PECORA 21 • ISRSE 38

Continuous Monitoring of Our Changing Planet: From Sensors to Decisions

Save the Date

October 6-11, 2019
Baltimore, MD • Marriott Waterfront

https://www.asprs.org/event/pecora21-isrse38
A joint meeting of the 21st William T. Pecora Memorial Remote Sensing Symposium (Pecora 21) and the 38th International Symposium on Remote Sensing of Environment (ISRSE-38) will convene in Baltimore, Maryland, USA from October 6 – 11, 2019. The combined conference will be hosted by NASA, NOAA and the USGS, with an overarching theme of “Continuous Monitoring of Our Changing Planet from Sensors to Decisions.”

Plenary Presentations from

Gilberto Câmara
Dr. Gilberto Câmara is a Brazilian researcher in Geoinformatics, Spatial Analysis, Land Use Change, and Nature-Society Interactions, from Brazil’s National Institute for Space Research (INPE). Dr. Câmara is currently Secretariat Director for the Group on Earth Observations (GEO).

Michael Freilich
Dr. Michael Freilich is an accomplished oceanographer, microwave remote sensing expert, educator, and science administrator who directed NASA’s Earth Science Division from November 2016 through February 2019.

Conference Location

Marriott Waterfront Baltimore
Please make your hotel reservations at the Baltimore Marriott Waterfront Hotel, as soon as possible in order to take advantage of the special ASPRS room rates. While our room block does not expire until September 10, 2019, there is no guarantee that rooms will be available at that late date in the block or in the hotel. Attendees can book their reservations by calling 1-877-212-5752. A very limited number of rooms are reserved in the room block at this special rate.

Exhibiting

Maximize the benefits of your participation by becoming a symposium sponsor. Your company can make its mark and gain visibility before, during and after the event. Choose from our list of Unique Sponsorships for the events or items that best showcase your company.

Contact Bill Spilman, Innovative Media Solutions, to discuss your companies exhibiting needs.

(877) 878-3260 toll-free • (309) 483-6467
bill@innovativemediasolutions.com

Special Presentation Sessions

- The Challenges of Integration for Arctic Monitoring
- Using Remotely Sensed Data to Map Forest Structure and Attributes
- Space Agencies Outlook
- Communicating Science Across the Earth Observation Life Cycle
- National Land Cover Database 2016, Offering New Change Insights Across the Conterminous United States
- Copernicus—Europe’s eyes on Earth: Sustainable and Continuous Monitoring of our Environment
- Global Hyperspectral Imaging Spectral-library of Agricultural-Crops (GHISA) in Support of NASA’s Surface Biology and Geology (SBG) mission
- Climate Science – Challenges and Opportunities for Fulfilling Global Multilateral Agreements
- Mapping and Monitoring Surface Change: Landslides and Subsistence
- Copernicus Serving Sustainable Development Goals
- Biodiversity and Conservation Case Studies
- Large Area Land Change Mapping and Monitoring Investigations
- Sustainable Land Imaging and the Future of Moderate-Resolution Land Observation
- Women in Remote Sensing
- Earth Observation and Remote Sensing Education Initiatives
- Toward the Assessment and Modeling of a Functional Relationship of Land Cover and Land Use A Possible New Path forward – the LCHML (Land Characterization Metal-Language) A New Proposed ISO Standard
- Open Data Cube: A New Data Technology for Enhancing the Use of Satellite Data to Address Sustainable Development Goals
- Bathymetry and Near-Shore Investigations
- How No-cost Landsat Data is Reshaping College Level Remote Sensing Courses (AmericaView Special Session) -Land Change Monitoring Assessment and Projection (LCMAP): New Land Change Science Research and Development
- New Generation of NOAA Operational Satellites to support Land, Arctic, and Coastal Waters Applications
- Advances in Soil Moisture and Condition Measurement and Monitoring
- A Conversation on the Landsat Program and its Data Policy
- Investigations in Support of Human Welfare
- Satellite Interoperability
- NASA Harvest and Other Recent Advances in Remote Sensing of Agricultural Applications and Food Security
- Collaboration in the Diverse Geospatial Workforce: How Early Career Professionals Can Bring Innovations to the Technical Community
- Case Studies in Flood Monitoring and Management
- UAS: Changing the Future of Remote Sensing
- Earth Observation and Agricultural Statistics - Agricultural and Agri-environmental Monitoring for SDG 2: Zero Hunger
- Processing Strategies for Big Data
- Remote Sensing investigations of Wetlands and Near-Shore Issues
- New Technology and Techniques to Increase Scientific and Applications Access to Satellite Earth Observations
- Applications of Earth Observations for Disaster Assessments and Management
- Plus many more!
PRODUCTS

Teledyne Technologies Incorporated announced today that imaging hardware and software from Teledyne Optech helped enable 3D spatial data acquisition and visual effects for HBO’s hit series Game of Thrones. A team, led by Vektra d.o.o. of Croatia, utilized Teledyne’s lidar (light detection and ranging) technology to create a detailed 3D representation of the old city of Dubrovnik, the model for the fictional city of King’s Landing. A promotional video can be found at the following link: https://www.youtube.com/watch?v=PTRqjOR4awU.

Lidar is becoming increasingly popular for creating realistic computer-generated imagery (CGI) and visual special effects. Traditionally, lidar has been used for mapping and in construction, civil engineering, mining and transportation. Lidar is now of particular interest in the film industry because of its ability to scan buildings or even entire cities in 3D, while maintaining a high level of detail and accuracy. Lidar’s ability to generate exact replicas of locations reduces the time and cost for 3D modelling and helps create more realistic visual effects.

Vektra generated 3D point clouds in Dubrovnik using various lidar technologies including Teledyne Optech’s Maverick mobile lidar system and Polaris fixed terrestrial scanner. The lidar point clouds were then colorized with digital camera imagery and image fusion software.

“We are most proud when our technology contributes to new scientific knowledge, such as revealing an extensive, undiscovered Maya civilization in Guatemala,” said Robert Mehrabian, Executive Chairman of Teledyne. “We are equally delighted when our high-technology equipment supports art and entertainment.”

Soil analysis using a full range UV/VIS/NIR Spectral Evolution spectroradiometer with a 350-2500nm spectral range is fast, non-destructive, affordable, and doesn’t involve hazardous chemicals. With our handheld sample contact probe, soil spectra can be collected in the field from outcrops or a soil pit. Analysis with EZ-ID sample identification software running on a tablet or laptop matches high resolution target scans against three known sample libraries – the USGS library and the optional SpecMIN and GeoSPEC libraries. A researcher is able to see the absorption features characteristic of clays.

EZ-ID provides a best match based on examining the target spectra and the library spectra. A researcher can add or remove regions of interest to focus on only the prominent features in the spectra for a better identification in clay mixtures.

For more information, visit: https://spectraevolution.com/products/hardware/field-portable-spectroradiometers-for-remote-sensing/.

CALENDAR

- 11-15 August, SPIE—Imaging Spectrometry XXIII, San Diego, California. For more information, visit spie.org/OP423.
- 17-18 September, GIS IN THE ROCKIES, Denver, Colorado. For more information, visit http://gisintherockies.org.
- 6-11 October, Pecora 21/ISRSE 38, Baltimore, Maryland. For more information, visit http://www.asprs.org/event/pecora21_isrse38.
COLUMNS

469 Mapping Matters

472 Signatures
The Column of the Student Advisory Council.

475 Grids and Datums
This month we look at the Democratic and Popular Republic of Algeria.

ANNOUNCEMENTS

465 Pecora 21/ISRSE 38 Symposium

474 ASPRS Certification

479 Headquarters News

479 New ASPRS Members
Join us in welcoming our newest members to ASPRS.

DEPARTMENTS

466 Industry News

466 Calendar

471 Ad Index

492 ASPRS Sustaining Members

PEER-REVIEWED ARTICLES

481 High-resolution Large-area Digital Orthophoto Map Generation using LROC NAC Images
Kaichang Di, Mengna Jia, Xin Xin, Jia Wang, Bin Liu, Jian Li, Jianfeng Xie, Zhaocing Liu, Man Peng, Zongyu Yue, Jia Liu, Ruilin Chen, and Changlu Zhang

This study introduces a systematic method for large-area seamless digital orthophoto map production. The result generated using over 700 Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images has a resolution of 1.5 m and covers a large area of 20° in longitude and 4° in latitude.

