Evaluation of Geostatistical Measures of Radiometric Spatial Variability for Lithologic Discrimination in Landsat TM Images

Francisco Abarca-Hernández and Mario Chica-Olmo

Abstract
Different measures of spatial variability (MSV) calculated from several estimators of the variogram function are used for lithologic discrimination in the framework of digital image classification. These measures are calculated in a local context using moving windows, which characterize the spatial variability of the radiometric data and represent textural indices to be used in image classification. Before applying this methodology, a spectral enhancement of the main geological features of the image by principal component analysis (PCA) has been necessary. The variographic analysis of the selected PCs in the training areas has shown important differences in the spatial behavior between lithologic classes. The MSV assessment was carried out by discriminant analysis in the training areas and supervised classification of the Landsat TM image. The results have shown that the use of TM radiometric data together with MSV improves the overall accuracy of the lithologic discrimination.

Introduction
Digital satellite imagery provides abundant multispectral information characterizing the interaction of electromagnetic radiation with terrestrial surface materials. This radiometric information is expressed by digital numbers that present spatial and temporal characteristics that usefully complement the study of natural resources.

In satellite image processing, digital classification is an important step to automatically categorize all the pixels in an image into land-cover classes or themes. In practice, the classical mathematical algorithms of supervised and non-supervised classification, mainly based on the application of pixel-by-pixel strategies, do not consider the spectral dependence existing between a pixel and its neighbors, i.e., spatial correlation. Therefore, the results obtained from pixel-by-pixel classifiers could be improved by taking into account additional information on the spatial autocorrelation of the digital numbers, jointly with the spectral data in the same classification strategy (Swain et al., 1979). This improvement would arise as a consequence of the hypothesis that a pixel is not independent of its neighbors, and that this dependence can be quantified and incorporated into the classifier.

The autocorrelation or variability between pixels, which is related to the textural aspects of the image, can be characterized through spatial analysis of radiometric data (Abarca, 1997). Texture refers to the apparent roughness or local variability of the pixels, which is analyzed in practice by means of parameters that consider the spatial variation of the digital numbers, which can be obtained by considering either the whole image or by operating in a local moving window.

Some of the most common textural descriptors are based on local statistical parameters (Sun and Qin, 1993), entropy (Haralick and Shanmugham, 1974), fractal dimension (Clarke, 1986), measures of the matrix of co-occurrence (Carlson and Ebel, 1995), and recent techniques that have involved the use of geostatistical parameters deduced from the variogram function (Carr, 1996; Lark, 1996).

This paper is intended to analyze the spatial dependence of radiometric data by geostatistical methods and include it in the classification algorithms. For this purpose, the digital number (DN) is interpreted as a regionalized variable (Matheron, 1965; Curran, 1986; Woodcock et al., 1988), characterized by structural and random aspects, quantified by the variogram function. In our approach, the variogram calculation is made in a neighborhood using a moving window, enabling us to quantify the spatial variability of radiometric data at this local level. The experimental value of this function at a specific lag of distance h (in pixels) is assigned to the central pixel of the window, resulting in a geostatistical measure regarding the local textural character of the image. This measure represents a new variable to be used within the classification strategy.

This geostatistical methodology based on the analysis of the spatial dependence of the radiometry has been used to evaluate a set of measures of spatial variability (MSV) considering local textural indices. These measures are derived from the calculation of different geostatistical estimators of the variogram function, which are applied to the lithologic discrimination and classification of Landsat TM images.

Study Area and Satellite Images
The image used to illustrate the practical aspect of this study covers an area located in the southeast of Spain in the region of Cabo de Gata, province of Almería, Spain (Figure 1). Mineral exploration studies have traditionally been carried out in this area to map hydrothermal gold deposits, and, due to its environmental importance and unique landscapes, the region has been declared a Natural Park.

The geomorphologic modeling of the region is conditioned by the volcanic nature of the outcropping materials as well as by the typical plains of quaternary deposits associated with the erosion of the volcanic rocks in a semiarid climate. In a geological context, the main outcrops are neogene...
volcanic materials of chalco-alkaline character, andesite, dacite, and rhyolite. These materials were subsequently affected by hydrothermal alteration processes intensified by the presence of fractures and fissures, with which important mineralizations of gold are associated.

Main rocks outcropping in the study area, with their most noticeable structural characteristics.

Amphibole dacite
- Domes of volcanic material outcropping as massive rocks.

Amphibole andesite
- Subvolcanic intrusions formed by autotrophic breccias.

Rhyolite
- Ignimbrites with variable texture.

Altered rhyolite and andesite
- Domes formed by altered and fractured rocks.

