Geometric Calibration of Zoom Lenses for Computer Vision Metrology*

Anthony G. Wiley and Kam W. Wong

Abstract
Zoom lenses are used extensively in computer vision to overcome the limited resolution provided by the small focal planes of solid-state cameras. Laboratory studies of zoom lenses, with a focal range of 12.5 to 75 mm, showed that geometric distortions could amount to several tens of pixels across the focal plane, and that there were significant changes in the distortion patterns at different focal settings. Changes in position of the principal point amounting to as much as 90 pixels were measured. These changes were found to be highly systematic, repeatable, and stable over time. A mathematical model was developed to model the geometric distortions at a fixed focal setting with an RMS error better than ± 0.1 pixel. A method was devised to model the changes in the interior geometry of zoom lenses, with the resulting residual distortions amounting to less than ± 0.4 pixel (RMS).

Introduction
Zoom lenses have not played any significant role in photogrammetric applications. It has been common knowledge that major changes in both the interior geometry and distortion characteristics occur with changes in the focal length setting. Fryer (1986) found that changes in radial distortions of zoom lenses are negligible only for focal settings greater than 50 mm. However, limiting the use of zoom lenses to focal lengths greater than 50 mm effectively nullifies much of the advantage of the zooming capability. In one attempt to use zoom lenses in photogrammetric operations, Schwartz (1989) reported on a vision system that provided real-time calibration of the zoom lens whenever the focal length was changed, through the use of a superimposed reseau grid. Extensive literature search did not find any further quantitative data on the changing distortion characteristics of zoom lenses, nor any report on the use of zoom lenses for accurate photogrammetric measurements.

On the other hand, zoom lenses are being used extensively in machine and robot vision because of the limited resolution capability of video cameras. Typically, the video cameras used in vision applications have a focal plane measuring only about 9 mm by 7 mm, resulting in a very small imaging area as compared to conventional film cameras. Zoom lenses are needed to provide the capability to change the focal setting on computer command so that large area coverage can be obtained at short focal settings while close-up views are achieved at long focal settings.

If geometric fidelity can be maintained on the focal plane for the entire range of zoom, longer focal settings will result in larger image scale and consequently higher measurement accuracy in the three-dimensional object space. This paper reports on results of a study that was aimed at developing methodologies to calibrate, model, and correct for geometric distortions in zoom lenses for applications in computer vision metrology. The goal was to evaluate the geometric stability of zoom lenses, and to develop calibration techniques so that increase in three-dimensional (3D) positioning accuracy can be achieved through zooming.

Vision Equipment
Experimental tests were conducted in the Vision Research Laboratory of the U.S. Army Advanced Construction Technology Research Laboratory at the University of Illinois at Urbana-Champaign. An International Robomation/Intelligence (iRI) DX/VX vision system was used for image capture (Wong et al., 1990).

Available for use in this study were two General Tcz-200 interline-transfer charge-coupled device (CCD) cameras, and two Pulnix TM80 frame-transfer CCD cameras. All four cameras had a focal plane of approximately 8.8 mm by 6.6 mm, which corresponded to an aspect ratio of 4:3 for a standard RS170 video signal. The focal plane of the General cameras consisted of 510 horizontal by 450 vertical pixels. Each pixel had an exterior dimension of 0.017 mm (H) by 0.013 mm (V), with only about 30 percent of the surface area being light sensitive. The focal plane of the Pulnix TM80 cameras consisted of 800(H) by 490(V) pixels, with nearly the entire surface area of each pixel being light sensitive. The effective resolution of the General cameras was 370(H) by 350(V) TV lines, whereas that of the Pulnix cameras was 525(H) by 350(V) TV lines. Two Fujinon 12.5 mm to 75 mm, f/2 and two Computar 12.5 mm to 75 mm, f/1.8 zoom lenses were made available for this study. Each digital image from the vision system consisted of 512 by 512 pixels, with the gray level of each pixel represented by an integer number between 0 and 255, resulting in 256 grey levels.

All program development and data processing were performed...
formed on two monochrome DN4000 and one color DN3000 Apollo workstations, which were part of an Apollo network that consisted of over 75 terminals. The high-speed, multiwindow, multi-tasking capability of the workstations provided an efficient platform to handle the heavy computation load. Image files were transferred between the IRIS DX/VR vision system and the Apollo workstations by means of 5.25-inch floppy disks.

