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Abstract 
While neural networks are now an accepted alternative to 
statistical multispectral classification techniques for remote 
sensing image classification, the network approach presents 
both unique challenges and abilities. The size of the hidden 
layer must be determined by  trial and error, and the random 
initial weight settings result in different paths for the training 
procedure, making the network a non-deterministic classifier. 
For the sample classification presented here, i t  was found 
that there was a range of optimal hidden layer sizes below 
which the accuracy decreased and above which the training 
time increased. However, i t  was also found that, for a fairly 
wide range, the hidden layer size made little difference to 
the final classification accuracy. Initial weight randomization 
was as much of a factor as hidden layer size. Using 3 by 3 
windows of data i n  each band was found, despite increased 
training time per iteration, to achieve similar accuracy with 
less overall training time, although with less consistency. 

Introduction 
Neural-network classifiers1 are non-parametric and therefore 
may be more robust when distributions are strongly non- 
Gaussian. During training, the network is capable of forming 
arbitrary decision boundaries in the feature space. This abil- 
ity gives it an advantage over statistical classifiers because 
the decision regions are adjusted iteratively by the training 
algorithm to fit the intrinsic distributions of the classes, 
whether they are Gaussian, multi-modal, or (in the case of 
four-layer networks) even disjointed (Lippmann, 1987). 

Supervised application of the neural-network classifier is 
much like that of a standard statistical classifier. The differ- 
ences are in the details of the training and classification algo- 
rithms. The network training phase is analogous to the class 
mean and covariance matrix calculations of the maximum- 
likelihood statistical classifier. Instead of a one-time calcula- 
tion of statistical measures, however, the network is trained 
in an iterative fashion, typically by the backpropagation al- 
gorithm, until some targeted minimal error is achieved be- 
tween the desired output (the training classes) and actual 
output values of the network. For the classification phase, in- 
stead of calculating discriminant functions on the basis of 
the distributions determined from the training data, as in 
maximum-likelihood, the network is used in a feed-forward 
mode like a hard-wired circuit. The entire image is fed into 
the net pixel-by-pixel, and a simple metric, such as the max- 
imum network response at the output stage, is used to make 

'We restrict our analysis to the widely-used Multi-Layer Perceptron 
(MLP ) type of network. 
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Figure 1. Internal structure of a neural-network pro- 
cessing node. Node inputs are summed and passed 
through an activation function which is usually a sig- 
moid. 

a class selection for each pixel. The neural-network classifi- 
cation method has been compared to maximum-likelihood 
and other traditional techniques in numerous studies (Paola 
and Schowengerdt, 1995a; Blonda et al., 1994; Fierens et al., 
1994; Yoshida and Omatu, 1994; Kanellopoulos et al., 1993; 
Bischof et al., 1992; Heermann and Khazenie, 1992; Liu and 
Xiao, 1991; Benediktsson et al., 1990; Key et al., 1990; Key 
et al., 1989). 

Network Structure and Setup 
The basic element of a neural network is the processing node 
(Figure 1). Each processing node sums the values of its in- 
puts. This sum is then passed through an arbitrary activation 
function to produce the node's output value. The processing 
nodes are organized into layers, each generally fully inter- 
connected to the following layer. There are no interconnec- 
tions within a layer, however. In addition, there is an input 
layer that serves as a distribution structure for the data being 
presented to the network. No processing is done at this layer. 
One or more actual processing layers follow the input layer. 
The final processing layer is called the output layer. Layers 
in between the input and output layers are termed hidden 
layers. Figure 2 shows the generic structure for a commonly 
used configuration, the three-layer neural network. The inter- 
connections between each node have an associated weight. 
When a value is passed down that interconnection, it is mul- 
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Figure 2. A generic three-layer neural network structure. The weights qi 
and w, are adjusted during backpropagation so that the error between 
the desired (as determined by the training data) and actual output pat- 
tern, o,, is minimized. 

tiplied by the weight. After training, these weight values con- 
tain the distributed learned information of the network. 

Training a neural network involves setting several initial 
parameters. The first step is to determine the training data 
and corresponding desired outputs for that training data. 
Then overall network structure must be defined. When the 
training process begins, all of the weights of the network 
must be set to random values; otherwise, the network might 
not converge to a minimum training error (Rumelhart et al., 
1986). Then the learning rate and momentum parameter 
must be set. An adaptive learning rate can be used to avoid 
trial and error at this stage. One adaptive strategy is to auto- 
matically adjust the learning rate downward after some train- 
ing interval if the overall training error has increased and 
upward if the overall error has decreased (Heermann and 
Khazenie, 1992). Therefore, the initial learning rate is not 
crucial to the success of the training, and training speed is 
increased because the learning rate is adjusted to the highest 
value that does not cause instability. 

