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ABSTRACT: The classicalla~d-~ov~r ~las~ifi~a~on methods based on remotely sensed data have often led to unsatisfactory
resul.t~, partly d~e, to theIr mtnnslc limItations. In effect, parametric procedures such as the maximum-likelihood
classIfIer are statistically stable and robust but lack in flexibility and in the capability of making correct area estimates.
On the other hand, nonparametric classifiers are generally too sensitive to distribution anomalies and are critically
dependent on training sample sizes.

A sol~tion to thes~ problems is ~eprese,n,ted by the insertion of prior probabilities derived from a nonparametric
process In a conventional parametnc claSSIfIer. In the present paper an example of such a method is put forward in
ord~r ,to mer~e the advantages of parametric and nonparametric strategies without the relevant shortcomings. The
stat~stical b~sls of the proposed procedure is presented, and its capabilities are examined by means of a case study
carned out In a spectrally, co~plex envirom~ent of Tuscany (central Italy) using Landsat TM data. The case study has
been planned so as to hlghhght the supenor performance of the new method in different situations. The results
evaluated by common statistics, are undoubtedly satisfactory under all the points of view considered. '

INTRODUCTION

SINCE THE LAUNCH OF THE FIRST SATELLITES for Earth re
sources exploration, digital methods of classification of mul

~spectral remotely sensed data have assumed an irIcreasing
Importance as an automatic means for land-cover mapping.
Hence, a great number of investigations have dealt with the
application of diverse statistical procedures for the discrimina
tion between the cover types of a territory en the basis of their
spectral signatures (Hixson et aI., 1980; Yool et aI., 1986; Booth
and Oldfield, 1989). Generally, such procedures can be cate
gorized into su~ervised or unsupervised depending on the
pres~nce of prevI~us knowledge of the cover types examined
and mto parametrIc and nonparametric on the basis of the as
sumptions about the shape of the data distributions in the N
dimen~ional featu~e space (Sabins, 1977). Actually, among the
supervIsed strategIes, both parametric and nonparametric pro
cedures show sever~l i~trinsic limitations which have often pre
vented the full explOItation of remotely sensed data for applicative
purposes.

Parametric methods rely on the assumption that each group
of data can be enclosed by a boundary with a defined shape;
generally, multinormality in the N-dimensional space is as
sumed. One of the most widely known and used supervised
parametric classifier is the maximum-likelihood classifier, which
guarant,ees opt~mu,m perfon:nance when the basic assumption
of ~ultmorma~ty IS approXImately valid. Among the reasons
for ItS success IS the requirement for a quite limited number of
points for its training, and its relative robustness towards dis
tribution anomalies. So it has been considered to be the most
advanced classification strategy for a long period (Estes et aI.,
1983). On the other hand, the maximum-likelihood classifier
like all the other parametric procedures, shows marked limita~
tions when the spectral distributions of the cover categories are
very far from normal, which is a very usual case in complex
and ?~terogeneousenvir~n~ents.Furthermore, all parametric
claSSIfIers suffer from defiCIency in area estimates, which can
be extremely noticeable when the cover types are very different
in extent (Maselli et aI., 1990).

To overcome these problems, some researchers have recently
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proposed the use of nonparametric methods mairIly for the clas
sification of natural surfaces (Skidmore and Turner, 1988). These
methods, which make no assumption about the shape of the
spectral distributions of the data, except that they can be grouped
by a discriminant function, are expected to present many ad
vantages irI spectrally irregular situations. From a theoretical
point of view, they can be seen as an attempt to overcome the
well known problem of the low correspondance between cover
categories and defined spectral classes. In practice, they have
been demonstrated to perform far better than the conventional
parametric procedures in many applications, and they also al
low improvements in area estimates by means of simple mod
ifications, as those described subsequently. The counterparts of
these advantages are however remarkable, mainly because of
the extreme sensitivity of nonparametric classifiers to the pres
ence of biased training sets. In fact, the lack of assumptions
regarding the shape of the data distributions permits the reli
ance on erroneous distributions not statistically representative
of the entire population. Obviously, this is especially true when
the trairJirIg samples are constituted of a small number of poirIts,
so that in these common cases these procedures become im
practical (Dillon and Goldstein, 1984).

