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Abstract 
Neural networks have been proposed to classify remotely 
sensed and ancillary CIS data. In this paper, the backpropa- 
gation algorithm is critically evaluated, using as an example, 
the mapping of a eucalypt forest on the far south coast of 
New South Wales, Australia. A GIS database was combined 
with Landsat thematic mapper data, and 190 plots were field 
sampled in  order to train the neural network model and to 
evaluate the resulting classifications. The results show that 
the neural network did not accurately classify GIS and re- 
motely sensed data at the forest type level (Anderson Level 
III), though conventional classifiers also perjGorm poorly with 
this type of problem. Previous studies using neural networks 
have classified more general (e.g., Anderson Level I, II) land- 
cover types at a higher accuracy than those obtained here, 
but mapped land cover into more general themes. Given the 
poor classification results and the difficulties associated with 
the setting up of suitable parameters for the neural-network 
(backpropagation) algorithm, i t  i s  concluded that the neural- 
network approach does not offer significant advantages over 
conventional classification schemes for mapping eucalypt 
forests from Landsat TM and ancillary GIs  data at the Ander- 
son Level 111 forest type level. 

Introduction 
In this paper, a neural network (specifically, the backpropa- 
gation algorithm) maps eucalypt forest vegetation. Neural- 
network models have previously been used with remotely 
sensed and other ancillary data, but the work frequently 
lacks details, and the results are mostly cited for Anderson 
Level I or I1 classifications (Anderson et al., 1976). Anderson 
Level I refers to general thematic classes such as forest, wa- 
ter, or soil, while Anderson Level I1 subdivides these classes 
into sub-groups such as deciduous or coniferous forest. Re- 
peating the subdivision process to Anderson Level I11 defines 
forest types. The success (correctness) of a classification 
needs to be considered in relation to the scale at which the 
thematic classes are defined. It is relatively easy to obtain an 
accurate map at Anderson Level I using standard classifiers, 
but difficult at Anderson Level I11 (Skidmore and Turner, 
1988; Skidmore, 1989). 

A study by Hepner et al. (1989) concluded that neural 
networks (NN) could map general land-cover types (such as 
water, land, forest, and urban at Anderson Level I) with 
greater accuracy than a conventional maximum-likelihood 
classifier when using Landsat Thematic Mapper (TM) data. 
Hepner et al. (1989) also used a textural measure in their 

classification scheme, which has been replicated in this 
study. When Fitzgerald and Lees (1992) repeated the ap- 
proach of Hepner et al. (1989) in an Australian context, they 
found the neural-network algorithm also performed better 
when mapping general land-cover classes. Parikh et al. 
(1991) used Landsat TM imagery to map linear geological fea- 
tures. The neural network was trained using digitized linea- 
ment maps and was found to be superior to linear discrimi- 
nant functions and k-nearest neighbors for this purpose. 
Civco (1993) mapped land covers from Landsat TM data at 
Anderson Level I1 and concluded that the neural-network ap- 
proach was comparable to maximum likelihood. Omatu and 
Yosida (1991) mapped general classes (Anderson Level I) 
such as sunlit and shadowed forest, urban, water, and grass 
using a neural network (backpropagation algorithm), and re- 
ported good correlation between the areas correctly mapped 
by the neural network and the true area. The accuracy of the 
neural-network classifications was lower than that of the 
maximum-likelihood classifications. 

The main objective of this study was to understand the 
behavior of neural networks (specifically the backpropagation 
algorithm) with remotely sensed and GIS data. In so doing, 
the usefulness of neural networks for classifying remotely 
sensed and GIS data was critically evaluated. A second objec- 
tive was to map complex native forest at Anderson Level I1 
and I11 using the backpropagation algorithm. From this work, 
it is hoped that others who may wish to also classify GIS and 
remote sensing data using neural networks may be able to 
find guidance in setting the various network parameters, and 
thus save time in developing heuristics for this purpose. 

Study Area 
The study area, located in the southeast forests of New South 
Wales, is approximately 20 km northwest of the Eden town- 
ship. Topographic relief is moderate (Bridges, 1983). Precipi- 
tation is approximately 1000 mm per year (Keith and Sanders, 
1990), and temperatures are mild year round with an average 
annual temperature of 15°C. The parent material consists of 
rhyolite and basalt outcrops (Ferguson et al., 1979), as well 
as Ordovician metamorphic material. Soils are generally 
acid, highly weathered, and of poor to moderate fertility. 

Vegetation of the Nullica study area is primarily dry and 
damp sclerophyll eucalypt forest, with the dominant species 
being silvertop ash (Eucalypt sieberi) and various stringybark 
species (such as E. agglomerata). The area is largely undis- 
turbed, except for some low-intensity selective logging and, 
latterly, construction of some forest access roads. 
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Description of the Neural-Network Algorithm 
A backpropagation algorithm was implemented for a three- 
layer network (see Figure 1) consisting of an input, hidden, 
and output layer because 

most comparable studies used the backpropagation algorithm, 
or a derivative of the backpropagation, so its use allows a 
comparison with these results; and 
discussions with experienced colleagues revealed a consen- 
sus that the backpropagation algorithm is generally applicable 
and has good modeling capabilities. 

Training data, consisting of the values for a grid cell 
(pixel), are presented to the neural network, together with a 
known land-cover class. The arrangement is similar to that of 
conventional supervised classifiers (e.g., maximum likeli- 
hood). For example, a training area of 15 pixels over a lake 
may be delineated from Landsat TM data; each pixel will 
have three brightness (DN) values associated with it and the 
output class is water. In this implementation of the backpro- 
pagation algorithm, each output class is assigned to an out- 
put node. For example, if five output classes were to be clas- 
sified, Class 1 would be labeled as (1 0 0 0 O) ,  Class 2 as {O 1 
0 0 01, Class 3 as (0 0 1 0 01, and so on. Each output node 
has an associated "target" value. In other words, a water 
class may be assigned to output node number 3, and be given 
a target value of, for example, 0.90; output nodes 1, 2, 4, and 
5 would be set to a target value of 0.10. The water class 
would then be labeled (0.10 0.10 0.90 0.10 0.10). Similarly, a 
forest class may be assigned to output node 2 with a target 
value of 0.90, while the other output nodes would have a 
target value of 0.10, that is, (0.10 0.90 0.10 0.10 0.10). 

