Testing Camera Calibration with Constraints

Huang Youcai and Robert M. Haralick

Abstract

Known geometric relationships between points, lines, and planes on a three-dimensional (3D) object can be used as constraints in the camera calibration process to improve the accuracy of estimates. Ten constraints have been constructed and tested numerically. The accuracy improvement has been evaluated theoretically and empirically by comparing the variances and traces of the covariance matrix of the 3D points obtained from the camera calibration without constraints with those derived from the process with constraints. It is not uncommon to observe an order of magnitude improvement in the variances of the estimates for problems having multiple constraints. Statistical tests comparing the theoretical prediction with the empirical observed data validate the approach.

Introduction

Camera calibration is a traditional topic in photogrammetry and computer vision. Originally, the camera calibration technique was used for determining the interior orientation elements (focal length, principal point, fiducial center, and radial distortion) (Karara, 1989). This concept has been generalized by considering the exterior orientation elements (rotation and translation) and the three-dimensional (3D) points as parameters to be estimated in the process. Because the parameters of interior orientation and some additional parameters are computed for every adjustment, as long as the photogrammetrist checks to see that the magnitude of these parameters is "reasonable," no lasting importance need be attached to them. It is usually the results for the object point coordinates and their error estimates that are of concern (Karara, 1989). The importance of camera calibration is not just for making accurate 3D measurement, but also for helping a 3D model-based vision system to model the performance or capability of any particular sensing strategy (Tsai, 1989). Features in an image — points, edges (or lines), and areas — are useful geometric information that can be employed for the camera calibration (Tommaselli and Tozzi, 1996; Karara, 1989; Echigo, 1990; Liu et al., 1990). Some of these features may correspond to three-dimensional entities having a known relation between them. The known relation can be used as a constraint to improve the accuracy of the estimated 3D points.

The major contributions of this paper are (1) the use of ten constraints which include the basic geometric relationships between points, lines, and planes on a 3D object; (2) the development of a method for the evaluation of the efficiency of the constraints; and (3) the proper handling of the "zero determinant" problem encountered in propagating the variances using the method discussed by Haralick (1993).

Camera Calibration with Constraints

The Camera Calibration with Constraints performs a simultaneous estimation of the parameters of multiple cameras and some locations of the 3D passpoints under some specific constraints (Thornton, 1997; Huang and Haralick, 1997). For each image, there are 11 camera parameters consisting of the focal length, coordinates of the principal point, coordinates of the perspective center, the rotation angles, and a scale factor. Three-dimensional points whose coordinates are unknown are called passpoints. Three-dimensional points with known coordinates are called control points. Their coordinates are fixed in the camera calibration process. Two-dimensional (2D) points are the image points corresponding to the 3D points. The coordinates of the 2D points are the noisy observed values. Let Φ denote the unknown vector

$$\Phi = \begin{pmatrix} \Theta \\ X \end{pmatrix}$$

where Θ stands for the vector of the camera parameters and X denotes the vector of the coordinates of the passpoints. Let Θ* be the vector of the approximate values of the camera parameters and ΔΘ be the vector of corrections to the approximate values of the camera parameters. X* be the vector of the approximate values of the coordinates of the passpoints, and ΔX be the vector of corrections to the approximate values of the coordinates of the passpoints. The estimate of the unknown vector Φ can be represented as follows:

$$\hat{\Phi} = \Phi^* + \Delta \Phi = \begin{pmatrix} \Theta^* + \Delta \Theta \\ X^* + \Delta X \end{pmatrix}$$

where Φ^* and $\Delta \Phi$ denote the vector of the approximate values of the unknown vector Φ and the vector of corrections to the approximate values of the unknown, respectively. Let U be the observation matrix consisting of the coordinates of the 2D image points and W be the weight matrix of observations. Assuming that the noise is normally distributed, the parameter estimation problem is to determine $\Delta \Phi$ to minimize

$$e = (U - T(\Phi^* + \Delta \Phi))^T W(U - T(\Phi^* + \Delta \Phi))$$

such that $S(\Phi^* + \Delta \Phi) = 0$. Here, $S(\Phi^* + \Delta \Phi) = 0$ is the constraint equation.

Assuming that the approximate values (Θ^* and X^*) are available, in order to solve the non-linear least-squares problem, it is sufficient to linearize the objective function and linearize the constraints about the approximate values. When a plane is used to construct a constraint, we should know at least three points lying on the plane. These three points can be control points or passpoints. Their coordinates or approximate coordinates are used for computing the normal vector and signed distance of the plane. Similarly, at least two

H. Youcai was with the Wuhan Technical University of Surveying and Mapping, Wuhan 430070, China. He is presently at Department of Geography, University of British Columbia, Vancouver, B.C. V6T 1W5, Canada (youcai@geo.g.ubc.ca)

R.M. Haralick is with the Department of Electrical Engineering, University of Washington, Seattle, WA 98195.