Reef limestone
- Reef limestone and bioclastic calcarenite, Miocene.

Quaternary deposits
- Clays, sands, and conglomerates.

The variogram modeling is required to fit the experimental variogram to a theoretical model. Journel and Huijbregts (1978) and McBratney and Webster (1986) provided a list of the most commonly used variogram models for variographic fitting: spherical, Gaussian, exponential, etc., but this process is only required in geostatistical applications in satellite image processing based on spatial estimation or conditional simulation.
The pseudo-cross variogram considers the variance of the cross increments instead of the covariance of the direct increments as above: i.e.,

\[
\gamma(h) = \frac{1}{2n(h)} \sum_{i=1}^{n(h)} \left[\frac{d n_i(x) - d n_i(x + h)}{2} \right] \cdot \frac{d n_i(x) - d n_i(x + h)}{2}.
\]

For the application presented in this paper, the experimental computation of these measures of spatial variability was performed by calculating them within a neighborhood using moving windows of 7 by 7 pixels.

Selection of the Study Variables

The application of the above defined variograms has been done not on the original TM data but on variables transformed as below. For this purpose, two new variables were obtained from the radiometric information of the TM bands using principal component analysis (PCA) to characterize and highlight the spectral properties of the studied lithologic classes. These variables were obtained from the Feature Oriented Principal Component Selection (FPCS) method, proposed by Crosta and McMoore (1989) and later applied to hydrothermal alteration mapping by Loughlin (1991). This method is based on the detailed examination of the weights of the eigenvectors to determine the principal components best related to the theoretical spectral signatures of the studied lithologies. Specifically, we selected the two principal components related to the presence of two outstanding geological features of the volcanic rocks, iron oxides, and hydroxyl-bearing minerals (hydrothermal alteration).

Table 2 gives the eigenvector loadings obtained by PCA from the covariance matrix of the original image. PC1 presents similar positive weights for all the bands, except the TM5 band which presents a greater weight due to its greater variance depending on the gain and offset parameters of the sensor. This component is related to the albedo of the image, a factor which is responsible for the high correlation between the multispectral channels (Loughlin, 1991). The remaining PCs therefore account for the spectral differences between bands: PC2 represents the differences between the visible and the infrared, with high values corresponding to a high infrared reflectance; and low ones related to a high visible reflectance; PC3 provides information on iron oxides with a high weight in TM1 and a low one in TM3; and PC4 presents a high weight in the TM5 band and a low one for TM7, which suggests hydroxyl-bearing minerals. Summarizing all of the above, we can state that iron oxides and hydroxyls are mapped into PC3 and PC4, respectively.

The decision process for the above six-band PCAs is a long and complex one because analysis of all the TM bands does not unequivocally separate the iron oxides and the hydroxyls into a simple PC image. As observed by Crosta and McMoore (1989), if the number of input channels is reduced, the chance of defining a unique PC for a specific mineral class will be increased. Consequently, we have decided to select two groups of bands representing each of the above-mentioned geological factors. In this sense, the TM1, TM3, TM4, and TM5 bands were chosen for the iron oxide analysis (Group 1), and the TM3, TM4, TM5, and TM7 bands for the analysis of hydroxyl-bearing minerals (Group 2).

In Group 1, the spectral contrast of the iron oxides is increased by omitting one mid-infrared band, which is sensitive to the presence of alteration minerals. Similarly, in order to highlight the alteration minerals, Group 2 omits two bands from the visible, i.e., those that demonstrate the presence of iron oxides.

| TABLE 2. EIGENVECTOR LOADINGS OF THE PRINCIPAL COMPONENTS OF THE SIX TM BANDS |
|---------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
PC1	PC2	PC3	PC4	PC5	PC6	
TM1	0.3606	-0.5708	0.6609	0.0033	0.1828	0.2719
TM2	0.2600	-0.3116	-0.0203	-0.0866	-0.0609	-0.9076
TM3	0.3941	-0.3217	-0.4391	-0.2394	-0.6340	0.2986
TM4	0.3521	-0.1809	-0.5313	0.5321	0.5196	0.0881
TM5	0.6209	0.6104	0.2785	0.3495	-0.2459	-0.0485
TM6	0.5572	0.2614	-0.1206	-0.7458	0.4801	0.0542

PHOTOMETRIC ENGINEERING & REMOTE SENSING
Table 3 gives the results of the PCAs for bands of the two groups, showing the weights of the eigenvectors obtained for each component. The methodology for iron oxide mapping by PCA is to examine the eigenvector loadings for the TM1 and TM3 bands; such loadings will be moderate to strong for both bands, and their signs will be reversed, which, indeed, is observed in PC3 of Group 1. The rule for hydroxyl mapping is similar to the previous one, i.e., the magnitude of eigenvector loadings for TM5 and TM7 should be moderate to strong and opposite in sign, which is observed in PC3 of Group 2.