In this context, the need is felt for a procedure which merges
the advantages of the two basic strategies. An example of such
a procedure is put forward here, based on the theory of the
irIsertion of prior probabilities irIto maximum-likelihood processes
described by Swain and Davis (1978) and Strahler (1980), and
on the work of Skidmore and Turner (1988) about a particular
nonparametric classification method. As will be shown, the new
procedure joins the robusmess and stability of the conventional
maximum-likelihood method to the flexibility and suitability for
correct area estimates of the nonparametric classifier.

In the present paper, a section is dedicated to the description
of the main features of the two basic procedures mentioned and
to the presentation of the new classification method, together
with its theoretical principles. Next, a case study is exposed
consisting of an application of the three classification strategies
for a land-use inventory of a complex rural area irI Tuscany by
means of Landsat Thematic Mapper (TM) multitemporal scenes.
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CLASSIFICATION PROCEDURES

The case study has been planned in order to highlight the dif
ferent performances of the procedures under examination de
pending on training sample size, which was expected to be a
critical factor, especially when using nonparametric methods.
The results have been evaluated by comparison with wide ground
references employing appropriate statistical measures. Finally,
a discussion is reported including the conclusions about the
case study and a critical analysis of the possibilities of the new
classifier.

CONVENTIONAL MAXIMUM-LIKELIHOOD CLASSIFIER

The maximum-likelihood classifier is considered one of the
most accurate and efficient discrimination procedures; under
the assumption of multivariate normal distributions of the groups
examined, a point classified by this method has the maximum
likelihood of correct assignement (Curran, 1985). In the case of
remotely sensed data, the discriminant function to be mini
mized for each pixel according to the maximum-likelihood the
ory without considering any prior probability is given by the
following formula (Strahler, 1980):

F = (X-M) , C-1 (X-M) + LnlCl (1)

where
Fr = count of pixels of the class under examination at pixel

vector, and
Frt = sum of counts of all the classes at pixel vector.
As demonstrated by the authors, this classifier shows high

performance in most actual situations when the spectral distri
butions of the cover categories are far from normal, and it also
allows the direct estimation of the probability of correct assign
ment to a class (Skidmore, 1989). On the other hand, this clas
sifier is expected to be affected by the negative aspects previously
described common to all nonparametric methods.

In the procedure used in the present work some character
istics have been introduced which were not present in the orig
inal method (Maselli et aI., 1991). First, in order to fully exploit
its capabilities, the classifier has been used on linearly indepen
dent variables derived from a principal component analysis.
Second, a mean filtering with a range of three grey values has
been applied to the frequency histograms of each class, so as

Prior probabilities can be estimated by various means, such
as previous and independent information or a random sample
of the ground data. The work of Skidmore and Turner gives
the possibility of finding out the prior probability P from the
sample frequency histograms. In effect, as the frequency his
tograms are direct expressions of objective properties of the
cover categories, they can be correctly assumed as describing
intrinsic attributes of these and therefore can be used to derive
prior probabilities. Hence, this probability can be inserted into
the conventional parametric classifier in order to increase the
information available for the discrimination of the cover cate
gories. From an application viewpoint, such a union should
yield good results by joining the advantages of the two systems
without the relevant limitations. In particular, the new method
should show the robustness and stability of the parametric clas
sifier even when trained on small samples, because the defi
nition of statistically stable parameters (means, variances and
covariances) should prevent the negative effects of the selection
of biased training samples not representative of the entire pop
ulations. On the other hand, the presence of nonparametric
measures should allow a noticeable flexibility of the procedure
and should lead to remarkable improvements in area estimates.

CASE STUDY

to decrease the variability in the spectral distributions of the
training sets. Finally, a different weight, proportional to the size
of the relevant training sample, is given to each class during
the classification process in order to attain better area estimates.