0099-1112/99/6503-249S3.00/0
© 1999 American Society for Photogrammetry and Remote Sensing
points lying on a line must be known if this line is used for forming a constraint. The above assumptions provide sufficient information for establishing each of the ten constraints independently. Then, \(T(\Phi) \) and \(S(\Phi) \) are linearized and expressed by a first-order Taylor series expansion, respectively; i.e.,

\[
T(\Phi) = T(\Phi^*) + \frac{\partial T(\Phi)}{\partial \Phi} \delta \Phi = T(\Phi^*) + \beta \delta \Phi
\]

and

\[
S(\Phi) = S(\Phi^*) + \frac{\partial S(\Phi)}{\partial \Phi} \delta \Phi = S(\Phi^*) + H \delta \Phi
\]

where \(\partial T(\Phi)/\partial \Phi \) and \(\partial S(\Phi)/\partial \Phi \) are the first-order derivatives of \(T(\Phi) \) and \(S(\Phi) \) respectively with respect to \(\Phi \) at \(\Phi^* \). According to the mathematical model and solution of the standard photogrammetric block bundle adjustment presented by Brown et al. (1974) and Brown (1990) and considering the constraint equation, the normal equation for the linearized problem is

\[
\begin{pmatrix} N_{xx} & N_{xy} \cdot H^T \\
N_{xy} & N_{yy} \cdot H^T \\
H & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta \Theta \\
\delta X \\
\delta \Lambda \end{pmatrix} = \begin{pmatrix} L_x \\
L_y \\
h \end{pmatrix}
\]

or simply

\[
\begin{pmatrix} N \cdot H^T \\
L \cdot H^T \\
h \cdot -S(\hat{\Phi}) \end{pmatrix} \begin{pmatrix} \delta \Phi \\
\delta \Lambda \end{pmatrix} = \begin{pmatrix} L \end{pmatrix}
\]

in which

\[
N = B^T \cdot W \cdot B
\]

\[
L = B^T \cdot W \cdot (U - T(\hat{\Phi}))
\]

\[
h = -S(\hat{\Phi})
\]

where \(\delta \Lambda \) is the Lagrange multiplier. Finally, the unknown vector \(\delta \Phi \) is computed by the following equation:

\[
\delta \Phi = N^{-1} (I - H^T (HN^{-1} H^T) + H N^{-1}) \cdot L
\]

\[
= N^{-1} PL + N^{-1} H^T (HN^{-1} H^T) + h
\]

and the covariance matrix of the unknown is

\[
\text{Var}[\delta \Phi] = N^{-1} \cdot P.
\]

where \(P \) is the projection matrix.

This paper concentrates on the 3D point estimation in which the camera parameters are regarded as known values and the 3D point coordinates are estimated when using 2D noisy perspective projections. Then the unknown vector \(\delta \Phi \) is reduced to \(\delta X_p \), and the normal equation can be simply expressed by

\[
\begin{pmatrix} N_{xx} \cdot H^T \\
N_{xy} \cdot H^T \\
H \end{pmatrix} \begin{pmatrix} \delta X_p \\
\delta \Lambda \end{pmatrix} = \begin{pmatrix} L \end{pmatrix}
\]

Ten Constraints

We consider ten geometric constraints: (1) coplanarity, (2) collinearity, (3) line to plane angle, (4) line to line angle with intersection, (5) line to line angle without intersection, (6) plane to plane angle with common points, (7) plane to plane angle without common points, (8) distance between points, (9) distance between point and plane, and (10) distance between points and line. The following gives a brief introduction to the mathematical models of the ten constraints. Refer to Huang and Haralick (1997) for more information.

(1) **Coplanarity** is a constraint for the case in which the pass-points must lie on a plane. Suppose that we have \(n \) pass-points, \((x_i, y_i, z_i); \ i = 1, ..., n \), on the plane. The coplanarity constraint is expressed by

\[
\alpha \Delta x_i + \beta \Delta y_i + \gamma \Delta z_i = h_i
\]

where \(h_i = -(a_x + b_y + c_z + d) \). The plane normal vector \((a_x, b_y, c_z) \) and the signed distance \(d \) are calculated using the approximate coordinates of the \(n \) pass-points. The number of constraint equations is equal to the number of points used in the constraint.

(2) **Collinearity** is a constraint for the case in which the pass-points must lie on a line. Suppose that we have \(n \) pass-points, \((x_i, y_i, z_i); \ i = 1, ..., n \), on the line. The collinearity constraint equation is written as

\[
\begin{pmatrix} 2a_{11} - (a_{12} + a_{13}) \\
2a_{22} - (a_{23} + a_{21}) \\
2a_{33} - (a_{31} + a_{32}) \end{pmatrix} \begin{pmatrix} \Delta x_i \\
\Delta y_i \\
\Delta z_i \end{pmatrix} = h_i
\]

and \(h_i \) is computed by

\[
\begin{pmatrix} 2a_{11} - (a_{12} + a_{13}) \\
2a_{22} - (a_{23} + a_{21}) \\
2a_{33} - (a_{31} + a_{32}) \end{pmatrix} \begin{pmatrix} b_{x} - x_i \\
b_{y} - y_i \\
b_{z} - z_i \end{pmatrix} = h_i
\]

where

\[
\begin{align*}
a_{11} & = 1 - a_x e_x + a_y e_y + a_z e_z \\
a_{12} & = 0 - a_x e_x + a_y e_y + a_z e_z \\
a_{13} & = 0 - a_x e_x + a_y e_y + a_z e_z \\
a_{21} & = 0 - a_x e_x + a_y e_y + a_z e_z \\
a_{22} & = 1 - a_x e_x + a_y e_y + a_z e_z \\
a_{23} & = 0 - a_x e_x + a_y e_y + a_z e_z \\
a_{31} & = 0 - a_x e_x + a_y e_y + a_z e_z \\
a_{32} & = 0 - a_x e_x + a_y e_y + a_z e_z \\
a_{33} & = 1 - a_x e_x + a_y e_y + a_z e_z
\end{align*}
\]