493 Occlusion Probability in Operational Forest Inventory Field Sampling with ForeStereo
Fernando Montes, Álvaro Rubio-Cuadrado, Mariola Sánchez-González, Isabel Aulló-Maestro, Miguel Cabrera, and Cristina Gómez

Proximal sensing technologies under fixed-point sampling inhibits detection of some trees. This study evaluates various approaches to eliminate problems in fixed point sampling due to tree occlusions and instrument bias estimates.

509 A Novel Method for Separating Woody and Herbaceous Time Series
Qiang Zhou, Shuguang Liu, and Michael Hill

In this study, the authors developed a frequency decomposition method to separate woody and herbaceous vegetation components using time series for modeling inter-relationships between trees and grasses, and monitoring fuel loads and biomass for livestock. They examined the spatial and temporal patterns of the decomposed NDVI, where woody and herbaceous NDVI showed different responses to precipitation.

521 Examining the Effectiveness of Spectrally Transformed SMA In Urban Environments
Yingbin Deng and Changshan Wu

While spectral transformation has been used to compute spectral variability, there is no study that addresses the necessity and applicability of transformed models. This paper answers two questions: 1) whether significantly different results will be generated through applying a spectral transformation, and 2) which spectral transformation performs better in urban environments.
A witch’s cauldron. Gastrointestinal reflux. A kale smoothie. The green swirls of this satellite image may conjure up many mental pictures—except what it actually is. On April 12, 2019, the Operational Land Imager on Landsat 8 acquired this image of Lake Khanka.

This shallow freshwater lake is located on the border of Russia and northeastern China. The green hues in the water are most likely chlorophyll-rich phytoplankton in the lake, which contains a fairly constant presence of diatoms. The phytoplankton and other suspended solids in the lake are easily mixed by wind. This mixing of material between the surface and bottom often clouds the water, which usually starts to lose clarity in less than a meter.

The microscopic particles and organisms can be seen in great detail due to a special editing technique that combines scientific expertise and an artistic touch. Like a photographer adjusting lighting and using filters, Norman Kuring of NASA’s Ocean Biology group works with various software programs and color-filtering techniques to draw out the fine details in the water. The swirls in the water are all quite real; Kuring simply separates and enhances certain shades and tones in the data to make the biomass more visible. Without Kuring’s processing of the subtle colors in the image, Lake Khanka can appear less compelling.

As one of the largest freshwater lakes (by area) in Far Eastern Russia and China, Lake Khanka (known as Lake Xingkai in Chinese) plays an important role in supporting biodiversity. It is a major source of freshwater for birds (particularly waterfowl) and home to some of the highest levels of bird diversity in Eurasia. Khanka is also home to many freshwater species of fish and aquatic animals, including a large population of rare Chinese soft-shelled turtles.

The lake is surrounded by open lowlands, wetlands, grassy meadows, and swamps, which also contain many rare and endangered plants. The lake has been designated as a Ramsar Convention Wetland Site, promoting conservation and sustainable use of the wetlands. The lake is also included on UNESCO’s “World Biosphere Reserves” list.

Question: I am a college student working on my bachelor’s degree in Spatial Science (Surveying).

I am interested in photogrammetry, and my study is on drone-based surveys. I have the following questions on the new “ASPRS Positional Accuracy Standards for Digital Geospatial Data”:

1. In sections 7.7 and 7.8, when it talks about checkpoint and ground control accuracy being 1/2 RMSEmap, is RMSEmap the desired/intended accuracy class?

2. With GCPs having three times the accuracy of the geospatial data set being tested, does that mean the GCP accuracy will be three times more accurate than the desired/intended accuracy class?

3. Do you use Table D.1 to calculate all the statistics and then use the results to determine the ASPRS accuracy class? Is that the typical workflow? Is there a sample report you can supply?

4. Are there guidelines on what you should aim for regarding the additional statistics discussed on the standards, such as max, min, skew, kurtosis and mean absolute?

5. Can you clarify what it means when you can state “tested to meet” versus “produced to meet”?

6. Can you direct me to a document regarding planning and best practice guidelines?

7. Do the vegetated area ground control points simply go on the bare ground between vegetation?

8. How do you assess seamline mismatch?

9. If an orthophoto fails a column in Table B.3 (e.g. the RMSe is OK, but the accuracy at 95% CI exceeds the limit), do you select the accuracy class in which your project meets or exceeds all standards in a single row?

10. I note that many drone-based surveys seem to have a mean error much higher than 25% of the RMSE. What does this information tell you about the quality of the project, and how can you correct it?

11. I also noticed that nearly every drone software company reports accuracy as a function of GSD, e.g. heights within three times the GSD. How are these related, and is GSD really related to accuracy in any way? I did a project with a GSD of 1 cm, but I achieved 11 mm RMSE heights and mean of 3 mm.

12. Can you direct me to where I can read more about rigorous total propagated uncertainty regarding photogrammetry?

13. For repeat surveys of the same area, if I use the software to determine the camera calibration via self or automatic calibration, is it best to save it and then use the same calibration for the repeat flights rather than having the software re-calculate the camera calibration each time?

James Wallace
University of Southern Queensland, Australia

Dr. Abdullah: In the June 2019 issue, I addressed questions 1 through 6. The remaining questions are addressed below.

Part II

Question 7—*Do the vegetated area ground control points simply go on the bare ground between vegetation?*

Answer: Yes, they should. Ground control points should always be surveyed on a firm ground.

Question 8—*How do you assess seamline mismatch?*

Answer: Evaluating seamline mismatch is usually performed visually to determine whether features in adjacent rectified images are aligned correctly. For standard large-format metric cameras, mosaic cut lines are inserted manually. The technician selects the mosaic cut lines path to avoid buildings, trees and other elevated objects, as well as radiometrically mismatched areas. Those mosaic cut lines are usually saved in a CAD file format such as DGN, DWG or shape file. These CAD files, if they exist, are very

© 2019 American Society for Photogrammetry and Remote Sensing
doi: 10.14358/PERS.85.7.469
helpful in evaluating the seamline mismatch quality of the final product, i.e. ortho mosaic. The latest image processing software, such as Pix4D, enables users to visit the mosaic cut lines and allow them to correct or re-route the mosaic cut lines in real time. Once a mismatch is found, it can be quantified and evaluated according to the “ASPRS Positional Accuracy Standards for Digital Geospatial Data,” as illustrated in the far-right column of Table 1.

Table 1: ASPRS horizontal accuracy standards and mosaic seamline mismatch.

<table>
<thead>
<tr>
<th>Horizontal Accuracy Class</th>
<th>RMSE(_x) and RMSE(_y) (cm)</th>
<th>RMSEr (cm)</th>
<th>Horizontal Accuracy at 95% Confidence Level (cm)</th>
<th>Orthoimagery Mosaic Seamline Mismatch (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-cm</td>
<td>≤X</td>
<td>≤1.41*X</td>
<td>≤2.45*X</td>
<td>≤2*X</td>
</tr>
</tbody>
</table>

“There is never a situation in which some values of statistical terms meet the given thresholds while other terms fail to meet those thresholds for a given accuracy class.”

Question 9—If an orthophoto fails a column in Table B.3 (of the ASPRS Standards, see below) (e.g. the RMS-E\(_r\) is OK, but the accuracy at 95% CI exceeds the limit), do you select the accuracy class in which your project meets or exceeds all standards in a single row?

Table B.3 Common Horizontal Accuracy Classes According to the New Standard.