MAXIMUM-LIKELIHOOD CLASSIFIER USING PRIOR PROBABILITIES

DERIVED FROM THE NONPARAMETRIC PROCESS

As proved by many investigations, the assumption of equal
prior probabilities for all categories during the classification of
remotely sensed data is often statistically unsatisfactory. The
procedure proposed here is fundamentally based on the theory
of the insertion of prior probabilities in maximum-likelihood
processes and on the principles of the nonparametric classifier
proposed by Skidmore and Turner (1988), revisited as shown
above. According to the first, if an element under examination
has a prior probability P of belonging to a class, this probability
can be inserted into a maximum-likelihood process by modi
fying the discriminant function in the following way:

F = (X-M) , C-l (X-M) + LnlCl - 2 Ln P. (3)

Bearing in mind the different features of the three classifiers
considered, the case study has been planned so as to evaluate
their capabilities in a particularly complex environment. A country
zone near Florence about which a deep knowledge was avail
able has been deemed suitable for this aim, because of its ex
tremely heterogeneous and irregular cover surfaces. Moreover,
as the size of the training samples is expected to affect differ
ently the behavior of the three procedures, the research has
been also directed towards the investigation of the effects of
training sample size on the classification results.

STUDY AREA AND GROUND REFERENCE COLLECTION

The study area is located southeast of Florence at approxi
mately 43° 41' north latitude and 11° 33' east longitude (Figure
1). The altitude of the zone ranges from about 100 m in the area
adjacent to the Arno river to approximately 1400 m, with a
climate which follows the altitudinal trend from mesomediter
ranean to submediterranean (UNESCO-FAO,1963). Vegetation
is distribuited along the altitudinal gradient in three bands. The
first band occupies the plain zone near the river and is covered
by small urban centers and cultivations of cereals (mainly wheat).
Where the altitude increases over 200 m, a mixture of natural
and agricultural cover types is present; the former are mainly

(2)P = Fr 7Frt

where
X = pixel vector,
M = mean vector of the class under examination, and
C = variance-covariance matrix of the class under examina

tion.
By means of the standardization on the inverse of the vari

ance-covariance matrix of each class, the process takes into ac
count not only the marginal properties of the data sets, but also
their internal relationships. This is one of the reasons for the
great robustness of the process and for its relative insensitivity
to distribution anomalies. Anyway, if the spectral distributions
of the categories are very far from normal, the procedure shows
bad performances, and, as no information about the actual di
mension of the groups is inserted, area estimates tend to be
rather inaccurate, especially if the cover surfaces are very dif
ferent in size (Maselli et aI., 1990).

NONPARAMETRIC CLASSIFIER OF SKIDMORE AND TURNER

REVISITED

This classifier, proposed by Skidmore and Turner in 1988,
relies on the extraction of probabilities from the grey-value fre
quency histograms of the classes considered. Mathematically,
these probabilities are computed as
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TABLE 1. COVER CATEGORIES CONSIDERED IN THE RESEARCH AND

RELEVANT NUMBERS OF PIXELS DIGITIZED FROM GROUND REFERENCES

peak of its activity in this area, while the second scene was
taken on 14 August 1988 when, due to the mediterranean arid
season, vegetation showed different levels of water stress de
pending on its more or less pronounced xerophilous nature.

Prelininary Data Processing. The reference areas were acquired
by means of a digitizer; all the available cover categories were
digitized separately, excluding only areas about which sufficient
knowledge was not available. Due to the extreme fragmentation
of the cover types, the process of digitization was highly time
consuming. The two TM scenes were georeferenced by means
of ground control points using a linear bivariate regression
method. Next, in order to decrease the complexity of the sub
sequent processing and to render the remotely sensed images
statistically uncorrelated, a data compression by means of prin
cipal component analysis was applied independently to the two
study scenes. Only the first three components of each scene
were stored, as they retain most of the information provided
by the sensor (Hoder and Ahem, 1986), and these were used
for the rest of the research.

Because the total number of cover categories was too high for
a good spectral identification of them, a work of class redefi
nition was carried out on the basis of previous knowledge of
the cover surfaces and of their spectral similarity. For the esti
mation of the second parameter, the spectral signatures of all
the surfaces were determined and were used to compute some
classical indices of spectral separability such as Transformed
Divergence and Bhattacharyya Distance (Thomas et aI., 1987).
After the evaluation of the relevant results, five classes were
deemed sufficent to represent the most important cover types
of the zone: coniferous forest, deciduous wood, olive groves,
cultivations of cereals and urban areas (Table 1); therefore, all
the digitized surfaces were grouped into these five classes for
the following processing (Plate 1).

Training, Classification, and Evaluation of Results. To properly
evaluate the capabilities of the three classifiers depending on
the size of the training samples, the first phase consisted in the
identification of suitable training pixels. A stratified random
sampling scheme was adopted, with the total number of pixels
equal to 250, 500, 1000,2000, and 4000. The pixels were inde
pendently sampled in the cover surfaces acquired because this
single pixel training responds to the requirement of maximum
statistical representativeness for a given sample size (Curran
and Williamson, 1986; Gong and Howarth, 1990).