The direction cosines \((e_x, e_y, e_z) \) and the reference point \((b_x, b_y, b_z) \) of the line are calculated using the approximate coordinates of the \(n \) pass-points. The number of constraint equations is equal to the number of points used in the constraint.

(3) **Line to plane angle** is for constraining the angle between a line and a plane to be equal to a given angle \(\phi \). Let two points (points 1 and 2) lying on the line be unknown points. Then the angle constraint is expressed by

\[
\begin{pmatrix} \alpha - \sin(\phi) e_x \\
\beta - \sin(\phi) e_y \\
\gamma - \sin(\phi) e_z \end{pmatrix} \begin{pmatrix} \Delta x_1 \\
\Delta y_1 \\
\Delta z_1 \end{pmatrix} = h_1
\]

where

\[
h_1 = s[\sin(\phi) - (\alpha e_x + \beta e_y + \gamma e_z)]
\]

The direction cosines \((e_x, e_y, e_z) \) of the line and the distance \(s \) between points 1 and 2 are calculated by the approximate coordinates \((x_1, y_1, z_1), (x_2, y_2, z_2) \) of the two points. The other points are used for calculating the normal vector \((\alpha, \beta, \gamma) \) of the plane.

(4) **Line to line angle with intersection** is for constraining the angle between two intersecting lines to be equal to a given angle \(\phi \). Let three points be involved in forming the constraint. Referring to Equation 1, the coefficient matrix \(H \) of this constraint equation is written as

\[
\begin{pmatrix} s_x (e_x - \cos(\phi)e_x) \\
s_y (e_y - \cos(\phi)e_y) \\
s_z (e_z - \cos(\phi)e_z) \\
s_x (e_x - \cos(\phi)e_x) + s_y (e_y - \cos(\phi)e_y) \\
s_y (e_y - \cos(\phi)e_y) + s_z (e_z - \cos(\phi)e_z) \\
s_z (e_z - \cos(\phi)e_z) \end{pmatrix} = h_1
\]

and the unknown vector \(\delta X_p \) is
Let

$$h = s_1 s_2 \left[\cos(\phi) - (e_x e_{x'_2} + e_y e_{y'_2} + e_z e_{z'_2}) \right],$$

where the direction cosines \((e_x, e_y, e_z)\) and \((e_{x'}, e_{y'}, e_{z'})\) of the two lines are computed by the coordinates of the passpoints lying on these two lines, respectively. \(s_1\) and \(s_2\) are the distances between points 1 and 2 and between points 2 and 3, respectively. Point 2 is the intersection point.

(5) **Line to line angle without intersection** is for constraining the angle between two non-intersecting lines to be equal to a given angle \((\phi)\). Let four passpoints be used to form the constraint equation. Each line is determined by two of the four points. The constraint equation is

$$\begin{vmatrix} (1 - e_x) e_{x'_2}/s_1 \\ (1 - e_x) e_{x'_2}/s_1 \\ (1 - e_y) e_{y'_2}/s_1 \\ (1 - e_z) e_{z'_2}/s_1 \\ (e_x - 1) e_{x'_2}/s_1 \\ (e_x - 1) e_{x'_2}/s_1 \\ (e_y - 1) e_{y'_2}/s_1 \\ (e_y - 1) e_{y'_2}/s_1 \\ (e_z - 1) e_{z'_2}/s_1 \\ (e_z - 1) e_{z'_2}/s_1 \end{vmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta y_1 \\ \Delta z_1 \end{pmatrix} = h,$$

where

$$h = \cos(\phi) - (e_x e_{x'_2} + e_y e_{y'_2} + e_z e_{z'_2}).$$

(6) **Plane to plane angle with common points** is for constraining the angle between two intersecting planes with a pair of common points to be equal to a given angle \((\phi)\). Suppose that four passpoints, \((x_i, y_i, z_i); i = 1, ..., 4\), are used to construct the constraint equation. Points 1 and 2 are located on the intersection line. The coefficient matrix \(H\) of the constraint is