<table>
<thead>
<tr>
<th>Horizontal Accuracy Class</th>
<th>RMSE(_x) and RMSE(_y) (cm)</th>
<th>RMSEr (cm)</th>
<th>Orthoimage Mosaic Seamline Maximum Mismatch (cm)</th>
<th>Horizontal Accuracy at 95% Confidence Level (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63</td>
<td>0.9</td>
<td>1.3</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1.25</td>
<td>1.8</td>
<td>2.5</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>2.50</td>
<td>3.5</td>
<td>5.0</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>5.00</td>
<td>7.1</td>
<td>10.0</td>
<td>12.2</td>
<td>12.2</td>
</tr>
<tr>
<td>7.50</td>
<td>10.6</td>
<td>15.0</td>
<td>18.4</td>
<td>18.4</td>
</tr>
<tr>
<td>10.00</td>
<td>14.1</td>
<td>20.0</td>
<td>24.5</td>
<td>24.5</td>
</tr>
<tr>
<td>12.50</td>
<td>17.7</td>
<td>25.0</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Answer: There is never a situation in which some values of statistical terms meet the given thresholds while other terms fail to meet those thresholds for a given accuracy class. The derived thresholds for RMSEr and the accuracy at 95% confidence level are all derived using the accuracy class or the RMSE\(_x\) or y, therefore if the verified RMSE\(_x\) or y of the product is found to be outside the specified limit, then both RMSEr and the accuracy at 95% should fail to meet the project specifications. Table 2 illustrates two situations of product accuracy verification for a product accuracy class of 10 cm. In CASE 1, the RMSE \(_x\) or y of 8 cm meets the project specifications; in CASE 2, with RMSE \(_x\) or y of 13 cm, it fails to meet project specifications. As you notice from the example, once the RMSE \(_x\) or y value meets the threshold, all other statistical measures derived from that RMSE meet its thresholds. In the same token, once the RMSE \(_x\) or y value fails the threshold, all statistical measures fail as well.

Table 2: Horizontal Accuracy Examples.

<table>
<thead>
<tr>
<th>Horizontal Accuracy Class</th>
<th>RMSE(_x) and RMSE(_y) (cm)</th>
<th>RMSEr (cm)</th>
<th>Horizontal Accuracy at 95% Confidence Level (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 cm (specification)</td>
<td>≤10</td>
<td>≤14.1</td>
<td>≤24.5</td>
</tr>
<tr>
<td>CASE 1 (actual)</td>
<td>8.0 ≤10 (pass)</td>
<td>11.28 ≤14.1 (pass)</td>
<td>19.6 ≤24.5 (pass)</td>
</tr>
<tr>
<td>CASE 2 (actual)</td>
<td>13.0 ≥10 (fail)</td>
<td>18.33 ≥14.1 (fail)</td>
<td>31.85 ≥24.5 (fail)</td>
</tr>
</tbody>
</table>

Question 10—I note that many drone-based surveys seem to have a mean error much higher than 25% of the RMSE. What does this information tell you about the quality of the project, and how can you correct it?

Answer: The ASPRS standards states that the exact specification of an acceptable value for mean error may vary by project and should be negotiated between the data provider and the client. It also recommends that the mean error be less than 25% of the target RMSE value for the project. Mean errors that are greater than 25% of the target RMSE, should be investigated to determine the cause of the errors and to determine what actions, if any, should be taken. Higher value for the mean errors in general indicates biases in the data, especially if the computed standard deviation is low. Biases in the data can be modeled and removed. Examples of such biases in the geospatial products are generated by errors, which can be caused by using the wrong vertical or horizontal datum or if the surveyor forgot to subtract the instrument height when adjusting the network during the ground control surveying or other systematic errors. If the computed standard deviation is low, you can always subtract or add the value of the mean (or average) from the biased quantities to remove the systematic errors, and this will improve the data accuracy.
Question 11—I also noticed that nearly every drone software company reports accuracy as a function of GSD, e.g. heights within three times the GSD. How are these related, and is GSD really related to accuracy in any way? I did a project with a GSD of 1 cm, but I achieved 11 mm RMSE heights and mean of 3 mm.

Answer: According to the new ASPRS standards, accuracy should not be associated with imagery GSD or scale because today’s digital sensors have different configurations and lens design to enable high-resolution imagery from very high altitudes. Table 3 illustrates how these four metric digital cameras can be used to acquire imagery with the same ground resolution of 7.5 cm from drastically varied flying altitudes, from 2,363 feet to 9,937 feet above ground level (AGL). One should expect that the accuracy for products derived from imagery acquired from 9,937 feet AGL should be inferior to the accuracy of products derived from imagery acquired from 2,363 feet AGL. That is why we should not use the GSD as an indicator for product accuracy.

Table 3 Digital Cameras and Flying Altitude Examples

<table>
<thead>
<tr>
<th>Camera</th>
<th>Focal Length (mm)</th>
<th>Flying Altitude (ft)</th>
<th>Resulting GSD (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS80</td>
<td>62.77</td>
<td>2,363</td>
<td>7.5</td>
</tr>
<tr>
<td>DMC IIe 230</td>
<td>92.00</td>
<td>4,042</td>
<td>7.5</td>
</tr>
<tr>
<td>UltraCAM Falcon Prime</td>
<td>100.00</td>
<td>4,100</td>
<td>7.5</td>
</tr>
<tr>
<td>UltraCAM Eagle 210</td>
<td>210.00</td>
<td>9,937</td>
<td>7.5</td>
</tr>
</tbody>
</table>

If the software company is using the GSD as a measurement of length or dimension, then there is no harm in using the GSD to quantify products accuracy because all it means is a quantity. However, if they are using it to associate GSD as indicator or discriminator of product accuracy, then we should not condone this practice.

Question 12—Can you direct me to where I can read more about rigorous total propagated uncertainty regarding photogrammetry?

Answer: As far as I know, there is not a book published on the topic, but you can find several good published papers on the topic, among them are the following:

Question 13—For repeat surveys of the same area, if I use the software to determine the camera calibration via self or automatic calibration, is it best to save it and then use the same calibration for the repeat flights rather than having the software re-calculate the camera calibration each time?

Answer: It is always beneficial to use accurate camera calibration values in the bundle block adjustment because it minimizes the amount of parameter optimization. That is also how we did it when we used large-format metric cameras. However, because the cameras on board unmanned aircraft systems (UAS) are consumer-grade non-metric cameras, you will always need the help of the camera self-calibration capability of the software for every project, every time you adjust a block. Such non-metric cameras do not maintain their internal calibration geometry, and you will find these internal camera parameters change from one project to another. It is always a good practice to use the adjusted camera parameters from previous projects as initial or approximate values in a new adjustment, as it makes it easier for the software to refine new values to suit your new project.

Dr. Abdullah is S Chief Scientist and Senior Associate at Woolpert, Inc. He is ASPRS fellow and the recipient of the ASPRS Life Time Achievement Award and the Fairchild Photogrammetric Award.

The contents of this column reflect the views of the author, who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the American Society for Photogrammetry and Remote Sensing and/or Woolpert, Inc.
The ASPRS Student Advisory Council (SAC) is excited to have new members joining and helping us to improve the student experience in ASPRS:

COUNCIL CHAIR—Victoria Scholl

DEPUTY COUNCIL CHAIR—Briana Williams

EDUCATION AND PROFESSIONAL DEVELOPMENT COUNCILOR—Gerardo Rojas

DEPUTY EDUCATION AND PROFESSIONAL DEVELOPMENT COUNCILOR—Youssef Kaddoura

COMMUNICATIONS COUNCILOR—Ge (Jeff) Pu

DEPUTY COMMUNICATIONS COUNCILOR—Jason McGlaughlin

NETWORKING COUNCILOR—Sara Durgan

DEPUTY NETWORKING COUNCILOR—Austin Stone

SAC ECPC LIASON—David Luzader

NEW THIS YEAR!

SAC is planning to feature some of our fellow student members in Signatures and on our social media sites. We want to showcase student research, accomplishments, event participation, and related activities. If you are a student member of ASPRS, please submit your Showcase materials to Jeff Pu, SAC Communications Councilor, gpu100@syr.edu. If you are not a student but know of any outstanding student members who should be featured, please submit their name and contact information to Jeff Pu.

FOLLOW US ON SOCIAL MEDIA!

Facebook—https://www.facebook.com/ASPRS-Student-Advisory-Council-117943608233122/

Twitter—https://twitter.com/asprs_sac?lang=en

This year SAC aims to help improve the student experience in many areas: events at ASPRS conferences, chapter outreach, and upcoming conference opportunities for students.

ASPRS CONFERENCES

Pecora 21/ISRSE 38

October 6-11, 2019

http://pecora.asprs.org/

The joint meeting of the 21st William T. Pecora Memorial Remote Sensing Symposium (Pecora 21) and the 38th International Symposium on Remote Sensing of Environment (ISRSE 38) will convene in Baltimore, Maryland, USA from October 6 – 11, 2019. The conference theme is Continuous Monitoring of Our Changing Planet: From Sensors to Decisions.