Next, using the pixels selected, the parametric spectral sig
natures required for the maximum-likelihood classifier and the
frequency histograms necessary for the nonparametric process
were determined so as to train the three processes. The classi
fications were carried out on the multitemporal TM scene by
means of the three classifiers described. In the case of the par
ametric and parametric-nonparametric processes, the pixels were
attributed to a class if their grey values were within the range
mean ± 3 standard deviations of the relevant spectral signature
in all the six principal components; for the nonparametric process,
such attribution was performed when the smoothed training
sample frequency corresponding to the pixel vector was not
equal to zero. No cosmetic filtering was applied to the classified
images because it can confound the interpretation of results.

deciduous woods consisting of several oak and chestnut species
with different densities; the latter are represented almost exclu
sively by olive groves, which can show different appearances
depending on the agricultural practices in use. Finally, the high
est zones are completely covered by deciduous and coniferous
woods; also, in this case, the surfaces are generally mixed, and
often even the identification of the dominant species is prob
lematic.

From this succinct description, the difficulty in the spectral
characterization of this kind of environment is obvious. Fur
thermore, the method of ground reference collection has not
been the most efficient for this characterization, because it was
planned in order to achieve a usual land-use map. The reference
cover categories have been identified chiefly on the basis of
direct ground surveys, which are not specifically suited to the
definition of spectrally homogeneous surfaces. Actually, this is
a rather common case in many applications of land-use inven
tories and can be thought of as one of the main sources of the
irregularity in spectral distributions of the cover categories. Such
an irregularity is often a cause of suboptimal performance of
automatic classifications, but, in the present case,it represents
an interesting feature for testing the actual capabilities of the
different discrimination procedures.

MATERIALS AND METHODS

The processing of remotely sensed and ground data was car
ried out on a Digital Equipment Corporation VAX 11/750 using
programs planned and created in FORTRAN 77 in the computer
center of LA.T.A.-C.N.R. For the statistical analyses, the GEN
STAT 5 statistical package was employed.

Satellite Data.Two Thematic Mapper scenes of the study area
were utilized for the research, extracted from frame 192, track
30, quarter 2; the two scenes were chosen, among those avail
able in suitable periods of a growing season, in order to maxi
mize the multitemporalinformation deriving from the changing
phenology of vegetation (Conese and Maselli, 1991). The first
scene was acquired on 26 May 1988 when vegetation was at the

ITALY

FIG. 1. Geographical location of the study area.

Class
1 Coniferous forest
2 Deciduos wood
3 Cultivation of cereals
4 Olive grove
5 Urban area

No. of pixels
9717 = 12.2%

48336 = 60.8%
3439 = 4.3%

15373 = 19.3%
2630 = 3.3%
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PLATE 1. Distribution of the five color classes used as ground references.

The evalution of results was performed by comparison with
all the original ground references. In this way the same pixels
used for training are employed also as references, but, because
they represent only a small percentage of the total (up to about
5 percent), the statistical value of the final comparison is not
significantly reduced. Two parameters have been considered,
the Kappa coefficient of agreement and the percentage of class
ified pixels. The Kappa statistic, first described by Cohen (1960)
and introduced into the remote sensing community by Con
galton et al. (1983), takes into consideration all the elements in
an error matrix, and it was recommended by Rosenfield and
Fitzpatrick-Lins (1986) as particularly suitable for remote sens
ing. The percentage of classified pixels has been utilized bearing
in mind the limited capabilities of nonparametric methods for
the identification of infrequent pixels.

In order to give an idea of the general patterns of misclassi
fication sources, three examples of classified images and rele
vant error matrices and Kappa coefficients resulting from the
procedures trained on 1000 pixels are reported in Plates 2 to 4
and Tables 2 to 4. Because a certain variability was noted in the
results of the classifiers, especially when trained on small sam
ples, the entire process of identification of the training points,
classifications of the scenes, and evaluation of the results was
repeated ten times. Therefore, the values summarized in Fig
ures 2 and 3 represent the averages of these ten replications,
and this has given the possibility of evaluating the significance
of the differences found. A two-way analysis of variance was
applied to both the variables examined (Kappa accuracy and
percentage of classified pixels), following the experimental de
sign schematized in Tables 5 and 6. The main effects of the two
factors (kind of classifier and number of training pixels) were
analyzed together with their interactions and including com
parisons within each possible combination of the first factor,
which of course is the most interesting one. Next, in the pres-

PLATE 2. Distribution of the five cover classes derived from the conven
tional maximum-likelihood classifier, trained on 1000 pixels.