$$\begin{vmatrix} \delta x_{12} \beta + \delta x_{23} \beta_2 + \delta y_{23} \gamma + \delta y_{23} \gamma_2 \\ \delta x_{23} \beta + \delta x_{23} \beta_2 + \delta y_{23} \gamma + \delta y_{23} \gamma_2 \\ \delta y_{23} \beta + \delta y_{23} \beta_2 + \delta y_{23} \gamma + \delta y_{23} \gamma_2 \\ \delta y_{23} \beta + \delta y_{23} \beta_2 + \delta y_{23} \gamma + \delta y_{23} \gamma_2 \\ \delta y_{23} \beta + \delta y_{23} \beta_2 + \delta y_{23} \gamma + \delta y_{23} \gamma_2 \\ \delta y_{23} \beta + \delta y_{23} \beta_2 + \delta y_{23} \gamma + \delta y_{23} \gamma_2 \\ \delta y_{23} \beta + \delta y_{23} \beta_2 + \delta y_{23} \gamma + \delta y_{23} \gamma_2 \\ \delta y_{23} \beta + \delta y_{23} \beta_2 + \delta y_{23} \gamma + \delta y_{23} \gamma_2 \\ \delta y_{23} \beta + \delta y_{23} \beta_2 + \delta y_{23} \gamma + \delta y_{23} \gamma_2 \end{vmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta y_1 \\ \Delta z_1 \end{pmatrix} = h,$$

where

$$\delta x_{ij} = x_i - x_j, \delta y_{ij} = y_i - y_j, \delta z_{ij} = z_i - z_j, i,j = 1,2,3,4.$$
(10) Distance between point and line is for constraining the distance between a point and a line to be equal to a given distance (s). Let point \(p \) (not lying on the line) be an unknown point and other points be used for computing the direction cosines of the line. The constraint equation is

\[
\begin{pmatrix}
(x_p - x)^T \\
y_p - y \\
z_p - z
\end{pmatrix}
\begin{pmatrix}
\Delta x_p \\
\Delta y_p \\
\Delta z_p
\end{pmatrix} = h
\]

where \(x, y, z \) are the coordinates of any point located on the line. The distance between a point and a line to be equal to a given value \(h \) can be expressed as

\[
h = \frac{1}{2} |s^2 - ((x - x)^2 + (y - y)^2 + (z - z)^2)|,
\]

where \(x - a \), \(y - b \), \(z - c \) are the coordinates of any point located on the line. \(e_x, e_y, e_z \) are the direction cosines of the line.

Updating Algorithm

The 3D passpoints as unknown points are updated in the camera calibration. For any particular constraint, however, some passpoints are left fixed and then updated. This is to facilitate the iterative computational process. For instance, let the approximate coordinates of five passpoints be given, in which the last four points lie on a plane. In addition, let the distance between the first point and the plane be known. Only the first point is regarded as an unknown point if applying the constraint distance between point and plane to these five points. In the iterative process we call the first point a constrained point or constrained estimate. The last four points are termed non-constrained points or non-constrained estimates because their coordinates are not affected by this constraint. The last four passpoints are, however, considered as the unknown points if applying the coplanarity constraint to those points. Therefore, a passpoint may play different roles in forming different constraints if it is related to more than two constraints.

Efficiency Evaluation

The following two methods have been used for evaluating the efficiency of the ten constraints: (1) general evaluation and (2) specific evaluation.

General Evaluation

The efficiency of the constraints has been evaluated by analyzing the variances of the 3D passpoints obtained from the camera calibration with and without constraints. The covariance matrix consists of two parts: the unit weight variance (the standard deviation of observations) and the covariance structure matrix. The first one is also called the scalar factor which depends on the accuracy of observations. The second one depends on the geometry of the photogrammetry, consisting of the location of the 3D points, interior orientation elements, and pose of the camera. This method is based on the fact that the structure of the covariance matrices of the 3D passpoints should be improved by adding constraints to the corresponding passpoints in the camera calibration if the mathematical models and the code are correct. In other words, the variances and traces of the covariance structure matrices should become smaller than those before constrain-
The efficiency of a constraint is related to the number of unknown points lying on the intersection line between these two planes. The reason why the relative variances in z are much smaller than the others is because the normal vector of plane 1-2-3-4 is parallel to the z axis. The next section will give a more detailed explanation of this.

Table 1 shows the accuracy comparison based on the relative variance. A relative variance that equals 1 indicates no accuracy improvement. The following is the explanation of Table 1 (refer to Figure 2 for facilitating the explanation):

- **No. 1**: The coplanarity constraint is used to force passpoints 1, 2, 3, and 4 to lie on the plane 1-2-3-4, consisting of these four passpoints. The reason why the relative variances in z are much smaller than the others is because the normal vector of plane 1-2-3-4 is parallel to the z axis. The next section will give a more detailed explanation of this.

- **No. 2**: The collinearity constraint is used to force passpoints 1, 2, and 11 to lie on the line consisting of these three passpoints.

- **No. 3**: The line to plane angle constraint is used to constrain the angle between line 2-6, determined by passpoints 2 and 6, and plane 1-2-3-4, determined by points 1, 2, 3, and 4, to equal 90°. Points 2 and 6 are two unknown points in the constraint.

- **No. 4**: The line to line angle with intersection constraint is used to constrain the angle between line 1-2 and line 1-4 to equal 90°. Point 1 is the intersection point. These three points are the unknown points.

- **No. 5**: The line to line angle without intersection constraint is used to constrain line 1-2 to be parallel to line 4-3. These four points are the unknown points.