The final required parameter is the training convergence 
threshold, which must be determined experimentally. Only 
in simple cases is it possible to train the network to zero 
training error. Thus, some criterion for terminating the train- 
ing process must be established, such as a threshold on the 
mean square error between the desired and actual output 
values. When this criterion is met, the training is complete 
and the network may be used as a feed-forward classifier. 
The convergence threshold controls the degree of generaliza- 
tion versus specialization: if the network is trained too well 
on the training data, it might not function accurately on the 
rest of the image; on the other hand, if it is not trained well 
enough, it will not be able to separate the classes, even in 
the training data, to an acceptable degree. The convergence 
threshold also controls the total training time. 

Data Description 
An urban land-uselland-cover classification of a Landsat 
Thematic Mapper (TM) image of Tucson, Arizona was se- 
lected as the test application for network configuration. The 
image was acquired on 1 April 1987 (Figure 3). The six non- 
thermal bands were used for the classification, which was 
presented in the context of a comparison of the neural net- 

work and maximum-likelihood classifiers in an earlier paper 
(Paola and Schowengerdt, 1995a). The classification catego- 
ries (Table 1) are similar to the Level I and I1 land-use cate- 
gories proposed by Anderson et al. (1976). The maximum- 
likelihood test site accuracy of 89.5 percent is used as a 
baseline for some comparisons of the various network train- 
ing runs presented here. Different images and classification 
schemes will provide different challenges to the neural-net- 
work algorithm. A single example is explored in this paper 
to illustrate the technique and provide some guidelines for 
subsequent projects. 

The test sites were well-characterized areas that were not 
used in the training process. However, they were rather 
small and limited in number (a typical problem in classifica- 
tion of urban regions). These areas (as well as the training 
sites) were determined from a manual interpretation of the 
study area, including site visits and aerial photography. The 
classification performed here is truly a land-uselland-cover 
classification; a number of the classes (see Table 1 and class 
key in Figure 7) consist of a mix of land-cover characteris- 
tics. The benefits of a neural-network approach to this type 
of classification are discussed in Paola and Schowengerdt 
(1995a). While the overall test site accuracy was on the order 
of 90 to 95 percent for most runs, this is not the only basis 
for our evaluation of different network configurations. A rela- 
tive difference measure was also used in the analysis. This 
measure is the average overall difference in the classification 
maps (i.e., in the class labels) between each pair in a set of 
neural network runs, expressed as a percentage of the total 
number of pixels in the image. This value provides an indi- 
cator of the stability of the neural-network method, and is 
completely independent of the classification accuracy based 
on test sites. 

Network Implementation 
We used two types of input structures in our experiments. 
The first was the commonly used one-pixel-per-network in- 
put node method (see Paola and Schowengerdt (1995b) for a 
description of this and several alternative input methods). 
The second was a mapping of 3- by %pixel neighborhoods in 
each band to nine input nodes (for a total of 54 inputs). One 
node per class was used for the output of the network, with 
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Figure 3. Band 4 (near infrared) of the Landsat Thematic Mapper image of Tuc- 
son, Arizona. Acquired 1 April 1987. 

target values of 0.1 for nodes not representing a particular 
class and 0.9 for the node that does represent the class. The 
sigmoid activation function was used in each processing 
node. 

With the input and output structures fixed, the configu- 
ration of the middle portion of the network (the number of 
hidden layers and number of nodes per hidden layer) must 
be defined. From our survey of earlier work, it was apparent 
that a three-layer neural network (one hidden layer), with 
full interconnection between layers, would be sufficient for 
this type of classification. Determining the number of nodes 
in the single hidden layer is the focus of this experiment. 

The final parameters are the learning rate and momen- 
tum. In initial training runs, these values were fixed, and it 
was found that too high a learning rate would lead to unsta- 
ble training. To avoid this problem, the learning rate had to 
be set so low that training took an excessively long time. The 
solution was to use an adaptive learning rate and momen- 
tum. After a specified number of training iterations, the mean 
square error is compared to that of the previous iteration. If 
the error has increased, the learning rate and momentum are 
halved. If the error has decreased, the learning rate and mo- 
mentum are increased by 20 percent. This allows for acceler- 
ated convergence when the error is steadily decreasing. 

In the experiments described below, the size of the hid- 
den layer and the type of input (single pixel or 3 by 3 win- 
dow) were varied. All other network starting parameters 
were kept constant. The range of initial random weight val- 
ues was specified to be the interval -0.1 to -0.0001 and 
+0.0001 to +0.1 (avoiding values too close to zero). The 
learning rate and momentum were 0.001 and 0.00005, re- 
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Class Description 

residential single-family homes, yards, driveways 
(components mixed at sub-pixel resolu- 
tion) 

building larger public buildings, multi-family build- 
ings with high reflectance roofs 

foothills natural natural desert area, medium density 
vegetation vegetation 

shaded foothills within shadow natural desert area, 
natural vegetation medium density vegetation 

desert scrub natural desert area, sparse vegetation 
urban high density, large buildings, no vegetation 