Control Field
A three-dimensional control field (see Figure 1) was established for zoom lens calibration. It consisted of 54 round, black targets on white background. There were ten targets of 38.1-mm diameter, eight targets of 76.2-mm diameter, and 36 targets of 101.6-mm diameter. Each target was identified through the use of a six-digit binary bar code located beneath the target. A short bar represented a zero, and a long bar represented a 1. The entire control field covered an area of 2.25 m(H) by 2.75 m(W) by 2.41 m(D). The locations and sizes of the targets were designed so as to provide a minimum of 12 targets of sufficient size and dispersion to facilitate the calibration of zoom lenses with a focal range between 12.5 mm and 75 mm. The three-dimensional coordinates of the center of each target were determined by triangulation. The average estimated standard errors of the target coordinates were computed to be: \(\sigma_x = \pm 0.3 \text{ mm} \), \(\sigma_y = \pm 0.8 \text{ mm} \), and \(\sigma_z = \pm 0.4 \text{ mm} \). The X- and Z-axes lay in a vertical plane, with the X-axis being horizontal and the Z-axis being in the vertical direction. The Y-axis was horizontal and approximately along the depth of the target field.

Distortion Model
After extensive experimental tests, the following model was found to provide excellent representation of the distortion of a vision system at a given focal length setting (Wiley and Wong, 1989; Wong et al., 1991):

\[
\begin{align*}
\Delta x &= L_x x^2 + [p_1(r^2 + 2x^2) + 2p_2xy] \\
\Delta y &= L_y y^2 + [2p_2xy + p_1(r^2 + 2y^2)] \\
\Delta z &= (x - x_p)(1 + k) \\
\Delta \bar{y} &= y - y_p \\
\Delta \bar{z} &= z - z_p
\end{align*}
\]

where \(x \) and \(y \) are image coordinates; \(x_p \) and \(y_p \) are image coordinates of the principal point; \(k \) is a scale factor for the x-coordinates; \(L_x \) is the first term of symmetric radial distortion; and \(p_1 \) and \(p_2 \) are the first two terms of decentering lens distortions.

Targeting Algorithm
An algorithm was developed to automatically identify and locate the center of each target in an image. It consisted of the following steps:

- find the approximate locations and identification numbers of all the targets in an image using the method reported in Wong et al. (1989);
- perform sub-pixel edge detection along the boundary of each target using local thresholds; and
- compute the image coordinates of the center of each target by least-squares fitting with an elliptical template.

The estimated standard error of the computed coordinates of the target centers typically ranged between \(\pm 0.005 \) and \(\pm 0.02 \) pixel. There was no significant difference in the targeting accuracy of the two types of cameras used, in spite of the slightly higher resolution of the Pulnix cameras. This was largely attributed to the size of the targets, which typically had a diameter of more than 10 pixels in the calibration images.

Calibration Images
Images of the control field were obtained using the six different combinations of camera and zoom lenses shown in Table 1. In each case, the camera-lens combination was positioned in front of the control field and at a distance of approximately 5.5 m from the center of the target field. A total of 16 images were acquired in sequence for each combination at the following nominal focal settings: 12.5, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 12.5, and 15 mm.

Free Calibration
A free calibration was performed for each focal setting of each camera-lens combination by a bundle adjustment. Only the object-space coordinates of the control targets were constrained in the adjustment, which yielded the following: six exterior orientation parameters of the camera \((X, Y, Z, \phi, \psi, \kappa) \); and seven interior orientation parameters \((f, k, L_x, L_y, p_1, p_2, p_3) \). Table 2 lists the root-mean-square (RMS) errors of the residuals for all the adjustments. For focal lengths of 35 mm or shorter, the RMS errors were between \(\pm 0.05 \) and \(\pm 0.10 \) pixel. The small magnitude of the RMS errors for these adjustments confirmed the validity of the distortion model as well as the accuracy capability of the targeting algorithm. For focal lengths greater than 35 mm, largely because of the fewer number of control points available in each calibration image and the degradation in resection geometry, the RMS errors were increased to between \(\pm 0.05 \) and \(\pm 0.17 \) pixels.