- **No. 6**: The plane to plane angle with common points constraint is employed to constrain the angle between planes 1-2-6 and 3-2-4 to equal 90°. Points 2 and 6 are two common points lying on the intersection line between these two planes. The reason why the relative variances of point 2 are much smaller than those of the other points is because point 2 is the intersection point of three lines 1-2, 3-2, and 6-2. From a geometrical point of view, the influence of the constraint on improving the accuracy of point 2 is much larger than the others.

- **No. 7**: The plane to plane angle without common points constraint is employed to constrain plane 2-1-5 to be parallel to plane 3-4-8. Points 1, 2, and 5 are three unknown points. The other three points are the non-constrained points for determining plane 3-4-8.

- **No. 8**: The distance between points constraint is used to force the distance between points 1 and 2 to equal a given distance (14.7043). These two points are the unknown points.

- **No. 9**: The distance between two points and plane constraint is used to force the distance between point 1 and plane 2-3-7-6 to equal a given distance (14.7043). Only point 1 is the unknown point. Apparently, the x axis is parallel to the normal vector of the plane. So the relative variance σ_2/σ_1 is much smaller than the others.

- **No. 10**: The distance between point and line constraint is used to force the distance between point 1 and line 2-3-2 to be equal to a given distance (14.7043). Point 1 is the unknown point. This constraint and the distance between point and plane constraint are the distance-type constraints with the same major direction except that the geometrical “basis” (plane and line) are different. The reason why the relative

<table>
<thead>
<tr>
<th>No.</th>
<th>P_n</th>
<th>V_x/V_x^*</th>
<th>V_y/V_y^*</th>
<th>V_z/V_z^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.88</td>
<td>0.99</td>
<td>3.2×10^6-8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.58</td>
<td>1</td>
<td>3.3×10^6-12</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.58</td>
<td>1</td>
<td>9.4×10^6-8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.88</td>
<td>0.99</td>
<td>3.3×10^6-11</td>
</tr>
</tbody>
</table>

Note: The heading No and heading P_n denote constraint number and unknown point number respectively. The heading V_x, V_y, V_z and V_x^*, V_y^*, V_z^* denote the variances of x, y, z of the passpoints obtained from the camera calibration with and without constraints respectively.

The table shows that the efficiency of constraints with the same number of unknown points is smaller than the others. In general, the coplanarity, distance between point and plane, and collinearity constraints are the strongest, the distance-type constraints except constraint 8 are second, and the angle-type constraints are the weakest.

Table 1. Relative Variance: Single Constraint
variance of point 1 in the major direction derived from the distance between point and plane constraint is much smaller than that obtained from the distance between point and line constraint is because the basis in the first constraint is much stronger than the one in the second constraint from a geometrical point of view.

The traces illustrated in Figure 1 are the so-called average standardized traces. They are the average values of the sum of the relative variances of the constrained points. Trace equals 3 indicates no accuracy improvement in the estimated points. Reviewing Table 1 and Figure 1, we can make the same conclusions as we have made in the theoretical research above.

Our experiment shows that the efficiency of the constraints has been promoted by grouping the same types of constraints and by combining different types of constraints. Although the sum of squared residuals is increased with the number of constraints in the camera calibration, the variance of the estimated parameter is decreased. From Figure 1, it is apparent that a point which is involved in a few constraints can only have a reduction in variance by an order of magnitude. Refer to Huang and Haralick (1997) for more information.

Specific Evaluation
Specific evaluation means that assessing accuracy improvement is conducted in "the major direction of accuracy improvement." Figure 2 shows that the axes of the 3D coordinate system are parallel to the edges of the house, which consists of 20 3D points. The advantage of such an arrangement is to provide a method to predict the largest reduction in the variances σ_x, σ_y, and σ_z by adding a constraint to the camera calibration. For instance, let us assume that the distance between points p_1 and p_2 is known. The constraint distance between points is adopted for constraining the distance between these two points to be equal to the known distance. It is easy to see from Figure 3 that the distance is actually the difference of the x coordinates between the two points. It could be expected that the σ_x should be reduced much more than the σ_y and σ_z when applying the constraint to the two points. Therefore, the x axis is called the major direction of accuracy improvement. Table 1 shows apparently that the accuracy improvement in the major direction is much larger than in the other two directions.

Correctness Test
The statistical test for the correctness of the camera calibration with constraints is based on the fact that the distribution of a linear combination of the normally distributed variables is also normal. This test is not related to the constraints. It is associated with the type of noise to be added in the camera calibration for generating the simulated sample data. The basic assumptions for the test are (1) that the mathematical model employed can be linearized and that the scalar function (objective function) has finite second partial derivatives and that the random perturbations are small enough so that the relationship between the scalar function evaluated at the ideal but unknown input and output quantities and the observed input quantity and perturbed output quantity can be approximated sufficiently well by a first-order Taylor series expansion; and (2) that the noise we add in the 2D image points is an additive random perturbation and that the estimated quantity produced by the camera calibration processing is also an additive random perturbation (Haralick, 1993; Anderson, 1984). The coordinates of the 2D passpoints and their covariances computed by the camera calibration without introducing noise to the 2D image are regarded as the population mean and population covariance of the 3D points. Let $\mu = \Theta$ be the population mean and $\Sigma = \Sigma_n$ the population covariance. The sample mean and sample covariance can be obtained by adding random noise to the 2D data in the camera calibration process. Let m be the number of replications. From each replication, the result is a sample mean $\hat{x} = M$ and a sample covariance $S = S$, where
The major direction is parallel to the axes of the coordinate system. On the other hand, the constraints lead to a linear correlation between the constrained estimates. As a result, the determinants of their covariance matrices are equal to zero. In order to solve the problem in the test, consider the difference between the population mean and sample mean of one of the eight constrained points (d1, d2, and d3 of point 1): i.e.,