The backpropagation algorithm comprises a forward and 
a backward phase through the neural-network structure. The 
first phase is forward, during which the values of the output 
nodes are calculated based on the GIS and remotely sensed 
data values input to the neural network. In the second phase, 
the calculated output node values are compared with the tar- 
get (i.e., known) values. The difference between the value 
calculated for the node and the value of the target node is 
treated as the error; this error is used to modify the weights 
of the connections in the previous layer. This represents one 
epoch of the backpropagation algorithm. In an iterative pro- 
cess, the output node values are again calculated, and the er- 
ror is then propagated backwards. The total error in the 
system is calculated as the root-mean-square error between 
the calculated value and the target value for each node. The 
algorithm continues until the total error in the system de- 
creases to a pre-specified level, or the rate of decrease in the 
total system error becomes asymptotic. 

A brief description of the backpropagation algorithm 
now follows; other useful references are works by Rumelhart 
and McClelland (1986), Pao (1989), Aleksander and Morton 
(1990), Kosko (1992), and Haykin (1994). The feed-forward 
stage starts with the remotely sensed and/or G I ~  input data 
(0,) being presented to a node and multiplied by a weight 
(w,). The products are summed at the hidden nodes to pro- 
duce a value z, for the jth layer: i.e., 

For a three-layer neural network, with the three layers 
lettered as i,j,k, and k being the output, zk may be similarly 
calculated as for Equation 1. 

In an attempt to mimic the output from a biological cell, 
the value of zj is passed through a transfer function, which is 
often sigmoidal (Equation 2). The output from this activation 
function is 

t 

input hi& output 
layer layer layer 

i j k 

Figure 1. Neural network 
structure for a one-layer 
network. 

where z, is defined in Equation 1, e is a threshold (or bias), 
and 0, is a constant. This adds non-linearity to network cal- 
culations, which is an important mathematical property al- 
lowing the network to solve some complex problems more 
accurately than linear techniques. A sigmoidal activation 
function for z, is shown in Figure 2, for 0 = 0. 

The calculation utilizing the sigmoidal function is re- 
peated for each hidden node, and finally terminates after the 
ok value is calculated for each output node. This represents 
the end of the feed-forward phase of the first epoch. 

The backpropagation phase now commences. The basis 
for this process is that the initial output values almost never 
equal the target or desired value of the output node. The sys- 
tem error (E) is therefore calculated, which is the difference 
between the target value (tIk) (or desired value as defined by 
the training area pairs) and the output value (ojk). Note in 
Equation 3 that E has been aggregated into a single adjust- 
ment, where P is the number of training patterns: i.e., 

The aim is to reduce E by "back-propagating" the error 
from the output nodes to the hidden nodes, and from the 
hidden nodes to the input nodes. Backpropagation of the er- 
ror is achieved by changing the weight of each node (in a 
backwards direction) using the following relationship: 

for the jth and kth layer where 

and 

Figure 2. Sigmoidal activation 
function. 
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Figure 3. Normalizing the range 
of the data input to the neural 
network. 

where 17 is the learning rate constant. 
A momentum term (a) may be added to increase the 

learning rate: i.e., 

where n is the presentation number (epoch). 
The output from each node is calculated by the sigmoi- 

dal activation function (Equation 2). Over many epochs (or 
iterations), the total system error is reduced by this two- 
phase process of feed-forward, followed by error backpropa- 
gation. 

the potential error of traditional classification and interpreta- 
tion methods. Therefore, in this study the species mix was 
verified using counts of each species in a plot. 

A spatial database consisting of elevation, slope, aspect, 
topographic position, geology, rainfall, temperature, and re- 
motely sensed data was geometrically corrected to a UTM 
projection, and interpolated to a 30-m grid. From these data, 
forest types were predicted, i.e., scrub, dry schlerophyll, 
damp schlerophyll, wet schlerophyll, and rainforest. 

I 
Normalizing the Input Patterns 
The process of developing a neural-network application 
starts with selecting and modifying the input data in order to 
allow the neural network to reach a feasible solution in a 
reasonable time. Theoretically, the input data should be nor- 
malized to the same range, in order to speed convergence to 
a minimum error point in the network. This can be visual- 
ized in Figure 3, where the input data have different magni- 
tudes. In order for each node to have the same order of 
magnitude effect on the output of the hidden node, the 
weights need to be inversely proportional to the input data 
values. 

The problem was solved by normalizing the input data 
to a range between 0 and 1 using a linear contrast &etch 
(Richards, 1986). 

Building the Data Set 
The data set used comprises 190 field plots, a small number 
for training a neural network, but for a natural resource in- 
ventory, the density of plots is actually high. The field plots 
were sampled in a stratified random manner, strata being 
based upon geological types and topographic position. Plots 
were 0.10 ha in size, and at each site eucalypt species were 
identified, and heights were estimated by measuring the 
height of five trees per plot and visually estimating the re- 
mainder. Using the species data for each site, forest type 
classes were defined using the classification system devel- 
oped by Baur (1965). 

Natural eucalypt forests are a complex mix of species; 
the species form into natural groups (i.e., forest types). Tradi- 
tionally, the species mix is "interpreted" from casual obser- 
vation or aerial photographs, but this may be a major source 
of error. In contrast to earlier studies, we wished to control 

Results 
Introduction 
In the following experiments, one system parameter was var- 
ied while holding other parameters constant, in order to 
highlight the effect of the varied system parameter on the 
performance of the neural network. The parameter settings 
for the different experiments are listed in Table 1. Note that 
n/a means not applicable, and is included in the table to in- 
dicate that a variable is indirectly varied by manipulating 
another variable. For example, for the "GIs vs TM only" ex- 
periment, the number of input nodes was varied, and that in- 
directly changes the number of hidden nodes in the network 
(remember that the hidden nodes connect to the input 
nodes). 