TABLE 2. ERROR MATRIX OF THE CONVENTIONAL MAXIMUM-LIKELIHOOD
CLASSIFIER TRAINED ON 1000 PIXELS.

Class 1 2 3 4 5 Row Marg. Summ.
1 7492 18668 0 727 45 26932 = 34.8%
2 1270 22999 0 260 334 26863 = 34.7%
3 10 414 2558 834 390 4206 = 5.4%
4 144 3241 129 9028 570 13112 = 17.0%
5 189 2109 487 2401 1040 6226 = 8.1%

Column 9105= 47431= 3174= 15250= 2379= 77339
M.S. 11.8% 61.3% 4.1% 19.7% 3.1% 100.0%
Kappa = 0.3749 Var(Kappa) = 0.000007469

TABLE 3. ERROR MATRIX OF THE NONPARAMETRIC CLASSIFIER TRAINED
ON 1000 PIXELS.

Class 1 2 3 4 5 Row Marg. Summ.
1 6408 2413 1 101 10 8933 = 12.1%
2 2382 40517 67 3936 207 47633 = 64.5%
3 3 67 501 261 146 978 = 1.3%
4 171 3936 702 9589 974 15372 = 20.8%
5 11 207 116 462 169 965 = 1.3%

Column 8975= 47140= 1469= 14346= 1951= 73881
M.S. 12.2% 63.8% 2.0% 19.4% 2.6% 100.0%
Kappa = 0.5759 Var(Kappa) = 0.000008023

ence of significant interaction, the analysis was also applied to
each single level of the two factors.

RESULTS

From a preliminary visual examination of the classifications
obtained, some interesting information can be derived about
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PLATE 3. Distribution of the five cover classes derived from the nonpar
ametric classifier of Skidmore and Turner (1988) modified, trained on
1000 pixels.

PLATE 4. Distribution of the five cover classes derived from the new max
imum-likelihood classifier using nonparametric prior probabilities, trained
on 1000 pixels.

100 Perc. of pixels classified

90

80

500250

75

85

95

TABLE 4. ERROR MATRIX OF THE NEW PARAMETRIC CLASSIFIER USING
NONPARAMETRIC PRIOR PROBABILITIES TRAINED ON 1000 PIXELS.

Class 1 2 3 4 5 Row Marg. Summ.

1 6738 3811 0 162 9 10720 = 14.0%
2 2104 38511 1 3220 473 44339 = 57.7%
3 10 307 2291 655 360 3623 = 4.7%
4 171 3907 540 10153 1023 15794 = 20.6%
5 56 598 303 928 471 2356 = 3.1%

Column 9079= 47164= 3135= 15118= 2336= 76832
M.S. 11.8% 61.4% 4.1% 19.7% 3.0% 100.0%

Kappa = 0.5860 Var(Kappa) = 0.000006892

the behavior of the three procedures. As indicated in Plates 2
to 4, the usual maximum-likelihood classification shows a gen
eral tendency towards bad area estimates; in particular, wide
shadowed areas of deciduous wood are attributed to coniferous
forest, and the extent of the urban category is highly overesti
mated too. The nonparametric classifier leaves wide areas un
classified, especially when trained on small samples, so that
many pixels cannot be attributed to any cover category, which
is clearly a remarkable limitation from a user's perspective. Both
these problems are particularly alleviated by the use of the new
parametric process relying on nonparametric prior probabilities.