\[
1.27 \times 10^{-3} 9.1 \times 10^{-4} 4.1 \times 10^{-4}
\]

test because the determinants of their covariance matrices are equal to zero. In order to solve the problem in the test, consider the difference between the population mean and sample mean of one of the eight constrained points (d1, d2, and d3 of point 1): i.e.,

\[
1.27 \times 10^{-3} 9.1 \times 10^{-4} 4.1 \times 10^{-4}
\]

This shows that the difference in z coordinates is close to zero, which means that the coplanarity constraints make the sample mean converge to the population mean in the major direction of accuracy improvement because the major direction is parallel to the z axis (Figure 2). This leads to the corresponding variance converging to zero in the major direction. The covariance matrices of point 1 in three different cases are shown as follows.

Table 3 shows the statistical results of the camera calibration tests. The population covariance matrix of point 1 in the non-constrained case.

\[
1.38 \times 10^{-6} 5.79 \times 10^{-6} 6.48 \times 10^{-6}
\]

\[
5.79 \times 10^{-6} 1.74 \times 10^{-6} 1.78 \times 10^{-6}
\]

\[
6.48 \times 10^{-6} 1.78 \times 10^{-6} 2.54 \times 10^{-6}
\]

The population covariance matrix of point 1 constrained by a coplanarity constraint.

\[
1.21 \times 10^{-6} 1.25 \times 10^{-6} 5.98 \times 10^{-7}
\]

\[
1.25 \times 10^{-6} 1.73 \times 10^{-6} 1.64 \times 10^{-6}
\]

\[
5.98 \times 10^{-7} 1.64 \times 10^{-7} 2.34 \times 10^{-10}
\]

Table 4 shows the test result of the camera calibration with two coplanarity constraints. One-hundred replications, and 100 trials for each replication, have been used in this test. Points 1, 2, 3, 4, and points 5, 6, 7, 8 lying on two separate horizontal planes (Figure 2) are used in these two constraints. The eight points are not successful in passing the test.
The sample covariance matrix of point 1 constrained by a coplanarity constraint:

\[1.26 \times 10^{-06} \quad 1.16 \times 10^{-07} \quad 1.10 \times 10^{-32} \\
1.16 \times 10^{-07} \quad 1.38 \times 10^{-06} \quad -2.89 \times 10^{-32} \\
1.10 \times 10^{-32} \quad -2.89 \times 10^{-32} \quad 7.97 \times 10^{-31} \]

The determinants of the three covariance matrices above are:

\[5.31 \times 10^{-18} \quad 4.90 \times 10^{-26} \quad 1.38 \times 10^{-12} \]

Analyzing the above three covariance matrices and their determinants, two points can be summarized as follows: (1) an obvious accuracy improvement in the major direction has been achieved by applying the coplanarity constraint to the eight constrained points; and (2) the convergence speed to zero of the sample variance in the major direction is much faster than that of the population variance. Correspondingly, the determinant of the sample covariance matrix converges to zero much faster than that of the population covariance matrix. The zero determinant indicates that the covariance matrix is singular. In this particular case, the major direction is also the direction in which the estimates are linearly correlated because the zero sample variance only happens to the constrained estimate. This provides an efficient way to solve the singular problem encountered in testing camera calibration with constraints. That is to say, removing the estimates with zero sample variance is the way of removing the correlated estimates from the test data. Applying this new method to point 1, the population and the sample covariance matrices of point 1 become 2 by 2 matrices shown as follows:

\[1.21 \times 10^{-06} \quad 1.25 \times 10^{-08} \\
1.25 \times 10^{-08} \quad 1.73 \times 10^{-06} \]

and

\[1.26 \times 10^{-06} \quad 1.16 \times 10^{-07} \\
1.16 \times 10^{-07} \quad 1.38 \times 10^{-06} \]

and their determinants are:

\[2.10 \times 10^{-12} \quad 1.74 \times 10^{-12} \]

These two determinants are not close to zero, which means that the singular problem has been solved. Table 5 lists the probabilities of the eight constrained passpoints by using the new method. The numerical results indicate that the eight points pass the test.