Accuracy was measured for all experiments by randomly 
splitting the available 190 plots into a training data set and a 
testing data set. As shown in Table 1, the usual number of 
points used for training the network is 150, leaving 40 points 
to test the accuracy of the prediction. Accuracy is reported 
as the percentage of points correctly trained (i.e., training ac- 
curacy) or predicted (i.e., test accuracy) by the network. 

Note that some of the variation in the percentage of cor- 
rect training (and test) data stems from the method used to 
generate results from the neural network (e.g., Figures 8 and 

- - -  

number number of number 
number of number hidden learning learning 

Experiment of inputs outputs of layers nodes rate momentum patterns 

raw data 13 5 3 180 0.2 0.4 150 
GIs vs TM only V 5 3 n/a 0.2 0.2 150 
random inputs 13 5 3 180 0.2 0.2 150 
texture V 5 3 n/a 0.2 0.2 150 
# learn patterns 13 5 3 180 0.1 0.4 V 
# hidden nodes and layers 13 5 3-5 V 0.8 0.2 168 
# output nodes 13 V 3 nla 0.8 0.2 150 
# epochs 13 5 3 180 0.2 0.2 150 
system error 13 5 3 180 0.2 0.2 150 
learning rate 13 5 3 180 V 0.3 150 
momentum 13 5 3 180 0.2 V 150 
target value 13 5 3 180 0.2 0.5 150 
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Figure 4. Relationship between number of epochs and the percentage 
of training data correctly predicted for the raw and normalized data. 

9). The network was stopped each time the total system error 
dropped by 10 percent, and the critical system parameters 
(e.g., number of epochs, total system error, percentage of test 
data correctly predicted) were written to a file. The rationale 
was to explore how the neural network performed during the 
learning process, particularly for apparent outliers; for exam- 
ple, in experiments where the system produced a low total 
system error after a few epochs. Note that some experiments 
may have an initial accuracy of 0 percent (for example, see 
Figures 8 and 9). In these situations, the system error, by 
chance, started below the initial threshold set for the net- 
work to stop and report critical values. 

To generate the following results, many experiments 
were executed using a network of 24 Sun workstations, a Sil- 
icon Graphics Power Challenge with four processors, and a 
(32-processor) Thinking Machines CM5 computer. The 
backpropagation algorithm was programmed in the C lan- 
guage so that the code could be easily integrated into future 
research projects. To check this algorithm, two public do- 
main backpropagation algorithms were obtained; these gener- 
ated the same results. 

Use of Normalized versus Raw Data 
A plot of the training data accuracy obtained using the raw 
data and the normalized data (Figure 4) indicates that nor- 
malized data reduced the number of epochs and, hence, the 
computational expense of processing. A research hypothesis 
that more epochs are required to obtain a training accuracy 
of greater than 90 percent when using raw data was tested 
with the Mann-Whitney U test. Stated formally, the null hy- 
pothesis is Ho: 7 ,  = 7 ,  versus the alternate hypothesis Ha: 7 ,  
> q,, where 7 ,  is the median number of epochs with a train- 
ing accuracy of greater than 90 percent for the raw data, and 
7 ,  is the median number of epochs with a training accuracy 
of greater than 90 percent for the normalized data. The null 
hypothesis was rejected at p < 0.0001, so we conclude that 
normalized data require fewer epochs to approach a high 
training data accuracy, compared with the raw data. 

By normalizing the data, fewer epochs are required to 
obtain a small system error as the weights of the nodes have 
approximately the same range. Wilson (1991) commented 
that modifying the ranges of the input data caused the net- 
work to learn at different rates, and surmised that different 
ranges sometimes worked better because they utilize a larger 
percentage of the sigmoid function. 

Randomized Input Data 
If the training data are presented to a neural network in an 
iterative sequential manner, then the network may need to 
learn the spectral (and other) patterns of the training data, as 
well as the order in which the data were introduced. Does 

randomly presenting the input data to the network improve 
its performance? To test this research question, the order of 
data presented to the neural network was randomly varied 
(e.g., ABC, BCA, CBA) as well as input sequentially. The ef- 
fect on the training and test accuracy of the random versus 
the sequential input are shown in Figure 5. 

The exploratory data analysis (Figure 5) indicated little 
difference in training and test accuracy as a result of using 
random or sequential input data, though the test accuracy 
appears somewhat higher for the sequentially input data. A 
research hypothesis that random presentation of training data 
increases training accuracy was tested using the Mann-Whit- 
ney U test. Stated formally, the null hypothesis is Ho: 7 ,  = 7 ,  
versus the alternate hypothesis Ha: 7 ,  > q2, where 7 ,  is the 
median training accuracy for the random data, and 7 ,  is the 
median training accuracy for the sequential data. The null 
hypothesis was not rejected at p = 0.05, so we conclude that 
there is no difference in training accuracy for randomly ver- 
sus sequentially presented input data. The Mann-Whitney U 
test was repeated for the test accuracy. Stated formally, the 
null hypothesis is Ho: 7 ,  = 7 ,  versus the alternate hypothe- 
sis Ha: 7 ,  > q2, where 7, is the median test accuracy for the 
random data, and 7 ,  is the median test accuracy for the se- 
quential data. In contrast to the training accuracy, the null 
alternative was rejected at p < 0.0001, confirming that the 
test accuracy was higher for the sequentially presented data 
compared with the randomly presented data. 