(components mixed at sub-pixel resolu- 
tion) 

riparian dense vegetation along seasonal water- 
courses (mostly cottonwood trees) 

grass dense, cultured grass (such as golf courses) 
bare soil exposed soil, no vegetation 
asphalt spectrally uniform material, low reflec- 

tance 
concrete spectrally uniform material, high reflec- 

tance 
sand natural material, high reflectance, no 

vegetation 



TABLE 2. AVERAGES OF TRAINING AND TEST SITE CLASSIFICATION ACCURACIES AND MEAN SQUARE ERROR OF THE TRAINING PATTERNS FOR MULTIPLE RUNS OF THE 

NEURAL-NETWORK TRAINING WITH DIFFERENT NUMBERS OF HIDDEN-LAYER NODES. ALL TIMES ARE FOR A SINGLE USER PROCESS R U N N I N G  ON THE DIGITAL I M A G E  ANALYSIS 
LAB'S SUN SPARCSTATION 10. THE 20,000 ITERATION RUNS WERE DONE SEVERAL TIMES FOR EACH HIDDEN-LAYER SIZE, WHILE THE 50,000 ITERATION RUNS WERE 

PERFORMED TWICE FOR EACH SIZE. 

Nodes in hidden layer 1 2 3 6 9 12 15 18 24 30 36 

Mean of train site accuracy for 33.3 79.0 83.6 95.3 95.9 95.9 96.0 96.0 95.9 95.9 95.6 
20,000 iterations (%) 

Mean of test site accuracy for 24.6 73.7 80.5 92.1 93.0 92.8 93.1 92.5 92.9 92.4 92.1 
20,000 iterations (%) 

Std. Dev. of test site accuracy for (0.15)* (2.67)* 3.04 2.16 
20,000 iterations 

Average overall percentage of 
pixels with different labels 
(between different runs) at 
20,000 iterations 

Mean square error of training for 0.0042 0.0315 0.0243 0.0115 0.0097 0.0094 0.0092 0.0089 0.0091 0.0093 0.0093 
20,000 iterations 

Mean of train site accuracy for 
50,000 iterations (%) 

Mean of test site accuracy for 
50,000 iterations (%) 

Seconds per training iteration 0.158 0.214 0.267 0.427 0.589 0.748 0.911 1.072 1.396 1.719 2.044 
Classification time (sec) 120 136 152 199 245 294 339 385 480 5 74 668 

*The low accuracy achieved with one or two hidden-layer nodes makes the test site accuracy standard deviation and overall classification 
difference values unreliable measures of performance in these cases. 

spectively, with adaptation every four training iterations. The 
neural-network classifier was implemented using the C lan- 
guage on a Sun SPARCstation 10 by the authors in the Digi- 
tal Image Analysis Laboratory in the Department of Electrical 
and Computer Engineering at the University of Arizona. 

Experiments 

Dependence on Hidden Layer Size 
Multiple training runs were made for hidden layer sizes 
ranging from 1 to 36 nodes. At least seven runs were done 
for each configuration to 20,000 iterations and two runs to 
50,000 iterations. Table 2 shows the averaged accuracies and 
mean square error of training, with the best averages shown 
in bold. Clearly, networks with hidden layers of three or 
fewer nodes were not able to differentiate the classes as well 
as networks with six or more hidden layer nodes. In fact, for 
these cases the network often reached a relatively high mini- 
mum mean square error well before 20,000 training iterations 
(Figure 4c). Also, for three or fewer hidden layer nodes, the 
test and training site accuracies often did not increase mono- 
tonically with time as was observed with the larger nets. 

The best single-run test site accuracies were obtained 
with nine hidden layer nodes (95.3 percent) for 20,000 itera- 
tions and 12 hidden layer nodes (96.2 percent) for 50,000 it- 
erations, although the network achieved a very high average 
over the wide range of 6 to 36 hidden layer nodes. Figure 4a 
shows the accuracy of the best neural-network training run 
(12 hidden layer nodes) as a function of iteration number. In 
this case, as with all the neural-network runs produced with 
this data set, the mean square error (Figure 4b) decreased 
steadily with increased training time (except when fewer 
than three nodes were used - see Figure 412). It can be seen, 
however, that there were jumps in the error which were rec- 
tified immediately in every case by the adaptive learning 
rate. Theoretically, the change to the network weights at 
each training iteration should be infinitesimal in order to en- 
sure an overall decreased mean square error. However, to de- 
crease training time, the learning rate is increased slowly as 
long as the mean square error decreases. At a certain point, 
however, the learning rate becomes too large and the neural- 

network algorithm takes too big of a step in its gradient de- 
scent to the minimal error and the mean square error makes 
a sharp jump upwards. On the next learning rate adaptation 
iteration, the learning rate is cut in half and the mean square 
error returns to its original, steadily decreasing curve. Figure 
5 shows how the learning rate changes as a function of itera- 
tion number in the early portion of the training. It can be 
seen that the initial learning rate setting of 0.001 was incon- 
sequential as it automatically adjusted to a more useful level 
soon after training began. This behavior was similar for all 
neural-network training runs. 