As a conclusion to this analysis, the PC3s of each group of bands were chosen due to their significant relationship with the outcropping lithologies in the study area. Thus, besides the TM radiometric information, these two new variables are available, and can then be spatially analyzed by means of the methodology described.

Application of MSV for Lithologic Discrimination
Lacaze et al. (1994) have shown that the variogram function can be used for quantifying spatial variability of the radiometric data, revealing that each class or object in the image has a different spatial variability pattern. From one point of view, this pattern can be considered a “spatial variability signature” of the class. To show this previous aspect before calculating the MSV, different training areas for the six lithologies were variographically analyzed using the two selected PC3s. Experimental computation was performed by a computer program developed in our laboratory which allows us to define parameters such as direction, maximum distance, lag spacing, variogram type, and even variogram fitting. Figure 2 represents the omnidirectional variogram for the PC3s of the six lithologies at a lag spacing of one pixel (30 m). In general terms, the variograms reveal different spatial behavior of the lithologies with respect to their sill and range parameters. The ranges represent the spatial correlation of the variables and vary from low values, less than 100 m in the reef limestone, to high ones, around 300 m in the case of the amphibole dacite. The sill (variance) presents marked differences between the lithologic classes: the reef limestone and amphibole andesite present low sills, whereas the amphibole dacite and rhyolite are more heterogeneous and present a greater variance, although spatially they are a little more continuous.

These differences observed in the spatial variability patterns of the lithologic classes, some of which have a similar composition, are not only due to the mineralogy but also to the structural and textural aspects related to the processes of their formation. Thus, for example, the amphibole dacite outcropping as massive rocks (domes) show a greater spatial correlation (range) than do the amphibole andesite formed by autoclastic breccia of little extent. Also noteworthy is the similarity, in relative terms, of the variograms of the two PC3s, probably due to the high correlation between them.

These results show that the spatial variability of the radiometric data quantified by the variogram function can be used for lithologic discrimination purposes.

MSV Calculation and Discriminant Analysis
In order to add the spatial variability information to the classification strategy, the geostatistical measures of spatial variability were calculated on the PC3s using a moving window of 7 by 7 pixels and assigning the MSV values to the middle pixel. This window size gave the best results in the tests performed. The calculated univariate MSV were direct variogram (V), madogram (M), rodogram (R), cross variogram (CV), and pseudo-cross variogram (PV), and their values were used only for the lag spacing of one pixel (30 m) as the average of the respective functions for the main directions (N-S, E-W, N45E, and N45W). Although in this case study a unique lag spacing was selected, which shows the best separability between classes, the method could also be applied by adding other values for different lag spacings, whenever the size of the window allows it.

As a result of this process, eight new variables were ob-

<table>
<thead>
<tr>
<th>Group 1: Iron oxide</th>
<th>Group 2: Hydroxyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>PC2</td>
</tr>
<tr>
<td>TM1</td>
<td>0.4039</td>
</tr>
<tr>
<td>TM3</td>
<td>0.4384</td>
</tr>
<tr>
<td>TM4</td>
<td>0.3941</td>
</tr>
<tr>
<td>TM5</td>
<td>0.6905</td>
</tr>
</tbody>
</table>

Table 3. Eigenvector Loadings of the Principal Components of the Two Groups of TM Bands

Figure 2. Omnidirectional experimental direct variograms in the training areas: (a) Amphibole dacite, (b) Rhyolite, (c) Altered rhyolite and dacite, (d) Reef limestone, (e) Amphibole andesite, and (f) Quaternary deposits.
tained: six univariate measures, three for each PC3, and two multivariate ones corresponding to the two cross variograms of the PC3s. This may seem a high number of complementary variables and, indeed, they probably contain redundant information. To select the most relevant measures of variability, discriminant analysis was performed on a set of 41 training areas representing the six lithologies. For each pixel of these training areas, 16 variables were available: the six TM bands, the eight calculated MSV, and the two values of the statistical variance (σ²) calculated on the PC3s in the moving windows. The use of the variance instead of the standard deviation is because the geostatistical expressions are mainly quadratic.