One explanation for the behavior of the neural network 
is that the input data used are large as well as complex, and 
the order of input/output pairs for the sequential experiment 
was well shuffled. Therefore, the network was not learning 
the order of the data presented to it. 

lnput of TM and GIS Data versus TM Data Alone 
When only TM data were input to the neural network, the 
training accuracy appeared lower compared with using the 
combined TM and GIS data set1 (Figure 6). A research hypoth- 
esis that the training accuracy was higher for all data com- 
pared with the TM data may be stated formally as Ho: 7 ,  = 7 ,  
versus the alternate hypothesis Ha: 7 ,  < q,, where 7 ,  is the 
median training accuracy for all data and 7 ,  is the median 
training accuracy for the TM data. The null hypothesis was 
tested using the Mann-Whitney U test, and rejected at p < 
0.001; we conclude that the training accuracy is lower for 
the TM data compared with the use of all data. Interestingly, 
the test accuracy appeared higher for the TM data (Figure 6). 
This observation was also formally tested using the Mann- 

'Note that "all data" comprised the TM and GIS layers (elevation, 
slope, aspect, topographic position, geology, rainfall, and tempera- 
ture). 
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Figure 5. Training and test accuracy resulting from randomized input 
versus sequential input of the training data. 

Whitney U test, which confirmed that the test accuracy is 
significantly higher for the TM data (compared with the com- 
bined TM and GIs data set) at p < 0.001. An explanation for 
this apparent contradiction may be made by analogy to the 
fitting of a high order polynomial using a few sample points; 
the training accuracy (fit) may be high, but the accuracy with 
unknown data (test accuracy) is reduced (Richards, 1986). As 
the TM data sample is smaller than the combined GIs and TM 
data set, a similar phenomena may be occurring here. 

Another interesting observation from Figure 6 is that 
there are fewer plotted points for the TM data compared with 
the combined TM and GIS data set. This is because the neural 
network program stopped each time the total system error 
decreased by 10 percent. The TM data set rapidly converged 
to the minimum system error, because the data set was sim- 
pler and, hence, easier to learn compared with the combined 
TM and GIs data set. 

Texture 
Hepner et al. (1989) used texture as an input layer to a neu- 
ral network. In the following experiments, two measures of 
texture are used: skew and variance (skew is the deviation of 
the distribution from symmetry, and variance is a measure of 
the spread of the data, within a moving window). The win- 
dow size (across which texture is evaluated) was varied be- 
tween 3 by 3 ,  5 by 5, and 7 by 7; in contrast, Hepner et al. 
(1989) used a 3 by 3 window. 

An initial research question was whether the size of the 
moving window influenced the training and test accuracy of 
the neural network. Skew, as evaluated within the 5 by 5 
moving window, had a significantly higher training and test 
accuracy than within the 3 by 3 and 7 by 7 moving windows 
for p < 0.01, as calculated by the Mann-Whitney U-test. In 
contrast, variance within a 7 by 7 moving window produced 
the highest training and test accuracy. 

A combined data set of skew (evaluated within a 5 by 5 
moving window), TM, and all GIs layers allowed the neural 
network to train faster compared with using only TM and GIs 
data (Figure 7). An asymptote on the training accuracy curve 
was achieved after about 1500 epochs for the combined 
skew, TM, and GIs data set, compared with approximately 
6000 epochs for the TM and GIs data set. 

A research hypothesis that the training accuracy was 
higher for the combined skew data set (i.e., skew, TM, and all 

GIs layers) compared with the GIs and TM data set may be 
stated formally as Ho: 7, = 7, versus the alternate hypothesis 
Ha: v1 > q2, where 7, is the median training accuracy for the 
combined data set containing skew, and 7, is the median 
training accuracy for the GIs and TM data. The null hypothe- 
sis was tested using the Mann-Whitney U test, and rejected 
at p < 0.01; we conclude that the training accuracy is higher 
for the combined skew data set compared with the GIs and 
TM data. Similarly, the test accuracy was significantly higher 
when combined skew was included (MannWhitney U-test at 
p < 0.01). 

Figure 7 also indicates that training and test accuracies 
appear higher when variance was combined with the TM and 
all GIs layers. This was confirmed using the Mann-Whitney 
U test; we conclude that the training and test accuracies are 
significantly higher for the "variance" data set (i.e., variance 
combined with the TM and all GIS layers) compared with the 
GIs and TM data, at p < 0.01. Interestingly, the test accuracy 
for the (combined) skew data set was significantly higher than 

accuracy 

-2000 2000 6000 10000 14000 18000 22000 
epochs 

all data 

accuracy 

I:: 11 
10 
-2000 2000 6000 10000 14000 18000 22000 

epochs 
TM data 

Figure 6. Test and training accuracy achieved using all 
data and the TM data alone. 
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Figure 7. Training and test accuracies when texture 
(skew and variance) were added as input data lay- 
ers. 

for the (combined) variance data set (Mann Whitney U test at 
p < 0.01), but there was no difference in the training accu- 
racy. 

In conclusion, analysts should consider including tex- 
ture (skew and variance) in classifications; for the data set 
used here, there was a statistically significant increase in 
training and test accuracy. Texture appears to provide addi- 
tional information to discriminate classes. 

Number of Learning Patterns 
There is little variation in test accuracy with fewer learning 
patterns (i.e., number of test plots) (Figure 8). Variation in 
accuracy appears to be an artifact of the data set used; when 
the data set was modified by changing the order in which 
the learning patterns were presented to the neural network, 
maximum accuracy occurred at 90 learning patterns. 

Similarly, there appears to be little variation in the accu- 
racy of training data as the number of learning patterns in- 
creases (Figure 9). 

numba of learning patterns 

Figure 9. Number of learning patterns ver- 
sus the percentage of the training data 
correctly predicted by the neural network. 
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Number of Layers and Number of Nodes per Layer 
The number of layers, as well as the number of hidden 
nodes per layer, affects the performance of a neural network. 
Figure 10 shows how the average training and test accuracy 
varies as the number of hidden layers increases from one to 
three, and the number of hidden nodes per layer rises from 
one to 50. It appears that higher training accuracies are ob- 
tained with three hidden layers, compared with two or one 
hidden layers. Also, as more hidden nodes are added, the 
training accuracy increases. In contrast to the training data, 
the average test accuracy declines as the number of hidden 
nodes increases. Test accuracy is lowest with one hidden 
layer. 