Figure 4 indicates that the test site accuracy increases at 
nearly the same rate that the mean square error decreases - 
quickly at first, and then slowly, but steadily right through 
the end. This is encouraging because it links the minimiza- 
tion of mean square error of the neural-network representa- 
tion of the training patterns with the maximization of classi- 
fication accuracy of areas not used in the training. Thus, the 
network has enough generalization capability to extend what 
it has learned about the training patterns to the rest of the 
image. Had the test site accuracy not increased proportion- 
ally to the decrease in mean square error, the network would 
have been specializing too much on the training patterns and 
would have been useless as a classifier for such a widely 
varying image. 

Table 3 shows the overall difference between the result- 
ing classification maps (as a percentage of the total number 
of pixels) of each of the most accurate (according to test 
sites) runs of different hidden layer size. In the middle and 
upper end of the hidden layer size range, the maps differ in 
about 5 to 10 percent of the pixels (class labels). These are 
greater differences than those indicated by the test site accu- 
racies. A visual comparison (Figures 7b through 7g) of the 
classification maps produced by all these networks reveals 
two things. First, the low accuracy of the one to three hid- 
den-layer node networks is clear. Even in the three-node 
case, however, a more accurate classification is beginning to 
show. The second observation is that, for six nodes or more, 
the classifications are remarkably similar. Thus, the small 
differences in the test site accuracy measurements are indica- 
tive of similar classifications, though some of the class outli- 
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Figure 4. One 12-node hidden-layer neural-network classi- 
fier achieved a higher test site accuracy (96.2 percent) 
for 50,000 iterations than any other net. The training site 
accuracy was near that of most of the other nets at 96.4 
percent. (a) Test site accuracy vs. training iteration num- 
ber, 1000 iteration intervals. The maximum-likelihood 
test site accuracy of 89.5 percent is shown for compari- 
son. (b) Mean square error vs. training iteration number, 
20 iteration intervals. (c) A s  a comparison, the mean 
square error vs. training iteration number (at 100 itera- 
tion intervals) is shown for a two-node hidden-layer net- 
work. This  net achieves a relatively high minimum mean 
square error fairly early in the training process. The 12- 
node net, a s  shown in (a), on the other hand, is still de- 
creasing in MSE at the 50,000 iteration point. 

randomization of the network weight values should not 
cause much difference from one run to the next, given a 
fixed hidden-layer size. However, even though resultant dif- 
ferences in accuracy are small, the final classifications are 
different and the extent of these differences needs to be 
examined as a function of hidden layer size. Particular atten- 
tion should be paid to the test site accuracy standard devia- 
tion (third row of Table 2) and the average overall difference 
between each pair of maps (fourth row of Table 2) obtained 
for the multiple runs at each hidden layer size. Figure 6 il- 
lustrates the range of accuracy values and the average differ- 
ence of the classifications obtained for each hidden layer 
size. 

When increasing from two to 15 hidden-layer nodes, 
there is a significant decrease in the standard deviation of 
the test site accuracy over the seven runs. For six hidden- 
layer nodes, the test site accuracy varied from 87.3 to 94.2 
percent. This difference is due entirely to the initial random 
condition of the network weights, as all other parameters 
were equal. For nine nodes, the difference decreased to 
about 5 percent. For 12  nodes and above, the differences 
were about the same (2 percent). Thus, while high accuracies 
are obtainable with six or nine hidden-layer nodes on any 
given run, it might be necessary to use more nodes to assure 
a result closer to the averages given in Table 2. This observa- 
tion is not intuitive because the larger hidden-layer case 
would have more weights to randomize at the start of train- 
ing. It would seem that this would induce more randomness 
in the procedure and produce less consistent results. A pos- 
sible explanation is that the larger nets are better able to ad- 
just their decision boundaries consistently because they have 
more degrees of freedom. 

If we look at the average overall difference in classifica- 
tions between pairs of runs at a given hidden-layer size, we 
see a slightly different result. The test-site areas were chosen 
because they are fairly homogeneous and highly representa- 
tive of the ground-cover classes. The average difference over 
the entire classification, however, is a better indicator of net- 
work differences, because there are many more class outlier 
pixels in the entire image than in the test sites. Thus, small 
differences in the network weight values would be expected 
to manifest themselves more strongly in this measure. Figure 
6b indicates that the overall classification difference drops 
sharply from an unacceptable 26.7 percent at three hidden- 
layer nodes to 9.2 percent at 12 hidden-layer nodes. It then 
gradually tapers off to a near constant value of 6.2 percent at 
30 hidden-layer nodes. The most remarkable result is that 

Neural Net Training Iteration 

ers (which are not represented in the well-characterized test 
sites) will be classified with more variance from one image Figure 5. Learning rate vs. training iteration number (five 

to the next, as indicated by the higher overall differences. iteration intervals) for the first 3000 iterations of the 
same 12-node hidden-layer network described in Figures 