![Figure 1. (a) View of entire control field. (b) Enlarged view of center portion.](image-url)
Focal Setting (mm)	Number of Targets	Camera-Lens Combination (± pixels)
12.5 | 38 | 0.07 ± 0.05
12.5 | 38 | 0.06 ± 0.05
15 | 32 | 0.10 ± 0.06
15 | 32 | 0.09 ± 0.06
20 | 25 | 0.08 ± 0.06
25 | 30 | 0.07 ± 0.06
30 | 21 | 0.07 ± 0.07
35 | 20 | 0.07 ± 0.08
40 | 18 | 0.07 ± 0.08
45 | 15 | 0.08 ± 0.10
50 | 13 | 0.10 ± 0.10
55 | 13 | 0.11 ± 0.11
60 | 13 | 0.12 ± 0.13
65 | 13 | 0.13 ± 0.13
70 | 13 | 0.14 ± 0.16
75 | 13 | 0.14 ± 0.17

Table 2. Root-Mean-Square Errors of the Residuals After Free Calibration

Figures 2 and 3 show the changes in the interior and exterior orientation parameters, respectively, with respect to the focal setting for camera-lens combination 4. Space limitation does not permit the inclusion of similar plots for the other five cases. As can be expected, there were small systematic changes in the exterior orientation parameters.

Changing the focal setting resulted in a small movement of the effective exposure center and, in some cases, small changes in the direction of the optical axis. In all six cases, the changes in the interior orientation parameters were also highly systematic.

Of particular interest from the free calibration results are that (1) there were large linear shifts of the principal point, and (2) decentering distortions were quite large. For camera-lens combinations 2 and 5, which involved the same camera but equipped with different zoom lenses, linear shifts of the principal point amounted to about 90 pixels, and decentering distortions amounted to about 5 pixels near the edge of the image acquired with f = 75 mm. Discussions with A. Burner of NASA led to the conclusion that both of these phenomena were most likely caused by tilting of the optical axis with respect to the focal plane. Burner reported that tilts of up to 0.5 degree were not uncommon in this type of cameras (Burner et al., 1990). A linear shift of the principal point amounting to 90 pixels over the zoom range of 12.5 mm to 75 mm would be equivalent to a tilt of only 1 degree.

One obvious approach to zoom lens calibration is to simply model these patterns with a separate polynomial for each of the parameters. Another possible approach is to use these calibration results directly in a table look-up scheme. The problem with both of these two approaches is that corrections for changes in exterior orientation parameters must be applied for different focal settings. Such a correction procedure would complicate the process of computing 3D object-space coordinates when the focal length is continuously changing.
changed through zooming. From an application standpoint, it is more convenient to determine the exterior orientation of the camera using a short focal setting and, therefore, a wide field of view. Then these parameters would be fixed while the focal length is increased to provide a better resolution of the object being measured.

Further analysis of the results from free calibration showed that the RMS errors for the exterior orientation parameters were quite large compared to the magnitude of changes when the focal length was varied between 12.5 and 75 mm. Much of the problem was due to the small field of view at the long focal setting. At a focal length setting of 12.5 mm, the diagonal field of view was 30°. At the focal setting of 50 and 75 mm, the field of view decreased to 8° and 5°, respectively. Such a narrow field of view resulted in very poor resection geometry for camera calibration. The correlation between the focal length and the distance of the camera from the control field, in this case represented by the coordinate \(V\), also increased significantly with increase in the focal length. For the test cases reported here, the correlation coefficient between the focal length \(f\) and the coordinate \(V\) was -0.02 for \(f = 15\) mm; but increased to -0.6 at \(f = 55\) mm.

Sequentially Constrained Calibration

In many computer vision applications such as robotics, it is acceptable to sacrifice some geometric accuracy for an increase in computational simplicity. It was decided, therefore, to develop a calibration procedure based on the assumption that all the exterior orientation parameters remained fixed when the focal length was varied. Physically, it could be visualized that the focal plane, instead of the exposure center, actually moved back and forth with changes in the focal length. The procedure is based on a series of sequentially constrained solutions for the calibration parameters.

Initially, a free calibration was performed for each of the 16 different focal settings of a particular camera-lens combination. The parameter with the smallest RMS error in these solutions was identified, and its average value was computed from the 16 independent solutions. Next, a second adjustment was performed for all 16 focal settings with this parameter held fixed at its computed average value. This procedure was repeated until all the exterior orientation parameters \((X, Y, Z, \omega, \phi, \psi)\) had been determined.

Next, an adjustment was performed for each of the 16 focal settings with all six of the exterior orientation parameters held fixed. The computed focal lengths in these solutions were accepted as the focal settings. The sequential adjustment procedure was then continued to determine the remaining parameters \((x_p, y_p, k, L_1, p_1, \text{and } p_2)\) one at a time. Because the coordinates \((x_p, y_p)\) of the principal point varied linearly with the focal length, they were each modeled with a first-degree polynomial. The parameter for radial lens distortion, \(L_0\), was modeled using two second-degree polynomials, one for values of \(f\) equal to or smaller than 25 mm, and one for \(f\) greater than 25 mm. The parameters for decentering lens distortion, \(p_1\) and \(p_2\), were each modeled with a second-degree polynomial.