Note for Figure 10, in order to smooth short-range fluctu- 
ations, the average training accuracy value was calculated for 
increments of ten nodes per layer; that is, the average accu- 
racy was calculated for the range of one to ten nodes, 11-20, 
21-30, 3 1 4 0 ,  and 41-50 nodes per layer. 

The relationships in Figure 10 were confirmed by a two- 
way analysis of variance. The research hypothesis was 
whether a significant difference in accuracy occurred (for 
both the training and test data) as the number of hidden lay- 
ers and nodes per layer varied. In other words, it was of in- 

- ~ l ! l l l ~ ~ l l ~ ~ , l l ~ l i .  0 0  

- O :  
O 0 

0 O 0  
0 0 0 0 0  

mean accuracy 
95 . . . . . . . . . . . 

65 

55 - 

3 layers 

35 

1 layer - 
2 5 - r B t . - * n - - - a  

1-10 21-30 41-50 
11-20 31-40 

number of hidden nodes 
Figure 10. Average training and test accu- 
racy, stratified by number of hidden layers 
and number of hidden nodes per layer. 

-10 40 90 140 190 

number of learning patterns 

Figure 8. Number of learning patterns ver- 
sus the percentage of the test data cor- 
rectly predicted by the neural network. 
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Figure 11. Number of epochs required to reach maximum 
training accuracy. 

terest to learn how the number of layers and number of 
nodes per layer (as well as any interaction effect) affects av- 
erage training (and test) accuracy. 

The first stage of the analysis checked that the assump- 
tions of the test were not violated, specifically, that the 
dependent variables were normally distributed, and that vari- 
ances were homogeneous within each group. These assump- 
tions were tested by viewing histograms, and using a series 
of tests including Cochran C, Hartley, and Levene's test; all 
tests showed that there were no significant violations of the 
assumptions. A potentially more serious problem is correla- 
tion between means and standard deviations, because an ex- 
treme cell (i.e., mean value) may be present in the analysis 
of variance design which also has greater than average varia- 
bility. The correlation between means and standard devia- 
tions was low for both the training and the test data. 

The observations for Figure 10 were confirmed using 
analysis of variance, showing a significant difference in aver- 
age training accuracy as the number of layers increased; that 
is, the network was trained more accurately as the number of 
hidden layers rose. Mean training accuracy increased as 
more nodes were added, but appears to reach an asymptote 
at approximately 30 to 40 nodes (Figure 10). The other statis- 
tically significant relationship involved the interaction be- 
tween the number of layers and number of nodes. It appears 
that training accuracy improved as more layers were added 
to the network and as the number of nodes increased. How- 
ever, training accuracy reached an asymptote, or even de- 
creased, above approximately 30 to 40 nodes. 

There was a statistically significant difference in the 
mean test accuracy for networks of one, two, or three layers, 
with the one-layer network producing lower accuracies when 
compared to two- and three-layer networks. Mean test accu- 
racy also differed significantly as the number of nodes changed. 
The interaction effect between the number of layers and 
number of nodes per layer was also associated with a signifi- 
cant difference in mean test accuracy. 

As more layers are added to the network, the more com- 
plex network allows the data to be modeled more accurately. 
Also, as more nodes are added, the training accuracy rises, 
while the test accuracy decreases. In order to understand this 
behavior, consider the situation with few hidden nodes. The 
connection weights of the hidden nodes vary with a large 

total system error 
110 -1 

number of epochs 

Figure 12. Effect of increasing the 
number of epochs on total system 
error. 

magnitude, as the error is propagated backwards by the neu- 
ral-network. That is, a change in node weight tends to undo 
the previous change to the node. This causes the neural-net- 
work weights to oscillate wildly, reducing the possibility that 
a point of minimum error is reached. Because the neural net- 
work cannot reduce the remaining error, the average training 
accuracy remains low. As the number of nodes increases, the 
total error in the network falls, and the training accuracy in- 
creases. 

The above results, obtained using analysis of variance, 
were confirmed with the nonparametric Kruskal-Wallis test. 
A significant difference in the median training and test accu- 
racy was obtained for one-, two-, or three-layer networks. 
There is also a significant difference between the percentage 
of correct training and test cells for different number of 
nodes per hidden layers (for p < 0.01). 

A related phenomena is that the two-layer neural net- 
work reaches a maximum training accuracy more rapidly 
than the one-layer network (Figure 11). In other words, the 
asymptote of the training accuracy curve for the two-layer 
network is achieved after about 2000 epochs, compared with 
approximately 5000 epochs for the one-layer network. 

At a more practical level, a GIS analyst trying to decide 
on a suitable number of nodes per hidden layer may see that 
Figure 10 has the highest percentage of correctly classified 
training patterns at approximately 2 1  to 30 hidden nodes, 
but the test data accuracy is highest at approximately 11 to 
20 nodes. The evidence here suggests the number of hidden 
nodes should be approximately 20 for one hidden layer, in 
order to maximize test accuracy while achieving a reasonable 
training accuracy. More hidden nodes are required for two- 
and three-layer networks; 20 to 30 nodes per layer maxi- 
mizes test accuracy while achieving a high training accuracy. 
However, it should be emphasized that the results obtained 
suggest general trends, and the use of other data sets may 
cause the algorithm to perform differently. 

Number of Epochs (Iterations) 
As the number of iterations (or epochs) increases during neu- 
ral-network training, the total system error becomes lower 
(Figure 12). 

An experiment in which the number of epochs varied is 
shown in Figure 13, for the total system error (Figure 13a), 
training accuracy (Figure 13b), and test accuracy (Figure 
13c). The total system error decreases as the number of itera- 
tions increases (Figure 13a), while the training accuracy im- 
proves as the number of processing cycles increases (Figure 
13b). There is no obvious relationship between accuracy of 
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Figure 13. Epochs versus total system error (a), 
training accuracy (b), and test accuracy (c). 

the test data and the number of epochs or total system error 
(Figure 13c). 