Dependence on Initial Weights 
Because classifications produced by these widely different 
network structures are so similar, it seems that the initial 

4a and 4b. This plot illustrates the adaptive learning rate 
behavior implemented to decrease training time and en- 
sure stability of training. 
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TABLE 3. THE TOP TWO ROWS CONTAIN THE TRAINING A N D  TEST-SITE ACCURACIES OF THE MOST ACCURATE (ACCORDING TO TEST SITES) 20,000 ITERATION RUNS FOR 

EACH HIDDEN-LAYER SIZE. THE REMAINING ROWS SHOW THE PERCENTAGE OF PIXELS WITH DIFFERENT LABELS, BETWEEN ALL COMBINATIONS OF THE CLASSIFICATION MAPS 
RESULTING FROM THESE RUNS. FOR EXAMPLE, 6.2 PERCENT OF THE PIXELS WERE LABELED DIFFERENTLY IN THE  NODE AND THE 1 2 - N O D E  RUNS. THIS RELATIVE 

MEASURE IS I N D E P E N D E N T  OF THE ABSOLUTE CLASSIFICATION ACCURACY PRESENTED I N  THE FIRST TWO ROWS, WHICH I S  BASED ON SMALL, MANUALLY INTERPRETED TEST 
SITES. 

Nodes in hidden laver 1 2 3 6 9 12 15 18 24 30 36 

(Train Site Accuracy) 32.8 82.0 83.5 95.7 95.8 96.1 96.4 96.4 96.3 96.0 95.6 
(Test Site Accuracy) 24.8 79.0 83.5 94.2 95.2 94.0 94.0 93.4 93.9 93.1 93.2 

Nodes in hidden layer 1 2 3 6 9 12 15 18 24 30 36 

the differences within a hidden layer size are comparable to 
those among the different hidden-layer sizes (Table 3). Thus, 
the dominating factor is the initial randomization, with the 
size of the hidden layer, within a certain range, being a sec- 
ondary effect. Figures 7e and 7f show a sample classification 
for two different runs of 18 hidden-layer nodes. The differ- 
ences are indeed slight, and on the order of those with the 
six hidden-layer node example in Figure 7d. 

Training and Classification Time 
The network structures are compared in Table 4 in terms of 
the number of iterations required to achieve the same test 
site accuracy as the maximum-likelihood classifier (89.5 per- 
cent). This is an interesting comparison in that it shows a 
minimum in the middle of the configuration range at 1 2  hid- 
den-layer nodes (Figure 8). It was expected that, with only a 
few hidden-layer nodes, it would require more iterations to 
achieve the same accuracy because the net has fewer degrees 
of freedom. It should be noted that, of the seven runs with 
six hidden-layer nodes, one required 42,000 iterations while 
the other six required an average of only 9,417 iterations. An 
anomalous run of this type was encountered only on this 
one occasion. However, it is always a possibility that the 
random initial weight settings will place the network in a 
difficult position from which to minimize the error. Presum- 
ably, the chance for this happening decreases with more hid- 
den-layer nodes, as indicated by the decreasing standard 
deviation of test site accuracy in Table 2. It is also possible 
that optimization of the initial random weight configuration 
by changing the initial weight range or providing more use- 
ful initial weights (e.g., those from a similar classification or 
those derived from Kohonen's self-organizing algorithm - 
see Li and Si, 1992) would alleviate this inconsistency by 
starting the network off in a more favorable position. Even 
without this single run, however, the six-node case requires 
more iterations than the nine-node case, which in turn re- 
quires more than the minimal 12-node case. 

The increase in the number of training iterations re- 
quired to obtain a given classification accuracy from 1 2  to 36 
hidden-layer nodes was significant, with the 36-node case re- 
quiring almost twice as many iterations as the 12-node case. 
The most probable explanation for this is that the training 
set, which consisted of 915 training patterns, required a 
longer time to adjust the larger number of weights in the big- 
ger networks. Because these networks also require a larger 

training time per iteration, the subsequent total training time 
(also shown in Table 4) reflects an even larger difference. 
The training time for the 36-node case is four times longer 
than for the 12-node case. The lowest training time was 
achieved by the nine-node case, although the six-node case 
without the one anomalous run was faster. When overall 
training time is considered, the time savings per iteration 
achieved with fewer hidden-layer nodes more than makes up 
for the requirement of more training iterations. 

When all factors are considered, the best neural-network 
structure for this classification seems to be that of 12 hidden- 
layer nodes, which provides relatively rapid training and yet 
delivers consistent, highly accurate test site results. The total 
time for training and classification in this case is 6,118 sec- 
onds (just over ten times the time required for maximum- 
likelihood). A case could also be made for using the smallest, 
fastest configuration possible. The six hidden-layer node case 
might occasionally take longer than the 12-node case, but 
most of the time it will be faster (an average of an hour for 
six out of the seven runs). If a threshold is placed on training 
site accuracy (which can be computed relatively rapidly after 
some interval of training iterations) during training, the itera- 
tive process can be stopped when the desired accuracy is 
reached. Thus, the consistency of training is not so important 
for obtaining accurate results. In all cases, the six-hidden- 
layer node network, despite its inconsistency, surpassed the 
baseline maximum-likelihood test site accuracy of 89.5 per- 
cent. Once training is complete, the six-node case requires 
only 199 seconds for classification. 

