expert system
would sequentially process evidence or hypotheses in the order
that they occur in the expert system. In this study, the expert
system produces a map showing forest types from an existing
raster database made up of multiple layers of evidence. It is there-
fore not necessary to have an interactive dialogue.

® The expert system as implemented (i.e., with 13 layers) required
approximately three times the CPU of a maximum likelihood clas-
sification of the same area with seven layers. Thus, the compu-
tational requirements are feasible (see Naylor, 1984), and it is not
necessary to introduce a “rule value” approach to successfully
calculate a solution. An area four times larger than the study area
reported here has been analyzed, and the CPU requirement ap-
pears to increase proportionally to n.log(n), where n is the number
of pixels.

® A complete enumeration of the data allows all the information
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available to the decision maker (i.e., the expert system) to be in-
corporated into the decision making process. The sideways chain-
ing approach (i.e., “certainty factor” or “rule value”) may stop
the processing before all the evidence has been evaluated.

Expert systems offer many advantages and some disadvan-
tages over conventional statistical approaches for the analysis
of remotely sensed and other spatial digital data. The major
advantage is that knowledge about the environment can be in-
tegrated into the classification process. In this study, the su-
pervised nonparametric classifier yielded possible forest species
which may be occurring at a pixel, as well as the probability of
the species occurrence. Known ecological relationships between
environmental parameters (gradient, aspect, topographic posi-
tion) and the location of forest species were then used to con-
firm the most likely forest species at each pixel. The expert
system handles uncertainty in the relationships (e.g., it is fairly
certain that Silvertop Ash occurs on ridges, but it may not al-
ways occur on a ridge) by use of probabilities. In contrast, pre-
vious studies tried to link environmental variables with vegetation
cover used simple Boolean operators (Cibula and Nyquist, 1987).
Such an approach required an unequivocal statement about
whether the relationship was ‘true’”” or “false” (i.e., does Sil-
vertop Ash occur on a ridge? Yes or no!).

Another advantage of expert systems is that additional en-
vironmental parameters can be quickly incorporated into the
expert system model as data layers are generated and the re-
lationships between data layers and the dependent variable being
modeled (in this case forest species) become known. Additional
dependent variables can also be generated, assuming that the
necessary environmental data are available, and the relation-
ships between the environmental variables and dependent var-
iable are known. Examples of dependent variables that may be
generated using this technique include wildlife habitat suitabil-
ity, forest harvesting, recreation potential, etc. The author is
currently applying the technique to forest soil mapping.

An obvious disadvantage with the expert system approach is
that the answer the computer gives for a pixel may not be true.
However, this would become obvious during the mapping ac-
curacy assessment. Poor mapping accuracy may be due to the
rules for predicting the dependent variable (in this case forest
type) being seriously incomplete (for example, a particular for-
est type was not known to occur within the region being con-
sidered, or the expert system is extrapolated to an area outside
the region within which the expert system was developed). In
such a situation, additional data layers (independent variables)
may be required, and the relationships between the dependent
variables and the independent variables defined. Alternatively,
the expert system may be incorrectly classifying a forest type
in a consistent manner (i.e., gives a biased answer), in which
case the probabilities associated with the rules can be adjusted
to better reflect the opinion of the human expert.

A final disadvantage of expert systems for land classification
and mapping is that experts may not agree among themselves
about the category name for a particular set of observed ground
conditions (e.g., has an area a high recreation value?). The “cor-

rectness” of a map generated by an expert system has to be.

gauged against the criteria defined by the expert(s) who pro-
vided the knowledge for the expert system, as well as by other
experts who can validate the results.

CONCLUSION

An expert system has been developed to map forest types in
a complex eucalypt forest in south east Australia. The expert
system successfully integrated disparate spatial data, including
remotely sensed data and a digital terrain model. The expert
system also incorporated ecological knowledge into the classi-
fication process. The knowledge encapsulated by the expert
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system included known relationships between forest type classes
and environmental variables, and ecotonal associations be-
tween forest types. The utility of the supervised nonparametric
classifier (Skidmore and Turner, 1988) for preprocessing re-
motely sensed data into a form suitable to input into the expert
system has been demonstrated.

Mapping of forest types using the expert system approach
was more accurate compared with classifying remotely sensed
data alone. It is shown that the thematic image produced by
the expert system had a significantly higher mapping accuracy
compared with the maximum likelihood, the Euclidean dis-
tance, and the supervised nonparametric classifiers.

The potential for extending expert system techniques to map
other forest attributes (such as soil type, forest biomass, ease
of harvesting the forest, etc.) is discussed. It is conceivable that
expert systems will be increasingly used to manage and analyze
the complex information contained in geographic information
systems.
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