Test in the Case that the Major Direction Is Not Parallel to the Coordinate Axes

It is true that the determinant of the covariance matrix of the constrained point is equal to zero due to the correlation between its components (x, y, and z) derived from constraints. The variances of the estimated components may not necessarily be equal to zero if the major direction is not parallel to the coordinate axes. In order to solve the zero determinant problem using the proposed method in this case, applying an orthogonal transformation to the population mean and covariance, the sample mean and covariance is required: i.e.,

\[\mu_y = \mu, \Sigma \]
\[\sigma_y = T^{\top} \Sigma T, \]
\[\bar{Y} = xT, \]
\[S = T^{\top} S T, \]

where matrix \(T \) is the orthogonal transformation matrix. The advantage of the orthogonal transformation is that the property of the matrix may not be changed by the transformation. In other words, the trace of the covariance matrix may not be affected by the transformation due to the symmetry of the covariance matrix. So the results of efficiency evaluation based on the transformed covariance matrix are the same as those obtained from the original covariance matrix. Three methods are presented as follows. Let \(X \) be the coordinate matrix of the constrained points in the original coordinate system and \(Y \) be a new coordinate matrix in which the major direction is parallel to one of the axes in the old coordinate system. The first method for calculating the transformation matrix \(T \) is written as

\[T = (X^T X)^{-1} X^T Y. \]

The second method is more complicated than the first one. The general formula for the 3D coordinate transformation is expressed by

\[Y_i = \Delta X + kT X_i \quad (i = 1, ..., n) \]

where \(\Delta X \) is the translation vector, \(n \) is the number of the constrained points, and \(k = 1 \) (the scale factor). The objective function for computing \(T \) is

\[\sum_{i=1}^{n} [(TX_i + \Delta X) - Y_i]^2 = \min, \]

in which \(\Delta X \) is equal to zero if \(X \) and \(Y \) are centralized. Then the objective function can be simplified as

\[\sum_{i=1}^{n} (TX_i - Y_i)^2 = \min \]

where \(X^\circ \) and \(Y^\circ \) are the centralized coordinates. The transformation matrix \(T \) is computed as follows:

\[D_{3 \times 3} = X_{3 \times n} T^T_{n \times 3} \]

and matrix \(D \) is decomposed into (the singular value decomposition)

\[D_{3 \times 3} = U_{3 \times 3} S_{3 \times 3} V_{3 \times 3}^T \]

The transformation matrix is the product of matrices \(U \) and \(V^T \): i.e.,

\[T = UV^T. \]

The third method is different from the above two methods. The transformation matrix consists of the eigenvectors derived from the covariance matrix of the constrained point. After transformation, the covariance matrix becomes a diagonal matrix in which one of its diagonal elements is equal to zero. We suggest using the first two methods if one knows the relationship between the major direction and the coordinate axes. The population mean and sample mean remain unchanged in the first method and remain partly unchanged in the second method after transformation because these two methods are not involved in translation. The statistical test will be simplified if we can keep the population mean and sample mean unchanged in the transformation. The third method can be applied in the case that we have no idea about the relationship between the major direction and the coordinate axes.
axes, but the values of the means will be changed after the transformation.

Independency Condition
The ten constraints can be used separately and simultaneously. To achieve a desired efficiency, a good combination of the constraints in terms of the geometric structure of the 3D points is suggested. The constraints having high efficiency should have a high priority to be considered to be used in the camera calibration process. Before applying the constraints to the camera calibration, the constraints should satisfy the independence condition. For instance, distances from a passpoint to several other points are given. The maximum number of the distance between points constraints that can be applied to this passpoint is three. Adding more than three constraints to the passpoint will lead to an over-constrained problem. As a result, the rank of the coefficient matrix of the constraints will not be full.

Conclusion
This paper discusses using ten constraints for improving the accuracy of the 3D passpoints. The efficiency and correctness of the constraints are two major problems in the discussion. The constraints play a role in forcing the constrained estimate to converge to its true values in the camera calibration. As a result, the variance of the constrained estimate converges to zero in the major direction. The zero variance strongly proves that the corresponding constraints are efficient and also verifies the correctness of the models being used in the construction of the constraints. The zero determinant problem will be encountered in testing the correctness of models when adding the constraints to the camera calibration. This problem can be solved by removing the estimate with zero variance from the test data. Removing the constrained estimates from the data does not influence correctness of the test. The methods presented in this paper can be used to test the correctness of any software as well as the efficiency of the mathematical models used in the software.

The mathematical models used in the paper can be easily modified (for instance, by adding or deleting some of the unknowns in the constraint equations) to be suitable for a real application. In addition to the accuracy improvement of the estimated 3D points, the constraints can also be used to solve the rank-defect problem resulting when the number of the control points is not enough for determining the unknowns.

References

(Appendix)

Table A1. Interior and Exterior Orientations of Two Images

<table>
<thead>
<tr>
<th>Item</th>
<th>Image 1</th>
<th>Image 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>-1.5</td>
<td>-1.5</td>
</tr>
<tr>
<td>Y</td>
<td>-1.5</td>
<td>-1.5</td>
</tr>
<tr>
<td>Z</td>
<td>-2.1213203</td>
<td>-2.1213203</td>
</tr>
<tr>
<td>a</td>
<td>0.1464466</td>
<td>-0.1464466</td>
</tr>
<tr>
<td>b</td>
<td>-0.3535534</td>
<td>-0.3535534</td>
</tr>
<tr>
<td>c</td>
<td>-0.3535534</td>
<td>0.3535534</td>
</tr>
<tr>
<td>d</td>
<td>0.8535534</td>
<td>0.8535534</td>
</tr>
</tbody>
</table>