*Visit http://pecora.asprs.org/volunteer/ for information on volunteering for Pecora 21/ISRSE 38.

REGIONAL AND OTHER RELATED CONFERENCES

Earth Engine Conference

September 16-19, 2019

https://sites.google.com/earthoutreach.org/geoforgood19/

This Summit will bring together the Earth Engine and Earth Outreach communities to one larger event where scientists, nonprofits and changemakers can learn from each other and potentially collaborate on projects for positive impact for our planet and its inhabitants.
Earl Burkholder is a professional land surveyor, who, until he retired in the latter 2010, held posts at Oregon Institute of Technology and New Mexico State University. During a period of self-employment between the two academic posts, he worked on projects for the Southeastern Wisconsin Regional Planning Commission. These projects confirmed the concepts he proselytized in the first edition of The 3-D Global Spatial Data Model: Principles and Applications, published in 2008. Burkholder argues that point information should always be held in a 3D database and located in a three-dimensional, right-handed, rectangular Cartesian coordinate system with the origin located at the center of mass of the Earth. The XY-plane lies in the equatorial plane with the X-axis through the Greenwich meridian. The Z-axis coincides “very nearly with the mean spin axis of the Earth, as defined by the Conventional Terrestrial Pole” (p. 4). Burkholder’s Global Spatial Data Model (GSDM) concept, however, also includes mathematical concepts and procedures that can be used to work with a GSDM repository and compute geospatial information such as coordinates, distances, bearings, and azimuths in the base or other coordinate systems as required. Your reviewer, until he read the book, mistakenly thought that GSDM was some sort of formal standard, but it’s the work of the author, who writes persuasively and competently.

The concepts behind GSDM are not new, but even the basic definition advanced above hints that there is some geodesy in store. After two chapters on GSDM itself, the book continues with three solid chapters that rapidly review spatial data and the science of measurement, mathematical concepts, and geometrical models for spatial data computation. There follow five tougher chapters on geodesy – overview, geometric geodesy, geodetic datums, physical geodesy, and satellite geodesy and Global Navigation Satellite System (GNSS). The foundational material necessary to understand and work with GSDM continues with a chapter on map projections and state plane coordinates and another on spatial data accuracy. The remaining three chapters are concerned with the application of GSDM: computing a linear least squares GNSS network; computing network and local accuracy; and a series of sample projects. There are five technical appendices, the most interesting of which provide short histories of the development of GSDM and the terms “network accuracy” and “local accuracy”, and a ten-page index. For many readers, the value of the book may lie in the ten review chapters: these are best construed as a whistlestop refresher, not an alternative to the major texts on surveying and geodesy that prospective specialists must peruse.

The book is well written and proceeds logically, though some of the review chapters move so fast, for example, the material on map projections, that their utility may be compromised. There are few typos and errors – and most of those are corrected on the website of the author’s company, Global COGO, Inc. The purpose of the book, of course, is to showcase Burkholder’s GSDM, but his palpable enthusiasm results in many repetitions of arguments. Moreover, considerable space in the last three chapters is used to reproduce computer output. This shows the GSDM resources, which are cited copiously and could be of great value to readers interested in adopting the system, but is hard to justify in an expensive hardcover book. All the referenced URLs were viewed in May 2017 – let us hope they still function.

Chapter two is new to the second edition, together with historical material on GSDM and commentary on the new horizontal and vertical definitions to be introduced in 2022 by the National Geodetic Survey. This is revealed in the preface, but the preface to the first edition is reproduced verbatim: it would have been easier on readers if the two had been combined. Decisions on datums and coordinate systems are more like-
ly to be taken by surveyors and geodesists in agencies at many levels from national downwards, than by photogrammetrists, remote sensors, or GIS specialists. Nevertheless, this book deserves a wide readership, not only to spur the debate on the value of GSDM, but to provide a succinct overview of modern surveying and geodesy, with an emphasis on computations of points and other quantities from surveying and GNSS data and on transformations between coordinate systems, including the important state plane ones encountered by many readers of this journal.

ASPRS is proud to partner with CRC Press, Taylor & Francis Group. We are excited to feature *The 3-D Global Spatial Data Model: Principles and Applications* and other essential books in GIS and Mapping for a discount price to ASPRS members. Visit the ASPRS Bookstore at www.asprs.org. Don’t forget to apply code ASP25 to SAVE 25% on entire purchase* + FREE Shipping. Can’t find what you’re looking for? Visit crcpress.com to shop and save on all of their books.

*Valid for online orders only and excludes eBooks.

STAND OUT FROM THE REST

EARN ASPRS CERTIFICATION

ASPRS congratulates these recently Certified and Re-certified individuals:

RECERTIFIED PHOTOGRAMMETRISTS

Wallace Scott Dunham, Certification #R1400
Effective April 19, 2019, expires April 19, 2024

John Erickson, Certification #R1234
Effective March 18, 2019, expires March 18, 2024

L. Bradley Foltz, Certification #R557
Effective February 7, 2019, expires February 7, 2024

Angela Livingston, Certification #R1383
Effective December 8, 2018, expires December 8, 2023

David K. Nale, Certification #R503
Effective April 7, 2019, expires April 7, 2024

Cornell Rowan, Certification #R1055
Effective March 20, 2019, expires March 20, 2024

John Schmitt, Certification #R1389
Effective January 27, 2019, expires January 27, 2024

CERTIFIED MAPPING SCIENTISTS LIDAR

Kristian Damkjær, Certification #L042
Effective May 10, 2019, expires May 10, 2024

Nima Ekhtari, Certification #L041
Effective May 14, 2019, expires May 14, 2024

CERTIFIED LIDAR TECHNOLOGIST

Matthew J. Doty, Certification #043LT
Effective May 13, 2019, expires May 13, 2022

CERTIFIED MAPPING SCIENTIST UAS

Frank J. Tokar, Jr., Certification #UAS028
Effective March 21, 2019, expires March 21, 2024

ASPRS Certification validates your professional practice and experience. It differentiates you from others in the profession.

For more information on the ASPRS Certification program: contact certification@asprs.org, visit https://www.asprs.org/general/asprs-certification-program.html
The area of Northern Africa currently known as Algeria was brought under Roman rule during the Second Punic War (218 – 201 B.C.). It was known to the Romans as Numidia. It was conquered by the Arabs in the 8th century and was mainly under the rule of the Ottoman Empire until 1705, then it was occupied by the French in 1830. Algeria gained independence from France following a referendum of 01 July, 1962. Algeria is the second largest country in Africa after the Sudan, with its coastline on the Mediterranean Sea extending for 998 km. Algeria is bounded by Tunisia and Libya on the east, by Niger and Mali on the south, and on the west by Mauritania, the former Western Sahara, and Morocco. The highest point is Tahat at 3,003 m, and the lowest point is Chott Melrhir at –40 m. Algeria is mostly high plateau and desert; the Atlas and Saharan Atlas Mountains are in the north along with narrow discontinuous coastal plains.

The triangulation of Algeria was carried out by the Dépôt Général de la Guerre from 1854 to 1887. After 1887, the Société Géographique de l’Armée, headquartered in Paris, continued the work. The first-order net of triangulation consists essentially of two parallel chains and three meridional chains. The parallel chains are the coastal chain from the Moroccan to the Tunisian borders (1860-1868) and the chain Ain Sefra-Laghout-Biskra-Gabes (in Tunisia) (1889-1895). There are also two shorter parallel chains: the Guerara tie chain (1909-1910) and the Southern El Oued tie chain (1909-1910). The meridional chains are the Biskra chain (1872-73, 1899-1902), the Laghouat chain (1886, 1899-1902), and the Saidia chain (1896-97). Fill nets of first-order complementary, second-order, and third-order triangulations were surveyed from 1864, following the pattern of planned mapping. The survey work was executed and adjusted in 94 cartonnés (books of sections), which progressed southward from the coastal areas according to military requirements. These cartonnés were numbered in chronological sequence of completion. Note that, in the English-language literature of North African Geodesy, one will likely find “carton,” the derivative of cartonné.