The network appears to become "overtrained" as the 
number of epochs increases, a phenomenon typical of itera- 
tive optimization procedures (e.g., Goldberg, 1989). Over- 
training occurs when training data, which are already well 
modeled by the algorithm (for example, point a o n  Figure 
13), continue to be iterated through the model; that is, the 
number of epochs continues to increase for the network. 
When unknown (test) data are presented to an overtrained 
network, the accuracy of predictions decreases (Figure 13c). 
Overtraining (or generalization) is caused by the network 
memorizing the inputloutput pairs, and becoming less able 
to generalize between similar input-output patterns (Haykin, 
1994). 

To formally test for overtraining, the data set was subdi- 
vided into epoch ranges of 10,000 to 14,000 epochs and 
above 14,000 epochs. Above approximately 10,000 epochs, 
total system error became asymptotic (Figure 13a), and, 
when the number of epochs increased above 14,000 (point @ 
on Figure 13), overtraining apparently occurred because 
training accuracy increased, while test accuracy decreased. 
Stated formally, the null hypothesis is Ho: g, = g2 versus the 
alternate hypothesis Ha: g, < g2, where g, is the median per- 
centage of correct training cells for epochs in the range 
10,000 through to 14,000, and g, is the median percentage of 
correct training cells for greater than 14,000 epochs. The 
Mann-Whitney U test rejected the null hypothesis at p = 
0.01; thus, we conclude that training accuracy increases as 
the number of epochs increases. A similar null hypothesis 
was constructed for the test data. The null hypothesis was 
rejected at p = 0.00001; therefore, we conclude that the test 
accuracy becomes significantly lower as the number of ep- 
ochs increases. Therefore, there is significant evidence that 
overtraining occurs; as the number of epochs increases, the 
accuracy of training continues to increase, but the test accu- 
racy decreases. 

It is important that the network is able to classify new 

patterns correctly with respect to the training patterns. A 
number of methods have been proposed to stop a neural net- 
work once it begins to overtrain (Haykin, 1994). For exam- 
ple, in the cross-validation procedure, the available data are 
divided into a training and a test data set. The training data 
are further split into a "training" set (to estimate the model) 
and a "validation" set (to evaluate the performance of the 
model). Overtraining shows up as reduced accuracy (per- 
formance) in the validation set. A method proposed by Hay- 
kin (1994) to detect overtraining involves monitoring the 
validation data set, and noting when the classification per- 
formance fails to improve by a user specified amount (e.g., 
0.5 percent). At this point, the learning rate is reduced, and 
the neural network continues to iterate until the performance 
again fails to improve. After the size of the learning rate falls 
below a user specified threshold, network training is halted. 

In the experiments reported here, the neural network ex- 
ecuted until the total system error was reduced to a user 
specified level. This allowed the full behavior of the neural 
network with GIS and remotely sensed data to be examined. 
If the network is halted using stopping rules such as in the 
cross-validation method, other artifacts may be introduced 
into the performance of the network. For example, is the 
point of overtraining, as defined by the stopping algorithms, 
really a point of overtraining, or is it a local minimum on 
the error surface? In other words, use of stopping rules 
aimed at preventing overtraining, may cause other problems, 
such as not reaching the actual minimum on the error sur- 
face. However, other methods for stopping the network, such 
as using total system error as a criterion to "stop" the net- 
work, may also lead to sub-optimal classification perform- 
ance through poor generalization. To date, no global method 
has been suggested for "stopping" the network in a n  optimal 
manner, such that the "best" balance between training accu- 
racy, test accuracy, and system error is achieved. 

Total System Error 
The total system error is inversely correlated with the per- 
centage of correct training data (correlation coefficient of 
-0.70 at p < 0.01; Figure 14), because the training data are 
iteratively used to reduce system error (see Equation 3).  
However, system error is not correlated with test accuracy. A 
GIs or image processing analyst should not use system error 
as the only criterion for determining the success of a classifi- 
cation, as it may lead to poor generalization. 

Learning Rate and Momentum 
Learning rate is analogous to the distance along the error sur- 
face traveled in a single epoch (Figure 15), so that the 
smaller the learning rate, the smaller the changes in the 
weights of the network at each epoch (Kosko, 1992; Haykin, 
1994). If the learning rate is too large, the network may be- 
come unstable and oscillate across the error surface. Momen- 
tum is a term added to the learning rate to incorporate the 
previous changes in weight with the current direction of 
movement in the weight space (Rumelhart and McClelland, 
1986; Kosko, 1992). In other words, inclusion of the momen- 
tum term avoids wild swings across the error surface, while 
allowing the system to learn faster. 

Figures 16a and 16d show, respectively, the change in 
training and test data accuracy, as the learning rate increases 
from 0.1 to 0.9 and momentum is simultaneously varied from 
0.1 to 0.9. In Figures 16b and 16e, data with a momentum of 
0.1 are subset from Figures 16a and 16d. Similarly, Figures 
16c and 16f are plots of data with momentum equal to 0.9. 
No obvious trends were apparent, except that a high (greater 
than 0.8) momentum coupled with a high learning rate (also 
greater than 0.8) appears to have lower training and test ac- 
curacies. This was tested formally by a null hypothesis, Ho: 
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771 = r),, versus the alternate hypothesis Ha: r), < vz, where r), 

is the median training accuracy for experiments with a learn- 

accuracy (training data) 

ing rate greater than 0.8 and a momentum greater than 0.8, 
I and v2 is the median training accuracy for experiments with 

a learning rate less than 0.8 having an "exclusive or" rela- 
tionship with momentum less than 0.8. The null hypothesis 
was rejected at p < 0.00001, so it is concluded that the com- 
bination of a high learning rate and momentum reduce the 
accuracy of training. A similar formal test constructed for the 
test data did not reject the null hypothesis. 