TextureEnhanced Classification 
An interesting capability of the neural-network multispectral- 
classification method is the ease with which multiple data 
sources, or windows of data, can be incorporated into the 
classification. Textural information is a potentially useful 
source of additional information that might enhance the clas- 
sification. One of the key characteristics of the human visual 
system is that spatial information is used extensively. While 
a computer can more easily handle high-order spectral data 
than does a human, it will not even begin to emulate the full 
capabilities of a human image interpreter without consider- 
ing spatial information during classification. To this point, 
the classifications performed have been of the pixel-by-pixel 
type, in which each image pixel is considered separately. A 
simple way of providing some spatial texture to the classifi- 
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Figure 6. Two measures of classification consistency 
for a given hidden-layer size. The neural network was 
trained for 20,000 iterations at least seven times for 
each hidden-layer size. (a) The minimum, maximum, 
and average (second row of Table 1) test-site accura- 
cies from the series of runs. (b) The average overall 
percentage of pixels with different labels between all 
pairs of classifications produced in the series of r u n s  
(fourth row of Table 2). 

cation is to provide a 3 by 3 window of pixels as the input 
to the net. 

To provide a basis for comparison, it is interesting to ex- 
amine what a simple smoothing algorithm would do to the 
classification accuracy of a pixel-by-pixel type classification. 
The type of smoothing chosen was a majority filter in which 
the most common label in a 3 by 3 window is placed at the 
center. Majority filtering of the maximum-likelihood classifi- 
cation of the Tucson image resulted in an increase in classifi- 
cation accuracy from 89.5 to 92.4 percent. The same filter 
applied to the most accurate neural-network classification 
(Figures 4 and 5) resulted in an increase from 96.2 to 98.5 
percent. An increase in accuracy was expected because the 
testing sites were assumed to be homogeneous. Thus, any 
smoothing will remove single-pixel errors within these regions 
and increase the apparent accuracy. Of course, this smooth- 
ing also reduces fine detail in the classification. 

Figure 7. Classification of a portion of the Tucson TM image. The 
12  classes are combined into seven gray levels to highlight the 
differences obtained with different hidden-layer sizes (including 
two different runs  at one size - 18 nodes) and with a 3- by 3- 
window input. The feature near the bottom of the middle of the 
image is a large mall (El Con) with surrounding asphalt parking 
lot. Below the mall is a golf course (Randolph). (a) Original im- 
age (TM band 3). Pixel-by-pixel classifications, number of hidden- 
layer nodes: (b) 1. (c) 3. (d) 6. (e) 18. (f) 18 (different run). (g) 
36. 3- by 3-window classifications, number of hidden-layer 
nodes: (h) 6. ( i )  12. Ci) 18. > 
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TABLE 4. COMPARISON OF TOTAL CLASSIFICATION TIME FOR NEURAL-NETWORK AND MAXIMUM-LIKELIHOOD CLASSIFIERS TO ACHIEVE SIMILAR ACCURACY (89.5 PERCENT). 

THE NETWORK VALUES REPRESENT THE AVERAGE OF SEVEN TRAINING RUNS FOR EACH HIDDEN-LAYER SIZE (EXCEPT FOR THE NET WITH HIDDEN-LAYER SIZE 18, WHICH 
WAS RUN 16 TIMES). THE * IN THE SIX-NODE HIDDEN-LAYER COLUMN INDICATES THE VALUES FOR THE AVERAGE OF THE SIX BEST RESULTS (OUT OF SEVEN). ONE 

RESULT IN THE SIX-NODE CASE WAS ANOMALOUS AND REQUIRED 42,000 ~TERAT~ONS TO ACHIEVE THE MAXIMUM-LIKELIHOOD ACCURACY, ~LLUSTRAT~NG THE POTENTIAL 
INCONSISTENCY THAT CAN ARISE WHEN VERY FEW NODES ARE USED. 