An examination of Tables 2 to 4 tends to confirm these pat
terns in quantitative terms. As fairly visible, the conventional
maximum-likelihood classification highly overestimates the ex
tent of class 1 and 5 with respect to class 2 and 4; as a conse
quence, Kappa accuracy is so low as to invalidate even the

.utility of the automatic process. Under this point of view, the
nonparametric classifier leads to marked improvements in clas
sification performances, with a far higher Kappa coefficient of

Number of training pixels

FIG. 2. Variations In the percentage of pixels classified by the three
processes depending on the size of the training samples; averages
of ten replications and confidence intervals at P = 0.99 (asterisk
= conventional maximum-likelihood classifier; square = nonpar
ametric classifier of Skidmore and Turner (1988) modified; triangle
= new maximum-likelihood classifier using nonparametric prior
probabilities).

agreement, but it leaves large areas not assigned to any cate
gory, so that the total number of classified pixels is lowered by
about 5 percent. Instead, the new process produces a classifi
cation accuracy even higher than that of the nonparametric clas
sifier without substantialy altering the number of pixels classified.
In particular, the correspondence between the actual and au
tomatically computed extent of the categories, which is a very
useful parameter from a user's perspective, reaches an optimum
level by the utilization of the new, mixed procedure; this can
be partly attributed to the inclusion of nonparametric weights
depending on the size of each class into the parametric defini-
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TABLE 6. TWO-WAY ANALYSIS OF VARIANCE PERFORMED ON THE KApPA
ACCURACY: PROBABILITIES FOR VARIANCE RATIOS (F) OF THE

COMPARISONS EXAMINED. FACTOR 1(C1) = CLASSIFIER (THREE LEVELS:
PARAMETRIC, NONPARAMETRIC, PARAMETRIC USING NONPARAMETRIC PRIOR

PROBABILITIES). FACTOR 2 (TP) = NUMBER OF TRAINING PIXELS (FIVE
LEVELS: 250, 500, 1000,2000,4000).

0.5
Analysis on global design:

0.35
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0.4

03 L.-~-'--~~~--'-~~~-----'~~~~-'-~~~~~~

Level of TP
Design 1 2 3 4 5
Cl(I,2,3) <.01 <.01 <.01 <.01 <.01
Cl(I,2) <.01 <.01 <.01 <.01 <.01
Cl(2,3) <.01 <.01 <.01 <.01 <.01

Level of Cl
Design 1 2 3
TP(1...5) <.01 <.01 <.01

Source of variation
Design TP Cl TP.Cl
Cl(I,2,3) x TP(1...5) <.01 <.01 <.01
Cl(I,2) x TP(l.. .5) <.01 <.01 <.01
Cl(I,3) x TP(l...5) <.01 <.01 .94
Cl(2,3) x TP(l...5) <.01 <.01 <.01
Analysis on each level of the 2 factors (perfonned only in presence of
significant interaction):

400020001000500250

Number of lraining pixels

FIG. 3. Variations in the Kappa accuracy of the three classifiers
depending on the size of the training samples; averages of ten
replications and confidence intervals at P = 0.99 (asterisk = con
ventional maximum-likelihood classifier; square = nonparametric
classifier of Skidmore and Turner (1988) modified; triangle = new
maximum-likelihood classifier using nonparametric prior probabil
ities).

TABLE 5. TWO-WAY ANALYSIS OF VARIANCE PERFORMED ON THE
PERCENTAGE OF CLASSIFIED PIXELS: PROBABILITIES FOR VARIANCE

RATIOS (F) OF THE COMPARISONS EXAMINED. FACTOR 1(C1) =
CLASSIFIER (THREE LEVELS: PARAMETRIC, NONPARAMETRIC, PARAMETRIC

USING NONPARAMETRIC PRIOR PROBABILITIES). FACTOR 2 (TP) = NUMBER
OF TRAINING PIXELS (FIVE LEVELS: 250, 500, 1000, 2000, 4000).

Analysis on global design:
Source of variation

Design TP Cl TP.Cl
Cl(I,2,3) x TP(l...5) <.01 <.01 <.01
Cl(I,2) x TP(l.. .5) <.01 <.01 <.01
Cl(I,3) x TP(l.. .5) <.01 <.01 .36
Cl(2.3) x TP(1...5) <.01 <.01 <.01
Analysis on each level of the 2 factors (performed only in presence of
significant interaction):

Level of TP
Design 1 2 3 4 5
Cl(I,2,3) <.01 <.01 <.01 <.01 <.01
Cl(I,2) <.01 <.01 <.01 <.01 <.01
Cl(2,3) <.01 <.01 <.01 .79 .39

Level of Cl
Design 1 2 3
TP(l...5) <.01 <.01 <.01

tion of the relevant shapes in the multi- dimensional feature
space. The significance of the differences in Kappa accuracy
found between the three error matrices has also been evaluated
by means of the Zeta test (Cohen, 1960). Because the reference
pixels are extremely numerous, all the Kappa variances are very
small and the resulting Zeta values are highly significant (Zeta
1-2 = 51.54, Zeta 1-3 = 55.55, Zeta 2-3 = 2.59); this clearly
indicates that actual diversities are present in the performances
of the three classifiers.