Training accuracy (Figure 17a) and test accuracy (Figure 
17b) appeared little changed as the momentum tended to- 
wards 1.0, and the learning rate was held constant at 0.2. A 
null hypothesis Ho: 7, = r),, versus the alternate hypothesis 
Ha: r), f qz, where 77% is the median training accuracy for a 
momentum greater than 0.8, and g is the median training 
accuracy for a momentum less than 0.8 was tested using the 
Mann Whitney U test. The null hypothesis was not rejected 
(at p = 0.05) for training accuracy; a similar null hypothesis 
for the test data was also not rejected. Thus, training and test 
accuracy are unaffected by high momentum values. Thus, 

~ momentum allows faster learning (Rumelhart and Mc- 
Clelland, 1986), but does not increase test and training accu- 
racy. An explanation is that the momentum constant 
(Equation 9) restricts oscillations in the network weights to 
the change in weight used in the previous epoch. Therefore, 
large changes in network weights are filtered out; the total 
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Figure 15. A theoretical error surface showing the influ- 
ence of learning rate and momentum. 
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Figure 16. Training accuracy (left figure 16a, 16b, 16c) 
and test accuracy (right figures 16d, 16e, 16f) for learn- 
ing rate 0 to 10.0 and different momenta. 
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Figure 14. Total system error remaining after the neural network 
has executed against the percentage of correct training data. 

system error decreases to the point it would have reached if 
the momentum term had not been used, while the training 
and test accuracy are not increased. Backpropagation meth- 
ods based on the conjugate-gradient method appear to re- 
quire fewer epochs than the standard backpropagation 
methods used here because the solution path across the error 
surface does not follow a zig-zag (Haykin, 1994). However, 
the conjugate-gradient method is computationally expensive 
to implement (Haykin, 1994). 

A lower learning rate should require a greater number of 
epochs (to reach a minimum total system error), because the 
number of "steps" over the error surface will be larger (Fig- 
ure 15). In Figure 18, the learning rate is plotted against 
epochs for momentum equal to 0.2, 0.5, and 0.8; points oc- 
curring within the lowest quartile of the system error are 
drawn on the left of Figure 18, and from the highest quartile 
on the right. More epochs are required at low learning rates; 
this was confirmed using the Mann Whitney U test, where a 
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17. Training accuracy (a) and test accuracy (b) for learn- 
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0 to 1.0. 
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null hypothesis was formally tested, that is, Ho: 7, = 7, ver- 
sus the alternate hypothesis Ha: 7, f q2, where 7, is the me- 
dian training accuracy for a learning rate greater than 0.5, 
and 7, is the median training accuracy for a learning rate 
less than 0.5. The null hypothesis was not rejected for p < 
0.05. 

Target Values 
Target values refer to the values the analyst assigns to each 
output node. The neural network adjusts the weights of con- 
necting nodes by minimizing the system error; the aim is to 
calculate output nodes (o,,) as close as possible to the target 
values (tpk). 

If the target values (tpk) are set towards the high (or ex- 
treme) end of the range (i.e., 0.00 and 1.00, respectively), 
rather than the low (or negligible difference) end of the range 
(0.45 and 0.55), it is expected that the network will need to 
cycle through more epochs to minimize the system error 
(Figure 19). A null hypothesis Ho: 7, = 7, was tested using 
the Mann Whitney U test, versus an alternative hypothesis 
Ha: 7, > q2, where q1 is the median number of epochs at tar- 
get value pairs of [(0.01, 0.99) (0.05, 0.95) (0.10, 0.90) (0.15, 
0.85) (0.20, 0.80)], and 7, is the median number of epochs at 
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Figure 18. Relationship between learning rate and ep- 
ochs in response to changing momentum, for data with 
a low and a high total system error. 

target value 

Figure 19. Variation of number of epochs in 
response to differences in the target value. 

target value pairs of [{0.25, 0.75) (0.30, 0.70) (0.35, 0.65) 
(0.40, 0.601 (0.45, 0.5511. The null hypothesis was rejected at 
p < 0.002, so concluding that more epochs are required for 
high (extreme) target values. 

Training accuracy apparently decreased from target value 
pairs (0.1, 0.99) to (0.45, 0.55) (Figure 20). This observation 
was confirmed using the Mann Whitney U test hypothesis 
(p < 0.00001), so it is concluded that training accuracy is 
higher for extreme target values. A possible explanation is 
that, because fewer epochs are required with target values of 
(0.45, 0.551, the network does not cycle through enough ep- 
ochs to adequately train itself. 

When test accuracy is plotted against target values, the 
relationship appears erratic (Figure 21). There were no statis- 
tically significant differences between the median test accu- 
racy for different target values. 

Training and Test Accuracy 
Training accuracy increases in a generally linear relationship 
with test accuracy until approximately 30 percent, before 
reaching an asymptote (Figure 22). This may be an overtrain- 
ing response by the network. As stated above, it is important 
that an analyst does not use training accuracy as the sole cri- 
terion to indicate success in modeling GIs and remotely 
sensed data with a neural network. 

Manipulating the Starting Weights 
How robust are neural networks to variation in starting node 
weights? A "successful" experiment was chosen, which had 

target value 

Figure 20. Variation of correct training data 
in response to differences in the target 
value. 