M-L 6 9 12 15 18 24 30 36 

Number of iterations required N/ A 14071/9417* 8643 7786 8714 8600 9214 10429 11357 
Training Time (seconds) negligible 6008/4021* 5087 5824 7941 9221 12859 17926 23211 
Classification Time (seconds) 590 199 245 294 339 385 480 574 668 
Total Time (seconds) 590 6207/4220* 5332 6118 8280 9606 13339 18500 23879 

The neural-network classification was expanded to in- 
clude a 3 by 3 window of pixels in each band of the image 
as input into the network. The 3 by 3 window results in a 
total of 54 inputs for the six-band non-thermal TM classifica- 
tion. Several training runs were carried out with various hid- 
den-layer sizes. The hidden-layer sizes were kept in the same 
range as those of the original classification. Incorporation of 
the 3 by 3 window resulted in fewer training patterns than 
for the original classification. The window was required to fit 
within each training region, thus excluding the region edge 
pixels from the training set (except as neighbor pixels in the 
window). This resulted in a total of 443 training patterns 
(about half of the original number). Table 5 summarizes the 
test site accuracy and classification times for all the 3- by 3- 
window runs. 

The surprising result of the runs summarized in Table 5 
is that, in order to achieve the baseline 89.5 percent accu- 
racy, many of them required less training time than the 
pixel-by-pixel networks discussed previously (see Table 4). 
The increased cost per training iteration brought about by 
the greater number of inputs apparently is more than offset 
by faster convergence (fewer iterations). However, the num- 
ber of training iterations required to achieve the same accu- 
racy varied considerably from one run to the next as shown 
in Table 5. This large variation is due to the much larger 
number of interconnecting weights that must be randomly 
initialized before training relative to the pixel-by-pixel (six- 
input) networks examined in the previous sections. 

Table 6 shows the percent differences in the classifica- 
tions of the various 3- by 3-window network configurations 
of Table 5 (only the most accurate six hidden-layer node net 
is shown). Visually, all of the maps produced with more 
than six hidden-layer nodes are comparable (Figures 7h 
through 7j). It appears from these results that there is a slight 
correlation between the number of inputs and number of 
hidden-layer nodes required for a given accuracy. The 54 in- 
put nets required slightly more hidden-layer nodes to 
produce classifications comparable to those using six input 
nodes. Another observation is that, although the maps ap- 
peared very similar and had high classification accuracies, 
the percent difference measurements of Table 6 are signifi- 
cantly greater both in repeated trials at the same hidden- 
layer size and between different hidden-layer sizes than the 
pixel-by-pixel networks of Table 3. This indicates that the re- 
sults are not as consistent, and the initial randomization of 
the weights has considerable effect in this case. 

Figure 9 shows the mean square error of network train- 
ing as a function of training iteration for the most accurate 
18-node hidden-layer network (seventh row of Table 5). 
Notice how the mean square error decreases more sharply 
before leveling off than for the pixel-by-pixel network as 
shown in Figure 4. Perhaps there is a relationship between 
the rate of the error minimization and the number of input 
parameters. If the network is provided with more informa- 
tion about the image in a single training iteration, it can 

make more progress towards the minimum error. Unfortu- 
nately, the time savings gained is offset somewhat by the 
much greater classification time. Because a 3 by 3 window 
must be examined for every pixel in the image during classi- 
fication, this time is greatly increased. However, the total 
classification time is still less than that of the pixel-by-pixel 
network for many of the runs. 

In addition to the training being a little faster, the 3- by 
%window input networks may be more capable of separating 
the classes than the pixel-by-pixel network. While the incor- 
poration of texture information is no doubt helpful, the exact 
effect of this information is hard to evaluate without an ex- 
tensive study involving much more ground truth about the 
actual class composition of the image. However, the accuracy 
of the small test sites was consistently higher for the window 
classifications than for the original classification. The major- 
ity filter could be used to enhance the apparent accuracy of 
the pixel-by-pixel classifier by virtue of its smoothing prop- 
erty. It should be noted that the window classifications, al- 
though they already have a smoothed appearance, can also 
be majority filtered, thereby increasing their apparent accu- 
racy as well. And while the window classifications appear 
smoothed, there are many places where single pixels have 
been assigned a class different from neighboring pixels (see 
Figures 7h through 7j). The application of a smoothing filter 
will eliminate such pixels, thus destroying any fine detail in 
the classification. The window input net has the advantage 
of producing more homogeneous classes while preserving 
some fine detail. 

x Iterations 
Total Time 
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Figure 8. Average number of training iterations and total 
classification time (training plus classification) required 
for a neural network to achieve the same accuracy as 
maximum-likelihood (89.5 percent) versus hidden-layer 
size. The neural network was trained for 20,000 itera- 
tions at least seven times for each hidden-layer size, ex- 
cept for the six hidden-layer node case, where a single 
anomalous training run has been left out. 
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TABLE 5. EVALUATION OF NEURAL NETWORK CLASS~FICAT~ON USING A 3 BY 3 WINDOW OF I N P U T  PIXELS IN EACH BAND FOR THE TUCSON SIX-BAND IMAGE. THE 
NETWORK HAD 54 INPUTS AND 12 OUTPUTS AND WAS TRAINED WITH 443 TRAINING PATTERNS. THE ACCURACY IS COMPARED TO THAT OF THE MAXIMUM-LIKELIHOOD 

BASELINE VALUE OF 89.5 PERCENT. 