The variations in total number of pixels classified and Kappa
accuracy depending on the size of the training samples are fairly
visible in Figures 2 and 3. The maximum-likelihood process
tends to attribute almost all the pixels to some cover category
in all cases but its performance is always low in terms of Kappa
accuracy. This confirms the difficulties of the process in obtain
ing good results in zones with complex spectral features, mainly
due to its low flexibility and intrinsic deficiency in area esti
mates. The nonparametric process seems to overcome almost
completely these problems, but it shows an extreme sensitivity

to the size of the training samples, so that only the classifica
tions obtained by the process trained on many reference pixels
(N) 1000) can be considered acceptable in terms of Kappa ac
curacy and, above all, of percentage of classified pixels. Far
better results are achieved by the use of the parametric classifier
using nonparametric prior probabilities; it shows high perform
ance in terms of both the parameters considered, even when
trained on relatively low numbers of training pixels, and the
classification accuracies measured by the Kappa statistic are
generally higher than those of the other classifiers. Even if, as
expected, the asymptotic tendency with the increase in the
training sample size is favorable to the nonparametric process,
this is appreciable only over a high number of pixels.

As seen in Tables 5 and 6, the two-way analysis of variance
performed on the two variates yielded almost all highly signif
icant differences, partly due to the quite low sample disper
sions. In the global design, the two main factors and the relevant
interactions are highly Significant for both the variates. Such a
pattern persists in the comparisons between each pair of clas
sifiers, apart from interaction in the case of the conventional
parametric and the new classifier; this indicates that only in that
case there are no evident effects of training sample size on the
different behaviors of the three procedures. In any case, the
analyses in each single level of both factors performed in the
presence of significant interaction showed that only the com
parison between the results of the nonparametric and the new
process gives nonsignificant differences in terms of percentage
of classified pixels for high numbers of training pixels, while all
the other differences are highly significant. Globally, the anal
yses .of variance indicate that both the kind of classifier and the
training sample size are highly significant factors for the results
of the classifications. This gives a general meaning to the trends
described and renders the conclusions achieved more widely
extendable.

SUMMARY AND DISCUSSION

The necessity for efficient and cost-effective methods of land
use inventories has recently led to investigating the possibilities
of remote sensing techniques as a means for collecting precise
and objective information synoptically over large areas. In par
ticular, the advent of high resolution sensors such as the Land
sat TM and SPOT HRV has increased users' expectations, especially
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in European countries which present peculiar problems con
nected with the extreme fragmentation and irregularity of the
cover surfaces. Unfortunately, many applications of the stan
dard methods of remotely sensed data processing for land-cover
classifications have not led to satisfactory results, so that the
temptation has sometimes arisen that these techniques can have
only limited utility in most real situations (Hall-Konyves, 1990).

In effect, the classical parametric classification procedures have
general difficulties in discriminating between surfaces with
complex and irregular spectral features; in these cases area es
timates suffer from noticeable problems and, moreover, the whole
procedure appears inflexible. The use of nonparametric meth
ods recently proposed by some researches can only partially
solve these problems because of their need for too large training
samples in order to work properly.

The current paper proposes a new procedure which can merge
the advantages of parametric and nonparametric classifiers; its
statistical bases have been presented and discussed, relying on
previous investigations. Next, a case study has been examined
regarding the use of TM data on a particulary complex environ
ment of Tuscany in order to test the performance of the new
procedure in a real situation and to compare it with those of
the conventional methods. The results confirm the validity and
efficiency of the procedure, which performs significantly better
than the usual classifiers in terms of global accuracy and of
extent of areas identified, especially when trained on small sam
ples. Because the modification proposed is extremely simple
and easy to implement, the method can be considered ready
also for operational applications. Meanwhile, further research
is being directed towards the evaluation of discrimination error
probabilities from the new process and its possible inclusion
into a land information system.
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