This original work comprised the Colonne Voïrol Datum of 1875, commonly termed Voïrol 75. The fundamental point is at the geodetic pillar of the Colonne Voïrol Observatory, and the astronomical coordinates are \(\Phi_0 = 36° 45’ 07.9”N \) (\(40^\circ 8357.8’’ \)) and \(\Lambda_0 = 3° 02’ 49.45” \) East of Greenwich (\(6^\circ 7887.3’’ \) East of Paris). The reference azimuth from south to Melab el Kora is \(\alpha_0 = 322° 16’ 52.7” \) and the ellipsoid of reference is the Clarke 1880 (IGN) where \(a = 6,378,249.2 \) m, and \(1/f = 293.4660208 \).
The baselines measured for the Algerian triangulation, with dates of execution, are Blida (1854, 1912), Bône (Annaba) (1866, 1885), Oran (1885, 1910), Laghouat (1914), Ouargla (1920), Mercheria (1932), Biskra (1932), and Navarin (1949). The original mapping was cast on the ellipsoidal Bonne projection – the ubiquitous projection du jour for the Europeans of the time. The North African (ellipsoidal) Bonne Grid Latitude of Origin (ϕ_0) = 35° 06´ N (39°00 N), the Central Meridian (λ_0) = 2° 20´ 13.95˝ East of Greenwich, and, some time before WWII, the False Easting and False Northing were changed from zero to 100 km for each. Interestingly, this old Bonne Grid still influences current mapping in that grid limits of the Lambert Conic Grids are still defined by Bonne Grid values. The sheet boundaries of the new Lambert Grids are commonly computed by a reversion of the late Prof. Karl Rinner’s Bonne power series formulae published in Zeitschrift für Vermessungswesen during the 1930s. That reversion allows cartographers to compute the intersection of a constant Bonne Grid value with a chosen arc of the parallel or of the meridian. Those intersections then were used to define the limits with the graticule of the Lambert Conic Grids computed by John W. Hager of the Defense Mapping Agency (ex Army Map Service) in 1974.

Based on original triangulations of the French Army, a local (temporary) Astro station was established in the port city of Oran by Capitaine Faure during 1905-1906. Station Tafaraoui coordinates are $\phi_0 = 39° 3778.26$” N and $\lambda_0 = 3° 5132.06$” East of Paris. The reference azimuth to Tessala is $\alpha_0 = 62° 09´ 57.73$” and the ellipsoid of reference is the Clarke 1880 (IGN). The observations were later adjusted and used in the 1930 hydrographic survey of that portion of the coast of Algeria and the port of Oran. The Lambert Conic Grid was used by the French Navy for the hydrographic survey.

The reader will notice that I have left off the word “conformal” when describing the Lambert Conic Grids of Algeria. That is because the original systems that succeeded the ellipsoidal Bonne Grid in 1906 were not fully conformal. There are two original zones: for Nord Algerie, the Latitude of Origin (ϕ_0) = 36° North (40°), the Central Meridian (λ_0) = 2° 42´ (3°) East of Greenwich, and the Scale Factor at Origin (m_0) = 0.999625544. For Zone Algerie Sud, the Latitude of Origin (ϕ_0) = 33° 18´ North (37°), the Central Meridian (λ_0) = 2° 42´ (3°) East of Greenwich also, and the Scale Factor at Origin (m_0) = 0.999625769. The False Origin is 500 kilometers for Eastings and 300 kilometers for Northings for both zones, and the same convention as used in the adjacent Kingdom of Morocco (PE&RS, June 1999). The complete replacement of the Bonne Grid for original topographic mapping in Algeria did not happen until 1942.

During the 19th century, projection table computations were performed by hand, and all formulae were commonly truncated past the cubic term to ignore infinite series terms consid-
ered at the time, too small to warrant the extra effort. For instance, the Lambert Conformal Conic projection was used only to the cubic term in the formulae for the tables of the developed meridional distances. This resulted in French Army projection tables that have become part of the arcane lore of computational cartography.

Furthermore, another idiosyncrasy of the French Army formulae is that the Lambert (fully) Conformal Conic projection normally utilizes one of the principal radii of the ellipsoid called the Radius of Curvature in the Plane of the Meridian (ρ_o). The French Army instead substituted the Length of the Ellipsoid Normal Terminated by the Semi-Minor Axis (ρ_o) at the Latitude of Origin (ρ_o). Although not strictly conformal, this is the system that was commonly used by the French in all colonies (before WWII) that utilized the Lambert Conic projection (including Syria; PE&RS, September 2001).

Standard Lambert formulae will not work for Algeria under certain conditions, and the improper use of the fully conformal projection will yield computational errors that can exceed 15 meters! As an example, consider a test point where $\phi = 33^\circ$ N and $\lambda = 3^\circ$ E. For Nord Algerie on the French Army Truncated Cubic Lambert Conic Grid, $X = 528,064.182$ m and $Y = -32,764.881$ m; for the same test point on the Nord Algerie Lambert fully Conformal Conic Grid, $X = 528,074.691$ m and $Y = -32,776.731$ m. The computational difference of the two formulae at the same test point is $\Delta X = -10.509$ m and $\Delta Y = +11.850$ m, for a total error of 15.839 meters! Mathematical elegance is not what matters in a country’s coordinate transformations; what matters is computational conformity to local legal standards. The certain condition when a fully conformal Lambert Conic will work in Algeria is based on when a particular Algerian map was compiled. That is, when the Algerian triangulation was recomputed for the European Datum of 1950, the French dropped usage of the Truncated Cubic version on the old Voirol 75. In summary, for surveys and maps before 1948, one must use the French Army Truncated Cubic Lambert Conic. After 1948, one must use the Lambert fully Conformal Conic. The parameters of the two Lambert zones did not change for the Colonne Voirol Datum of 1875; only the formulae changed. Things soon got more complex.

In 1953-1954 the first-order coastal parallel chain was reobserved by the French. In 1959, the Institut Géographique National (IGN), Paris, readjusted the entire first-order and first-order complementary triangulation to the European Datum 1950 (ED50), incorporating the results of all previous surveys and adjustments. The rule of thumb for this Datum Shift is to increase both Latitude and Longitude from the Colonne Voirol Datum of 1875 to the European Datum 1950. The UTM Grid was used for this purpose, as were all Datums that were transformed to ED50. Like most countries, the ED50 UTM Grid was reserved for military topographic mapping, and local native systems continued in use. That tradition has resulted in some convoluted transformations being perpetuated in Algeria.

The North Sahara Datum of 1959 was obtained (in 1957-1958) by recomputing the results of the first-order nets and the first-order complimentary nets adjusted to the ED50, but referenced to the Clarke 1880 (modified) ellipsoid where $a = 6,378,249.145$ m and $1/f = 293.465$. The adjustment on the Clarke 1880 (modified) ellipsoid was performed such that it optimized the fit of the shape of the geoid in North Africa, i.e., by reducing to a minimum the sum of the squares of the relative deflections of the vertical in the areas involved. This principle was intended to minimize the mean discrepancies between the geodetic net used in the northern part of Algeria and the astronomic net used primarily in the southern part of Algeria. Some maps were stereocompiled on the North Sahara Datum of 1959 with the UTM Grid at 1:200,000 scale. However, many maps were not cast on the UTM Grid.

The Lambert North Sahara Auxiliary Grid was directly applied to the geodetic coordinates in accordance with the definition of the Nord Algerie Zone with the fully conformal formulae. However, it was never used in any publication or in mapping because of the large discrepancies found between the rectangular coordinates of any given point on the Colonne Voirol Datum of 1875 (Voirol 75) or the North Sahara Datum of 1959. This computational experiment is the reason for the development and subsequent adoption of the Lambert Voirol 60 Grid System. This curious system adds 135 meters exactly to the X coordinates and adds 90 meters exactly to the Y coordinates of the original Nord Algerie Zone parameters. In other words, the Lambert Voirol 60 Grid has a False Easting \geq 500,135 m and a False Northing \geq 300,090 m. According to the French Army in June of 1970, “Under these conditions, when we compare the LAMBERT – VOIROL 75 with the LAMBERT VOIROL 60 coordinates, the shift between the two is always less than 50 m in absolute value. This value does not represent a mathematical relation, but rather the result of comparing the two sets of coordinates. It shows up the inaccuracies in the initial VOIROL 75 system. The maps made with the LAMBERT VOIROL 60 rectangular coordinates are all referenced to the geographic coordinates of the NORTH SAHARA geodetic system.” The current parlance for this in English is the “Voirol Unified 1960 Grid” on the “North Sahara Datum of 1959.”