Accuracy at Feed-forward Iterations to achieve Time to achieve 
Number of 25,000 iterations Training time Classification time ML accuracy ML accuracy 

hidden layer nodes (%) (secliteration) (set) (89.5%) (set) 

3 83.5 0.3380 606 NI A N/ A 
6 93.5 0.6080 756 4000 2432 
6 96.2 4500 2736 
6 95.2 4000 2432 

12 94.6 1.1336 1042 3500 3968 
12 92.9 6500 7368 
18 96.7 1.6777 1335 4500 7550 
18 96.5 3000 5033 
18 96.3 3500 5872 

TABLE 6. THE PERCENTAGE OF PIXELS WITH DIFFEENT LABELS, BETWEEN ALL 
COMBINATIONS OF THE CLASSIFICATION MAPS OF THE MOST ACCURATE 3- BY 3- 
WINDOW NETWORKS FROM TABLE 5. THESE VALUES WERE CALCULATED IN THE 

SAME WAY AS THOSE OF TABLE 3. 

Hidden 
Layer size 3 6 12 12 18 18 18 

Summary and Conclusions 
Experiments aimed at understanding the behavior of a neural- 
network classifier, as a function of its key parameters, are de- 
scribed in this paper. The test image was a Landsat TM scene 
of a complex urban area and Level I and I1 land-use classes 
were defined for supervised classification. In the first experi- 
ment, a neural-network multispectral-image classifier was 
trained multiple times with the number of hidden-layer nodes 
varying from one to 36. This was of interest for two reasons. 
First, the best structure in terms of accuracy and speed could 
be determined. The most accurate training run was obtained 
using 12 hidden-layer nodes, but the fastest classifications that 
achieved the accuracy of maximum-likelihood could be per- 
formed with only six or nine hidden-layer nodes. 

The second reason was to determine if the initial ran- 
domization of the network weights resulted in significantly 
different classifications from one run to the next. It was found 
that substantial differences could occur, especially for low 
numbers of hidden-layer nodes. In fact, the differences in the 
classification maps produced at a given hidden-layer size 
were comparable to the differences produced among different 
hidden-layer sizes. Thus, the initial randomization is a pri- 
mary factor, with the hidden-layer size over the range of six 
to 36 nodes being a secondary effect. However, the initializa- 
tion effect becomes smaller with more hidden-layer nodes. 
The variance of both the test site classification accuracy and 
the overall classification difference decreased with more hid- 
den-layer nodes. Thus, while more nodes take longer to train, 
the results are more consistent. 

Another significant result was that, although the number 
of hidden-layer nodes could be optimized in terms of classi- 
fication accuracy or training or classification speed, this was 
not particularly necessary. Any hidden-layer size greater 
than three produced adequate classification maps after a sim- 
ilar number of training iterations. Thus, the type of network 
used here is not very sensitive to the number of hidden-layer 
nodes for this classification application. 
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Figure 9. A plot of the mean square error of training vs. 
training iteration number for a 3 by 3window input net 
with 18 hidden-layer nodes. It has a very sharp drop in 
mean square error in the beginning of training (compare 
to pixel-by-pixel net mean square error plot of Figure 4). 

The structure of the neural-network makes it very easy 
to incorporate ancillary data or spatial information. The sec- 
ond experiment involved the use of 3 by 3 windows of im- 
age data as input to the neural-network classifier. The result- 
ing classifications have a smoothed appearance relative to 
the pixel-by-pixel classifications. There is some single-pixel 
classification detail evident, however, so the network is not 
merely smoothing the original classification. A surprising re- 
sult was that the total network classification time required to 
achieve the accuracy of maximum-likelihood is less in many 
cases than for the pixel-by-pixel classification nets. Even 
though the time per training iteration is much greater, it ap- 
pears that the information introduced in the 3 by 3 window 
allows for faster convergence. It was also found that the 
number of hidden-layer nodes did not need to be increased 
dramatically with the much larger input of a 3 by 3 window 
of multispectral data (an increase from six to 54 values) to 
achieve an accurate classification. However, the consistency 
of the training is much less than that of the pixel-by-pixel 
classification, most likely due to the much larger number of 
weights subject to initial randomization. 

This experiment, although limited to a single classifica- 
tion example, illustrates many of the problems one encoun- 
ters using a neural network for multispectral classification. 
By restricting the experiments to one image, we eliminate 
any uncertainties that might originate from scene-dependent 
factors. Our intent is to demonstrate the characteristics of 
neural networks in classification; similar experiments are 
easily performed (and recommended) to insure the quality of 
neural-network classifications of other images. The hidden- 
layer size dilemma is well-documented in neural-network lit- 
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erature. However, the inconsistency of training is an often 
overlooked potential problem. The anomalous run taking five 
times as long as most of the others is a good example of this 
potential for trouble. It shows that the selection of a suitable 
hidden-layer size must be based on more than a single trial 
run at each size. This is especially true when a larger net- 
work (such as one with 3- by 3-window inputs) is used. 
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