May 1997 PE&RS 



accuracy (test data) 
55 

* l o o  

25 - o o 
0  0  

15 - 
0 0 0  8 

5 - 
0 . " :  . . . . . . . .  0 o 0  

0.01 -0.99 

0.20-0.80 0.45-0.55 

target value 

Figure 21. Variation of correct test data in 
response to differences in the target value. 
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TABLE 2. PARAMETERS FOR THE "SUCCESSFUL" EXPERIMENT 

Parameter Value 

Number inputs 
Number outputs 
Number layers 
Learning rate 
Momentum 
Number training patterns 
Number of test patterns 

Figure 
Plate 

Training data Test data correct 
correct (%) (%I 

23a la 93 42 
23b l b  93 47 
23c l c  97 45 
23d Id 90 50 

high training and test accuracy, as well as a classification map 2% l e  96 50 
which visually appeared to have the classes in the correct po- 23f If 92 55 

I sitions. To limit overtraining, a stopping rule was used, based 
on the point of decrease in the test data set. The network was 

1 trained on the full training set, and the generalization per- take incomplete data and produce approximate results. Their 
formance of the resulting network was measured on the test parallelism, speed and trainability ..." (Obermeier and Barron, 
data set. The network parameters were noted (Table 2). 1989), were negated by the variable and unpredictable re- 

The network parameters (e.g., number of learning pat- sults generated. Undoubtedly, the neural network did work, 
terns, number of nodes, number of layers, learning rate, mo- and behaved in a manner which was understandable by an 
mentum, etc.) were held constant, except that the starting expert analyst, but the adjustments and fine tuning required 
weights were randomly adjusted by -t 5 percent. The stop- of the input parameters would deter many users. 
ping rule was applied to the network. The five new maps The results cited in this paper were generated by varying 
were visually different (Plates l b  to If), and had a large vari- user defined parameters, including the type (and form) of 
ation in training and test accuracies (Table 3). data input to the network; the number of input, hidden, and 

It is surprising that different results were produced output nodes; the (desired) total system error; the number of 
when starting weights are randomized; the lack of robustness data patterns the neural network uses to learn with; the 
may worry an analyst. Another concern is the wide range of learning rate and momentum; and the node weights. The 
accuracies resulting from varying the network parameters possible combinations of these parameters are large, and 
(Figure 23). The choice of network parameters (e.g., number there is little information in the literature to guide an analyst 
of hidden nodes, number of hidden layers, etc), as well as about the optimal values at which to set these parameters 
the initial weights of the nodes, is critical to the success of with remotely sensed and G I ~  data. As shown in this paper, 
neural network applications. there are heuristics which may be derived, but these general 

rules will depend on the quantity, quality, and format of the 
Discussion data input to, and output from, the neural network. 
Equivocal is one word to sum up our experiences using the Many results were surprising, for example, the total system 
backpropagation algorithm for classifying eucalypt forest veg- error remaining high, even after many epochs. This may be due 
etation from GIs and remotely sensed data. The oft quoted to a number of factors, but a likely candidate is the backpropa- 
advantages of neural networks, including "...the ability to gation algorithm being caught in "spurious local minima" on 

the system error surface (Aleksander and Morton, 1990). 
It may be anticipated that stopping rules applied to pre- 

vent overtraining (Haykin, 1994) would result in a better bal- 
ance between high training accuracy and good generalization 
(i.e., high test accuracy). However, such stopping rules will 
not solve the problem of "spurious local minima" on the 
system error surface. 

training accuracy (percent) 

Figure 22. Variation of the percentage of test data 
to training data (taken from the experiment which 
held momentum constant). 
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Figure 23. Box plot of training and 
test accuracies from all experi- 
ments. 
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Another surprising result is the very different visual ap- 
pearance of the output classifications when the starting 
weights were randomly varied. Conventional classifiers, such 
as maximum likelihood, do not suffer from this limitation. 
At first glance, this seems a serious shortcoming of neural 
networks. In reality, the neural network may be reflecting the 
underlying uncertainty of the classification; the different ap- 
pearance of the maps in Plate 1 indicates that mapping accu- 
racy is low (also see Table 3). It is the complexity of setting 
up, and tuning of, the neural network "black box" that ap- 
pears to limit its usefulness; put simply, using a maximum- 
likelihood classifier is much easier. 

It took up to 48 hours to execute an experiment on a 
Sun Sparc 10 workstation; in contrast, experiments were 
completed in minutes on a Thinking Machines CM-5 com- 
puter with 32 processing nodes. Nonetheless, computational 
expense may be a problem with large (operational) data sets. 

Some of the problems experienced in this study may be 
attributable to the data set being unsuited for a neural net- 
work (or even other classifiers such as maximum likelihood), 
due to its complexity and size. Most comparable experiments 
which have mapped forests note this difficulty. For example, 
Civco (1993) commented that "...this initial neural network 
design is inadequate to achieve fine distinction ..." between 
coniferous trees, wetlands, and water. Civco (1993) adds that 
"...this confusion between relatively low-reflecting coniferous 
trees and similar water and wetland features has been ob- 
served before in traditional maximum likelihood classifica- 
tions." Obviously, the training examples input to the neural 
network must inherently contain the information to be mod- 
eled; otherwise, the relationships between the independent 
(input) and dependent (output) data will not be inferred. 

The problems with neural networks are that they require 
good training data sets to yield a reliable result, and the large 
number of parameters make them difficult to use. Why, then, 
are they used? First, neural networks can identify subtle pat- 
terns in input training data, which may be missed by con- 
ventional statistical analyses. Second, neural networks are 
non-linear, and therefore may handle complex data patterns. 
Third, neural networks are able to take a specific set of input 
data and generalize a solution set, which will give the cor- 
rect answer for unknown input patterns which are similar to, 
but not identical to, the input data. Finally, neural networks 
have great potential when used with field plot data, as the 
"information" content of the data may be "extracted" by the 
neural network automatically. This eliminates the need for 
specialists to analyze and model information of interest. In 
other words, the neural network may extract information 
from the data set that the specialist does not glean. Another 
advantage is that continuous, near-continuous (e.g., scanner 
rasterized data), and categorical data can be input without vi- 
olating model assumptions. 

In summary, we believe that the neural network back- 
propagation algorithm will probably not become a significant 
classification and analysis tool for GIS and remotely sensed 
data when implemented as a pure neural network. Where re- 
lationships are obvious in the data set, simpler algorithms 
such as maximum likelihood are probably more appropriate. 
However, neural networks may be a useful adjunct to other 
classification techniques, which utilize the advantages of 
neural networks, while minimizing their disadvantages. Of 
particular interest are techniques which combine expert sys- 
tems and rule based methods (Skidmore, 1989) with neural 
networks. 
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