Note that there is no classical origin for this Datum due to the fact that it is derived from the ED50.

In 1966, the Army Map Service (AMS) developed a series of conversions on a Carton-by-Carton basis for transforming from Voirol 75 to ED50 with UTM coordinates. As an example of the transformation series for Algeria, the following is for coordinates in UTM Zone 31 whose eastings are greater than 355,000 m: Carton 59: $N = 0.9998873966 n - 0.10000869984 e + 691.561$ m and $E = 0.9999391272 e + 0.0000869984 n - 416.633$. The stated RMSE for this Carton is ± 0.200 m. The adjacent Carton 60, when used with the appropriate coefficients, has a stated RMSE of ± 2.759 m.

In recent years, the IGN derived a seven-parameter transformation from ED50 to WGS84 for North Africa. The quoted accuracy is ± 2 m in X, Y, and Z, and, when applying this transformation, the resulting heights are approximately 30 m higher than expected for Algeria. The parameters are $\Delta X =$
–130.95 m, \(\Delta Y = -94.49 \) m, \(\Delta Z = -139.08 \) m, \(\Delta s = +6.957 \) ppm, \(R_x = +0.4405^\circ \), \(R_y = +0.4565^\circ \), and \(R_z = -0.2244^\circ \). The U.S. National Imagery and Mapping Agency (NIMA) does not list a three-parameter transformation in TR 8350.2 for transforming from ED50 to WGS84 in Algeria. However, the non-satellite-derived NIMA parameters from the Colonne Voirol Datum of 1875 to WGS84 are \(\Delta X = -73 \) m, \(\Delta Y = -247 \) m, and \(\Delta Z = +227 \) m, with no stated accuracy. NIMA states that, from the Colonne Voirol Unified Datum of 1960 to WGS84, the parameters are \(\Delta X = -123 \) m, \(\Delta Y = -206 \) m, and \(\Delta Z = +219 \) m, and each parameter is stated accurate to \(\pm 25 \) m. NIMA further states that, from the North Sahara Datum of 1959 to WGS84, the parameters are \(\Delta X = -86 \) m, \(\Delta Y = -93 \) m, and \(\Delta Z = +310 \) m, and each parameter is stated accurate to \(\pm 25 \) m. Using a 1° by 1° 30´ mesh of ED50 coordinates over northern Algeria, a set of 54 North Sahara Datum of 1959 and WGS84 coordinates were derived by others using the transformation developed by IGN. I solved for the three-parameter transformation from the North Sahara Datum of 1959 to WGS84 using the WGS84 Geoid such that \(\Delta X = -131.798 \) m, \(\Delta Y = -75.442 \) m, and \(\Delta Z = +329.895 \) m. The geodetic residual RMS expressed as meters for \(\Delta_j = \pm 1.74 \) m, for \(\Delta_\lambda = \pm 1.04 \) m, and for \(\Delta h = \pm 4.52 \) m. For comparison, I then solved for the North Sahara Datum of 1959 to WGS84 transformation using the EGM96 Geoid such that \(\Delta X = -59.156 \) m, \(\Delta Y = -77.366 \) m, and \(\Delta Z = +311.265 \) m. The geodetic residual RMS expressed as meters for \(\Delta_j = \pm 2.12 \) m, for \(\Delta_\lambda = \pm 2.51 \) m, and for \(\Delta h = \pm 4.35 \) m. In conclusion, because the IGM seven-parameter solution cannot be fully evaluated, the preferred transformation from the North Sahara Datum of 1959 to the WGS84 Datum in the format given in TR 8350.2 is, then, \(\Delta X = -159 \) m, \(\Delta Y = -77 \) m, \(\Delta Z = +311 \) m, \(\Delta a = -112.145 \), and \(\Delta f \times 10^4 = -0.54750714 \).

UPDATE

A significant amount of geodetic research has been performed since the first column on the Grids and Datums of Algeria was published. However, the primary areas of research have been devoted to observations of gravity and of crustal motion in the Atlas Mountain range.

“The REGAT ("Réseau Géodésique de l’ATlas") geodetic network is composed of 53 continuously-recording GPS stations distributed in the Algerian Atlas. It spans the whole width of the Algerian coast and reaches 300 km inland, with intersites distance of about 100 km. One additional site is located in Tamanrasset in the southernmost part of the country. The network, whose oldest stations started operating in 2007, encompasses the main active tectonic features of the most seismically active segment of the Nubia-Eurasia plate boundary in the Western Mediterranean.” (Heliyon, Volume 5, Issue 4, April 2019, e01435)

“The comparisons based on different GPS campaigns provide, after fitting by using the four-parameter transformation, an RMS differences \(\pm 11 \) cm especially for the north part of the country over distances of 1 to 1000 km and proves that a good fit between the new quasi-geoid and GPS/levelling data has been reached.” (A NEW QUASI-GEOID COMPUTATION FROM GRAVITY AND GPS DATA IN ALGERIA S. A. Benahmed Daho, J. D. Fairhead)

For more information go to www.isgeoid.polimi.it/Newton/...2/Benahmed-A%20new%20quasigeoid-revised.pdf

The contents of this column reflect the views of the author, who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the American Society for Photogrammetry and Remote Sensing and/or the Louisiana State University Center for GeoInformatics (C’G). This column was previously published in *PE&RS*.
New ASPRS Member Benefit | New ASPRS Members

ASPRS IS PARTNERING WITH CRC PRESS – TAYLOR AND FRANCIS

ASPRS announces its partnership with CRC Press – Taylor and Francis to offer ASPRS members exclusive discounts on CRC Press titles.

We are excited to feature essential books in GIS and Mapping including Working with Map Projections: A Guide to their Selection by Kessler and Battersby, Topographic Laser Ranging and Scanning: Principles and Processing, 2nd Ed. by Shan and Toth, and many more. For the complete list and to purchase these titles, log into your member account on the ASPRS Bookstore and select the link to CRC Press.

CRC Press is a premier publisher of scientific, technology and medical resources, reaching around the globe to collect essential reference material and the latest advances and making them available to researchers, academics, professionals and students in a variety of accessible formats. CRC Press is a member of Taylor & Francis Group, an informa business. For more information, visit www.crcpress.com.

“We are very pleased to offer this valuable member benefit to ASPRS members” said Priscilla Weeks, Membership Manager—ASPRS.

ASPRS MEMBERSHIP

ASPRS would like to welcome the following new members!

At Large
- Kevin Blair
- Robert Blank
- Lance C. Foster
- Elisabeth G. Turner
- Matthew Warren
- Michael Stephen Weber

Columbia Riviver
- Trevor King

Florida
- Derek Bendell
- Paul Buchanan
- Christine Leigh Carlson
- Luke W. Kratky
- Jared Phillips
- Corey Reed Puzzo
- Morgan LaReine Ridler
- Robert Yao-Kumah

Mid-South
- Jibrael Ahmad
- David Barron
- Aaron Burns

Potomac
- Timothy S. Stryker
- Brian L. Tolley, CP

Rocky Mountain
- Neal Carter
- Timothy Nagle-McNaughton
- Ryan Shields

Western Great Lakes
- Cadan Cummings

FOR MORE INFORMATION ON ASPRS MEMBERSHIP, VISIT HTTP://WWW.ASPRS.ORG/JOIN-NOW

Your path to success in the geospatial community

Edited by David F. Maune, PhD, CP and Amar Nayegandhi, CP, CMS

The 3rd edition of the DEM Users Manual includes 15 chapters and three appendices. References in the eBook version are hyperlinked.