The resulting distortion models for the interior orientation parameters of the six camera-lens combinations are summarized in Table 3. The RMS errors of the residuals after sequentially constrained solutions are tabulated in Table 4. The effectiveness of the sequential modeling procedure can be evaluated by comparing the RMS errors of the residuals after free calibration in Table 2 with those from the sequentially constrained calibration in Table 4. In free calibration,
The accuracy of stereo 3D measurement depends on the stereo intersecting geometry as well as on the accuracy of the image coordinates. The results in Table 6 clearly show the potential improvement in accuracy with increase in base separation between the two cameras and increase in focal lengths. The accuracy of stereo 3D measurement depends on the stereo intersecting geometry as well as on the accuracy of the image coordinates. The results in Table 6 clearly show the potential improvement in accuracy with increase in base separation between the two cameras and increase in focal lengths. The accuracy of stereo 3D measurement depends on the stereo intersecting geometry as well as on the accuracy of the image coordinates. The results in Table 6 clearly show the potential improvement in accuracy with increase in base separation between the two cameras and increase in focal lengths.
length. In camera configurations 1 and 2, the base distance between the two camera positions was about 0.6 m. The relative accuracy in 3D positioning improved from about 1/2,000 for a focal length of 15 mm to about 1/4,000 for a focal length of 70 mm. For configuration 3 and 4, the base distance between the two cameras was about 1.06 m. The relative accuracy in 3D positioning improved from 1/3,000 to 1/9,000 for configuration 3, and from 1/4,000 to 1/9,000 for configuration 4.

Conclusions

Experiments with six camera-lens combinations showed that geometric distortions could amount to several tens of pixels in an image consisting of 512 by 512 pixels, and that there were significant changes in the distortion characteristics with changes in the focal setting. However, the pattern of change for a given camera-lens combination was very systematic and stable over time. Free calibration of individual frames resulted in residual RMS errors between ±0.05 and ±0.1 pixels for f ≤ 35 mm, and between ±0.05 and ±0.17 pixel for f > 35 mm.

From an application standpoint, it is more convenient to assume that the exposure center and the optical axis of a zoom lens remain fixed as the focal length is varied. A method of zoom lens calibration was developed based on this assumption. Results showed that this method of sequentially constrained calibration resulted in residual RMS errors of less than ±0.4 pixel, and improvement of 3D positioning accuracy by 200 percent or better.

The results of this study clearly show that the geometric calibration of vision systems equipped with 12.5-mm to 75-mm zoom lenses is indeed possible. Significant changes in the interior geometry of zoom lenses occur with variation in the focal length. However, a method has been developed to perform zoom lens system calibration. Zoom lenses provide a means of bridging the gap between short and long focal length lenses for photogrammetric applications. They offer the ability to have both the global view of smaller scale imagery as well as the more accurate metrology of large scale imagery. The ability to calibrate CCD camera systems equipped with zoom lenses can open doors to a wide variety of applications heretofore closed.

Acknowledgment

The research reported in this paper was conducted as part of the University of Illinois Advanced Construction Technology Center research program sponsored by the U. S. Army Research Office under the DoD-University Research Initiative Program. A full report of this study can be found in Wiley (1991).

References

(Received 28 January 1993; accepted 5 May 1993)

Anthony G. Wiley

Major Anthony G. Wiley received his MS and PhD degrees in Civil Engineering at the University of Illinois. He is a 1979 graduate of the United States Military Academy and received an MS degree in Engineering Management from the University of Missouri-Rolla. He is presently conducting research in digital imagery and communications systems with the Army Space Program Office. His research focus is the resolution of interoperability issues between primary and secondary imagery systems throughout the Department of Defense.

Kam W. Wong

Dr. Kam W. Wong is a Professor of Civil Engineering at the University of Illinois at Urbana-Champaign, where he has taught photogrammetry and surveying since 1967. His current research interests include computer vision metrology, digital photogrammetry, and engineering surveying. He is the ASPRS Correspondent to Commission V, ISPRS, and is Co-Chair of ISPRS Working Group V/1 Knowledge Based Vision Metrology. He has co-authored two books and published more than 30 technical papers.