Different combinations of the above variables were studied to obtain the classification functions by standard discriminant analysis using the Statistica program (Statsoft, 1993). As the “truth,” it considered sampled ground points located in the training areas. The results are summarized in Table 4, which includes the percentages of correctly classified pixels for the most significant combinations of the variables. Two important points are evident: first, the joint use of spectral and spatial information (TM bands and MSV, respectively) leads to a noteworthy increment in the rates of successful classifications; and second, the incorporation of the multivariate measures (CV and PV) plays an important role in improving the results, equivalent to those obtained from the univariate measures (V, M and R). It might also be mentioned that the redundancy of information provided by the magram and rodogram is due to the similarity of these functions. Another consideration is that the local variance also contributes to improving the results, especially when it is used jointly with the univariate measures of variability.

Supervised Classification: Maximum Likelihood Decision Rule
Along the lines of the results of discriminant analysis, the following combination of variables was chosen to classify the Landsat TM image: the six TM bands and six MSV, the direct variogram and magram for each PC3, and the cross and pseudo-cross variograms between PC3s.

Table 4. Results of Discriminant Analysis in the Lithologic Classification: TM (Thematic Mapper Bands), V (Variogram), M (Magram), R (Rodogram), CV (Cross Variogram), PV (Pseudo-Cross Variogram) and σ² (Variance)

<table>
<thead>
<tr>
<th>Combination of variables</th>
<th># variables</th>
<th>overall accuracy (%)</th>
<th>Combination of variables</th>
<th># variables</th>
<th>overall accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>6</td>
<td>41.0</td>
<td>TM + CV</td>
<td>7</td>
<td>48.8</td>
</tr>
<tr>
<td>TM + σ²</td>
<td>8</td>
<td>47.0</td>
<td>TM + PV</td>
<td>7</td>
<td>51.2</td>
</tr>
<tr>
<td>TM + V</td>
<td>8</td>
<td>52.4</td>
<td>TM + CV + PV</td>
<td>8</td>
<td>54.2</td>
</tr>
<tr>
<td>TM + M</td>
<td>8</td>
<td>52.4</td>
<td>TM + CV + PV + M</td>
<td>10</td>
<td>62.6</td>
</tr>
<tr>
<td>TM + R</td>
<td>8</td>
<td>52.4</td>
<td>TM + CV + PV + R</td>
<td>10</td>
<td>62.6</td>
</tr>
<tr>
<td>TM + V + M + R</td>
<td>12</td>
<td>53.6</td>
<td>TM + CV + PV + M + σ²</td>
<td>12</td>
<td>63.3</td>
</tr>
<tr>
<td>TM + σ² + V + M + R</td>
<td>14</td>
<td>60.8</td>
<td>TM + CV + PV + M + V</td>
<td>12</td>
<td>65.7</td>
</tr>
</tbody>
</table>

In the study area, 41 training areas of similar size, covering 3 percent of the total surface area, were selected to define the spectral signature of the lithologies in which the ground truth was known. We compared the classification results obtained from a classical procedure, using only TM data, with the results derived from the proposed methodology, using jointly TM and MSV data. In both cases the maximum-likelihood decision rule was employed, expressed in the following equation (Erdas, 1997):

\[
D = \ln(p_c) - 0.5 \ln |\text{Cov}_c| - 0.5 \mathbb{E}(\text{Cov}_c) \mathbb{E}(\text{Cov}_c)^{-1} \mathbb{E}(\text{Cov}_c) - T
\]

where \(D\) is the weighted distance of a class, \(c\) is a particular class, \(X\) is the vector of measures of the candidate pixel, \(M\) is the mean of samples of class \(c\), \(a\) is the \textit{a priori} probability that a pixel candidate will belong to class \(c\), \(\text{Cov}_c\) is the matrix of covariance of the pixels in the sample from class \(c\), \(\text{Cov}_c\) is the determinant of \(\text{Cov}_c\), \(\text{Cov}_c^{-1}\) is the inverse of \(\text{Cov}_c\), \(\ln\) is the natural logarithm, and \(T\) is the transposition function.

Table 5 gives the percentages of pixels correctly classified in the training areas for both classification cases. The increment in the success rate is very acceptable, as was foreseeable from the results of discriminant analysis. The improvements in the results of the classification vary depending on the lithologic class being considered. The improvements ranged from 51 percent for amphibole andesite to only 4 percent for the rhyolite, giving an average increment of around 20 percent. The extreme values are surprising, and we suppose they are due to the physical and textural characteristics of these outcropping rocks.

It may be seen from the results obtained in the supervised classification incorporating the measures of spatial variability that not only does the success rate increase but the classification also seems more homogeneous (Figure 3).