Chapter and appendix titles include:

1. Introduction to DEMs
2. Vertical Datums
3. Standards, Guidelines & Specifications
4. The National Elevation Dataset (NED)
5. The 3D Elevation Program (3DEP)
6. Photogrammetry
7. IfSAR
8. Airborne Topographic Lidar
9. Lidar Data Processing
10. Airborne Lidar Bathymetry
11. Sonar
12. Enabling Technologies
13. DEM User Applications
14. DEM User Requirements & Benefits
15. Quality Assessment of Elevation Data
 A. Acronyms
 B. Definitions
 C. Sample Datasets

This book is your guide to 3D elevation technologies, products and applications. It will guide you through the inception and implementation of the U.S. Geological Survey’s (USGS) 3D Elevation Program (3DEP) to provide not just bare earth DEMs, but a full suite of 3D elevation products using Quality Levels (QLs) that are standardized and consistent across the U.S. and territories. The 3DEP is based on the National Enhanced Elevation Assessment (NEEA) which evaluated 602 different mission-critical requirements and benefits from enhanced elevation data of various QLs for 34 Federal agencies, all 50 states (with local and Tribal input), and 13 non-governmental organizations. The NEEA documented the highest Return on Investment from QL2 lidar for the conterminous states, Hawaii and U.S. territories, and QL5 IfSAR for Alaska.

Chapters 1, 3, 5, 8, 9, 13, 14, and 15 are “must-read” chapters for users and providers of topographic lidar data. Chapter 8 addresses linear mode, single photon and Geiger mode lidar technologies, and Chapter 10 addresses the latest in topobathymetric lidar. The remaining chapters are either relevant to all DEM technologies or address alternative technologies including photogrammetry, IfSAR, and sonar.

As demonstrated by the figures selected for the front cover of this manual, readers will recognize the editors’ vision for the future—a 3D Nation that seamlessly merges topographic and bathymetric data from the tops of the mountains, beneath rivers and lakes, to the depths of the sea.

Co-Editors
David F. Maune, PhD, CP and Amar Nayegandhi, CP, CMS

ORDER ONLINE
HTTPS://WWW.ASPRS.ORG
High-Resolution Large-Area Digital Orthophoto Map Generation Using LROC NAC Images

Kaichang Di, Mengna Jia, Xin Xin, Jia Wang, Bin Liu, Jian Li, Jianfeng Xie, Zhaqin Liu, Man Peng, Zongyu Yue, Jia Liu, Ruilin Chen, and Changlu Zhang

Abstract
The Chang’e-5 mission of China is planned to be launched in 2019 to the landing area near Mons Rümker located in Oceanus Procellarum. Aiming to generate a high-resolution and high-quality digital orthophoto map (DOM) of the planned landing area for supporting the mission and various scientific analyses, this study developed a systematic and effective method for large-area seamless DOM production. The mapping results of the Chang’e-5 landing area using over 700 Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images are presented. The resultant seamless DOM has a resolution of 1.5 m, covers a large area of 20° in longitude and 4° in latitude, and is tied to SLDEM2015. The results demonstrate that the proposed method can reduce the geometric inconsistencies among the LROC NAC images to the subpixel level and the positional errors with respect to the reference digital elevation model to about one grid cell size.

Introduction
Mapping of the lunar surface using orbital imagery is one of the fundamental tasks of almost every lunar orbiter mission. Among the common mapping products, digital orthophoto maps (DOMs) are essential for measuring and characterizing lunar surface features. Thus, they are usually used as the base map for morphological and geological analysis (Wu et al. 2014; Zhang et al. 2016; Yue et al. 2017). High-resolution and high-precision DOMs are particularly important for supporting lander and rover missions in terms of landing site analysis, safe landing, and surface operations.

China started the Lunar Exploration Program in 2004, which consists of orbital, soft lander/rover, and sample return missions (Ouyang et al. 2004). The first two phases were achieved by the Chang’e-1, Chang’e-2, and Chang’e-3 missions, and the third phase (i.e., sample return mission) will be realized by the Chang’e-5 mission in 2019. The Chang’e-5 mission aims to return about 2 kg of lunar soil and rock samples. Its target area is near Mons Rümker located in Oceanus Procellarum, which is a large area of lunar mare on the northwest region of the Moon (Gbtimes 2017). High-resolution and high-precision mapping of the landing area is critical to support overall mission planning and detailed analysis of potential sampling sites (Haase et al. 2012; Wu et al. 2014; Kokhanov et al. 2017).

So far, there are a number of lunar global orbital image mosaic maps available, such as Clementine global mosaic (100 m/pixel) (Robinson et al. 1999), Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) globe mosaic (100 m/pixel) (Arizona State University [ASU] 2011; National Aeronautics and Space Administration [NASA] 2011; Wagner et al. 2015), Chang’e-1 CCD camera global mosaic (120 m/pixel) (Li et al. 2010), and Chang’e-2 CCD camera global mosaic (7 m/pixel) (Data Publishing and Information Service System of China Lunar Exploration Project 2018; Li et al. 2015). However, these products are not sufficient for detailed landing site analysis due to their low resolutions.

The highest-resolution lunar orbital imagery is achieved by the LROC Narrow Angle Camera (NAC), and the images covered nearly the entire lunar surface at a resolution of 0.5–2.0 m. However, there are only a limited number of high-resolution featured mosaics (Klem et al. 2014) and digital elevation model (DEM) products (Tran et al. 2010; Burns et al. 2012) that have been released by the LROC team. The number of images used in most featured mosaics is from two to tens of NAC images. The largest LROC NAC mosaic at present is the LROC Northern Polar Mosaic (http://lroc.sese.asu.edu/images/gigapan; NASA/Goddard Space Flight Center/ASU 2014; Wagner et al. 2015, 2016), which contains 10 581 NAC images, covering an area from 60°N to the north pole at a resolution of 2 m. However, apparent geometric inconsistencies of up to ~7 pixels were observed due to problems of the designed procedure (Archinal et al. 2015). Nevertheless, this product does not cover the Chang’e-5 planned landing area. The spatial coverage of publicly available high-resolution DOMs is very limited. Overall, it is highly desirable to develop effective techniques for large-area high-precision seamless DOM generation.

Photogrammetric processing of high-resolution orbital images for lunar surface mapping has been performed using different software systems or methods, such as the US Geological Survey (USGS) Integrated System for Imagery and Spectrometers (ISIS), SOCET SET, NASA Ames Stereo Pipeline (Moratto et al. 2010), and in-house-developed methods. Tran et al. (2010) and Burns et al. (2012) generated digital terrain models (DTMs) by LROC NAC stereo images with the SOCET SET software. The resultant DTMs have a typical spatial sampling of 2 m and a vertical precision of 1–2 m (Burns et al. 2012); the root mean square (RMS) residuals are typically ~0.25 pixels for a pair of NAC stereo images and less than 1 pixel for multiple sets of stereo images (Tran et al. 2010). Klem et al. (2014) produced a controlled mosaic for LROC NAC images using the USGS ISIS software, and the seam precision for the mosaics was generally within ~7–8 pixels. Lee et al. (2012) and

Kaichang Di, Bin Liu, Zhaqin Liu, Man Peng, Zongyu Yue, Ruilin Chen, and Changlu Zhang are with the State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China (liubin@radi.ac.cn).

Mengna Jia, Xin Xin, and Jia Liu are with the State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; and the University of Chinese Academy of Sciences, Beijing 100049, China.

Jia Wang, Jian Li, and Jianfeng Xie are with the Beijing Aerospace Control Center, Beijing, 100094, China.

Archinal et al. (2015) used USGS ISIS to generate controlled polynomial mosaics from LROC NAC images. The residuals were within 1 pixel with a maximal error of ~7 pixels, and the horizontal accuracy of the mosaics was within 100 m with respect to the Lunar Orbiter Laser Altimeter (LOLA) data (Lee et al. 2012).

Wu et al. (2014) developed a combined block adjustment method to process Chang’è-2 stereo imagery and LOLA data of the Chang’è-3 landing area. The resultant DTM has an average elevation difference of 15.19 m and a standard deviation of 17.08 m compared to that of the LOLA DEM. Di et al. (2014) developed a self-calibration bundle adjustment method for Chang’è-2 stereo images to reduce the geopositioning inconsistencies among the images of adjacent orbits from up to 20 pixels to a subpixel level. Kokhanov et al. (2017) used a self-developed photogrammetric method to obtain cartographic products of potential landing sites for the “Luna-25” mission from 11 LROC NAC stereo pairs. The bundle adjustment results had precisions of 0.3 m and 1.0 m in the planar direction and 3.5 m in the vertical direction. Haase et al. (2012, 2014) produced a DTM and ortho-mosaic for the Apollo-17 landing site using LROC NAC stereo images. The LROC-adapted German Aerospace Center photogrammetric processing chain was used for stereo image processing, and the resultant DTM had a standard deviation of 40 cm in elevational difference with the LOLA profiles.