Note: f, x, and y are the interior orientation elements (the focal length and the coordinates of the principle points); X, Y, and Z are the exterior coordinates of the perspective center; and a, b, c, and d are the elements constituting the rotation matrices (R): i.e.,

\[
R = \begin{pmatrix}
 d^2 + a^2 - b^2 - c^2 & 2(ab - cd) & 2(ac + bd) \\
 2(ab + bd) & d^2 - a^2 + b^2 - c^2 & 2(bc - ad) \\
 2(ac - bd) & 2(bc + ad) & d^2 - a^2 - b^2 + c^2
\end{pmatrix}
\]

The coordinates of the 2D image points listed in Tables A2 and A3 are needed to transform to the camera frame system. The transformation equation is

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 0 & -1 \\
 1 & 0
\end{pmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 500 \\
 -500
\end{pmatrix}
\]

where x and y are the coordinates of the 2D points used in the camera calibration process.
Table A2. Coordinates of 20 3D Points

<table>
<thead>
<tr>
<th>Pn</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.735215</td>
<td>-0.441129</td>
<td>-0.51465</td>
</tr>
<tr>
<td>2</td>
<td>0.735215</td>
<td>-0.441129</td>
<td>-0.51465</td>
</tr>
<tr>
<td>3</td>
<td>0.735215</td>
<td>0.441129</td>
<td>-0.51465</td>
</tr>
<tr>
<td>4</td>
<td>-0.735215</td>
<td>0.441129</td>
<td>-0.51465</td>
</tr>
<tr>
<td>5</td>
<td>-0.735215</td>
<td>-0.441129</td>
<td>0.220564</td>
</tr>
<tr>
<td>6</td>
<td>0.735215</td>
<td>-0.441129</td>
<td>0.220564</td>
</tr>
<tr>
<td>7</td>
<td>0.735215</td>
<td>0.441129</td>
<td>0.220564</td>
</tr>
<tr>
<td>8</td>
<td>-0.735215</td>
<td>0.441129</td>
<td>0.220564</td>
</tr>
<tr>
<td>9</td>
<td>-0.294086</td>
<td>0</td>
<td>0.51465</td>
</tr>
<tr>
<td>10</td>
<td>0.147043</td>
<td>0</td>
<td>0.51465</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>-0.441129</td>
<td>-0.51465</td>
</tr>
<tr>
<td>12</td>
<td>0.735215</td>
<td>0</td>
<td>-0.51465</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0.441129</td>
<td>-0.51465</td>
</tr>
<tr>
<td>14</td>
<td>-0.735215</td>
<td>0</td>
<td>-0.51465</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>-0.441129</td>
<td>0.220564</td>
</tr>
<tr>
<td>16</td>
<td>0.735215</td>
<td>0</td>
<td>0.220564</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0.441129</td>
<td>0.220564</td>
</tr>
<tr>
<td>18</td>
<td>-0.735215</td>
<td>0</td>
<td>0.220564</td>
</tr>
<tr>
<td>19</td>
<td>-0.735215</td>
<td>0</td>
<td>0.51465</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The coordinates are the numbers listed in Table A3 multiplied by 100.

Table A3. Coordinates of 20 2D Points

<table>
<thead>
<tr>
<th>Pn</th>
<th>Image 1</th>
<th>Image 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>6.5231356</td>
<td>6.6425934</td>
</tr>
<tr>
<td>2</td>
<td>0.5169144</td>
<td>2.2461469</td>
</tr>
<tr>
<td>3</td>
<td>4.0325678</td>
<td>0.5706829</td>
</tr>
<tr>
<td>4</td>
<td>10.012772</td>
<td>3.6930557</td>
</tr>
<tr>
<td>5</td>
<td>6.2147616</td>
<td>9.3469338</td>
</tr>
<tr>
<td>6</td>
<td>1.2225273</td>
<td>5.0405054</td>
</tr>
<tr>
<td>7</td>
<td>4.1668961</td>
<td>3.2684527</td>
</tr>
<tr>
<td>8</td>
<td>9.1466756</td>
<td>6.5105355</td>
</tr>
<tr>
<td>9</td>
<td>5.9696548</td>
<td>7.3825438</td>
</tr>
<tr>
<td>10</td>
<td>4.5462181</td>
<td>6.2671851</td>
</tr>
<tr>
<td>11</td>
<td>3.0629952</td>
<td>4.1098325</td>
</tr>
<tr>
<td>12</td>
<td>2.4038201</td>
<td>1.3468904</td>
</tr>
<tr>
<td>13</td>
<td>6.6378093</td>
<td>1.9309685</td>
</tr>
<tr>
<td>14</td>
<td>8.4376026</td>
<td>5.0244326</td>
</tr>
<tr>
<td>15</td>
<td>3.4060492</td>
<td>6.9240689</td>
</tr>
<tr>
<td>16</td>
<td>2.7868658</td>
<td>4.0990166</td>
</tr>
<tr>
<td>17</td>
<td>6.3857078</td>
<td>4.7130089</td>
</tr>
<tr>
<td>18</td>
<td>7.7966788</td>
<td>7.8165523</td>
</tr>
<tr>
<td>19</td>
<td>5.2343786</td>
<td>6.8063795</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The coordinates are the numbers listed in Table A3 multiplied by 100.