Discussion and Conclusions

Radiometric information from Landsat TM images is often used exclusively in digital classification, without considering other features of interest such as the spatial autocorrelation or variability of pixels within a local context. The use of this additional information improves remarkably the classification results. In this study, the classification was improved 51 percent compared by our methodology to the results obtained by classical methods.

The presented approach has been applied to lithologic mapping, from which the spectral enhancement of the main geological features of the outcropping materials—iron oxides and hydroxyl-bearing minerals—must be performed previously. To achieve this, the FPCS method was used to select one principal component representative of each of these geological features (PC3 in both cases). Variographic analysis performed in the training areas on these two components showed differences in the radiometric spatial patterns of the lithologies, even when some of them presented a similar petrological composition, due to the influence of the structural and textural features of the outcropping.

Supplementary Information

Table 5. Results of the Supervised Classification in the Training Areas Showing the Percentage of Pixels Correctly Classified From Just TM Data (TM) and Using Both TM Data and the Best Combination of the Measures of Spatial Variability (TM + MSV)

<table>
<thead>
<tr>
<th>Lithology</th>
<th># pixels</th>
<th>overall accuracy with TM (%)</th>
<th>overall accuracy with TM + MSV (%)</th>
<th>improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibole dacite</td>
<td>309</td>
<td>72.2</td>
<td>94.8</td>
<td>21</td>
</tr>
<tr>
<td>Amphibole andesite</td>
<td>190</td>
<td>56.3</td>
<td>85.3</td>
<td>29</td>
</tr>
<tr>
<td>Rhyolite</td>
<td>116</td>
<td>67.1</td>
<td>90.5</td>
<td>13</td>
</tr>
<tr>
<td>Altered rhyolite and dacite</td>
<td>150</td>
<td>67.3</td>
<td>99.3</td>
<td>14</td>
</tr>
<tr>
<td>Reef limestone</td>
<td>475</td>
<td>77.1</td>
<td>99.7</td>
<td>18</td>
</tr>
<tr>
<td>Quaternary deposits</td>
<td>570</td>
<td>77.4</td>
<td>91.9</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>1810</td>
<td>75.6</td>
<td>91.9</td>
<td>21</td>
</tr>
</tbody>
</table>

Photogrammetric Engineering & Remote Sensing

June 1999 709
The proposed measures of spatial variability are based on different uni- and multivariate estimators of the variogram function, and were calculated in a neighborhood over the PC3s at the specific lag spacing of one pixel. Both window size and lag spacing were experimentally checked and selected for this specific application; in particular, we note that other lags can be used separately or jointly.

The evaluation of these geostatistical measures was carried out by discriminant analysis in the training areas. From this analysis, it was verified that the joint use of TM radiometric information and MSV improves the results, in agreement with established hypotheses. The best lithologic discrimination was obtained using jointly the TM data, the variogram and madogram for each PC3, and the cross and pseudo-cross variograms between these principal components, reaching an average increment in accuracy of around 20 percent. The improvement in the visual aspect concerning the class spatial homogeneity was also noteworthy.

We can conclude that measures of spatial variability should be considered for lithologic discrimination purposes, as they provide useful context information and they improve considerably the results obtained by the classical methodologies.

Acknowledgments
This paper was made possible thanks to the financial support of Brite/Euram Programme of the EC (Contract BREE2-CT93-0513) and the DGICYT under grant PB92-0925-C02-02. We would also like to thank the anonymous referees for providing positive comments.

References

(Received 30 June 1997; revised and accepted 30 July 1998; revised 09 September 1998)

Certification Seals & Stamps

■ Now that you are certified as a remote sensor, photogrammist or GIS/LIS mapping scientist and you have that certificate on the wall, make sure everyone knows!

■ An embossing seal or rubber stamp adds a certified finishing touch to your professional product.

■ You can’t carry around your certificate, but your seal or stamp fits in your pocket or briefcase.

■ To place your order, fill out the necessary mailing and certification information. Cost is just $35 for a stamp and $45 for a seal; these prices include shipping and handling. Please allow 2-4 weeks for delivery.

SEND COMPLETED FORM WITH YOUR PAYMENT TO:

ASPRS Certification Seals & Stamps, 5401 Geoview Lane, Suite 200, Bethesda, MD 20814-2160

NAME:

PHONE:

CERTIFICATION #: DATE:

ADDRESS:

CITY: STATE: POSTAL CODE: COUNTRY:

PLEASE SEND ME: ○ Embossing Seal $45obile ○ Rubber Stamp $35

METHOD OF PAYMENT: ○ Check ○ Visa ○ MasterCard

CREDIT CARD ACCOUNT NUMBER EXPIRES

SIGNATURE DATE