As previously described, existing lunar mapping research is generally based on stereo images. However, the LROC NACs can only acquire stereo images from adjacent orbits using off-nadir slew in limited interested locations, and most of the time, the captured NAC images have nadir orientation. There are only a few NAC stereo pairs in the Chang’è-5 planning landing area because the nadir NAC images cannot be used to generate a high-resolution DOM mosaic using stereo photogrammetric methods. Furthermore, most of the existing studies have been focused on photogrammetric processing involving several or tens of images. For large-area mapping, the geometric and radiometric inconsistencies are more severe and complicated. Therefore, it is necessary to develop a more effective method to produce high-precision DOM mosaics for large areas using nonstereo NAC images and a lunar control source of limited resolution.

This research aimed to develop a systematic and effective method for generating a seamless DOM for the planned Chang’è-5 landing area. In this work, we used a two-step strategy. First, the study area was divided into several overlapped subareas, and a planar block adjustment with control points was applied to each subarea to lower the geometric deviations among the NAC images to the subpixel level at the same time of tying the NAC images to the reference SLDEM2015. Then a seamless DOM mosaic of each subarea was generated. Second, the thin plate spline (TPS) model (Wahba 1990) was applied to the subarea DOMs to remove the positional inconsistencies between the adjacent subarea DOMs and guarantee seamless DOM mosaicking throughout the whole research area. Using the proposed two-step method, a controlled seamless mosaic of the Chang’è-5 landing area was created with high geometric precision and with a resolution of 1.5 m.

Data
The planned landing area of Chang’è-5 mission was chosen to verify the proposed large-area DOM generation method. It locates near Mons Rümker within Oceanus Procellarum and covers an area of approximately 20° longitude × 4° latitude, or approximately 413.8 km × 121.4 km (Di et al. 2018). LROC NAC images were the data source used in this research. SLDEM2015, a combined product of LOLA laser altimetry and DEMs generated from the Japanese Selenological and Engineering Explorer (SELENE) terrain camera images (Barker et al. 2016), was used as reference DEM for ortho-rectification. Figure 1 shows the planned landing area of Chang’è-5 on the LROC WAC mosaic.

LROC NAC Images
The LROC is a system of three cameras onboard the Lunar Reconnaissance Orbiter (LRO) that captures high-resolution monochromatic images and moderate-resolution multispectral images of the lunar surface. It consists of two NACs that are designed to provide 0.5–2.0 m/pixel monochromatic narrow-angle line scan images and a WAC that provides images at a scale of 100 m/pixel in seven color bands over a 60-km swath (Robinson et al. 2010).

NAC Experimental Data Record images were downloaded from the NASA Planetary Data System (PDS) and preprocessed using the USGS ISIS software. SPICE kernels (NAIF 2014) were attached to each image using the “spiceinit” command, and radiometric corrections and removal of echo effects were realized by the “Ironacal” command and the “Ironacecho” command, respectively (PDS 2014; Henriksen et al. 2016). Until December 2017, the planned Chang’è-5 landing area is covered by about 2299 LROC NAC images. Considering the illumination conditions, most of the chosen images have similar solar azimuth angles that are higher than 180° (afternoon images) and incidence angles between 40° and 80°. The planned landing area could not be completely covered with afternoon images, so small gaps were filled with one or two morning images. A total of 765 NAC images were involved in this research with a ground sample distance of mainly 1.5 m.

Control Source
SLDEM2015 was used as the control source for providing three-dimensional control points in the block adjustment stage as well as providing topographic correction during DOM generation. This product is a lunar shape model generated by a combination of LOLA and SELENE data. This includes 43 200 stereo-derived DEMs from SELENE Terrain Camera images and 4.5 billion surface heights from LOLA (Barker et al. 2016). The resultant near-global lunar DEM has an effective resolution of approximately 60 m at the equator and a typical vertical accuracy of approximately 3–4 m. In addition, the LROC WAC mosaic (NASA 2011; Wagner et al. 2015) was used as a reference for grayscale balancing in the image mosaicking process.

Method for Large-Area Controlled DOM Generation
In this research, a two-stage method was used to generate a large-area controlled seamless DOM. Figure 2 is the flowchart showing the generation process of large-area seamless DOM. To guarantee both the processing efficiency and mapping precision, the large landing area was partitioned into 10 subareas and processed in parallel. Dividing the whole mapping area into some subareas is a common strategy when dealing with...
large-area or global mapping, especially in the planetary mapping field (Gwinner et al. 2010, 2016; Preusker et al. 2017). Mapping with partitions is an engineering method for parallel processing and dealing with huge amounts of data. It is also a feasible way to improve the processing precision when the data are of different quality in different regions, which is very common with the planetary orbital images (Gwinner et al. 2016).

A planar block adjustment with control points was used in each subarea to ensure the relative consistency among the LROC NAC images and the absolute accuracy to the control source. The rational function model (RFM) of the image was refined during the block adjustment. Via the block adjustment, geometric inconsistencies between adjacent LROC NAC images within each subarea can be effectively reduced. Subsequently, the DOM of each image was automatically generated, and the DOMs within each subarea were mosaicked together. Because of the resolution limitation of the reference source, some positional inconsistencies between the DOM mosaics of neighboring subareas remained. Therefore, a TPS model–based image registration was applied to the generated subarea DOM mosaics. To maintain the grayscale and contrast homogeneity, a histogram matching–based grayscale balancing method was applied to all the mosaics. To maintain the grayscale and contrast homogeneity, image registration was applied to the generated subarea mosaics. Where the positional inconsistencies between the subarea mosaics remained. Therefore, a block adjustment was applied to the subarea mosaics. Via the block adjustment, geometric inconsistencies between adjacent subarea mosaics were refined during the block adjustment.

Geometric Models of Orbital Imagery

The geometric model of the imagery is the mathematical basis for block adjustment as well as the image ortho-rectification. It builds the relationship between object-space coordinates and image-space coordinates.

The rigorous sensor model (RSM) of an image represents the imaging process by collinearity equations with interior orientation (IO) parameters and exterior orientation (EO) parameters (Di et al. 2014; Henriksen et al. 2016; Liu et al. 2017). The generic geometric model of an image fits the relationship between the image and ground coordinates via mathematical functions, the parameters of which have no physical meaning related to the imaging process. The most commonly used generic geometric model is the RFM. The RFM has the advantages of high fitting precision, simple and uniform form, high calculation speed, and imaging sensor independence. It has already been widely accepted that the RFM can approximate the RSM at a precision of 1/100 pixel in image space (Liu et al. 2016, 2017) such that it can be used to replace RSM without a loss of accuracy.

The RSM of the NAC imagery was constructed using the IO and EO parameters recorded in SPICE kernels (NAIF 2014). It can be generally described (Di et al. 2014) as

\[
\begin{bmatrix}
X - X_0 \\
Y - Y_0 \\
Z - Z_0
\end{bmatrix} = \lambda R_x R_y R_z \begin{bmatrix} x \\ y \\ -f \end{bmatrix}
\]

where \((x, y)\) are the focal plane image coordinates; \(f\) is the focal length; \((X, Y, Z)\) and \((X_0, Y_0, Z_0)\) represent the lunar-surface-point coordinates and the position of optical center in the lunar body-fixed coordinate system (LBF), respectively; \(\lambda\) is a scale factor; \(R_x\) is the rotational matrix from the image space coordinate system to the spacecraft body coordinate system (BCS); \(R_y\) is the rotational matrix from the BCS to the orbit coordinate system (OCS); \(R_z\) is the rotational matrix from the OCS to the LBF; and \(R\) is the combination of these three rotation matrices and can be constructed using the three EO angle parameters \((\alpha, \beta, \gamma)\) (Liu et al. 2017).

In principle, for linear array push-broom images, each line has a different set of EO parameters. Because the time interval of the orbit measurement is much longer than that of the line scanning, only a small portion of the image lines have EO parameters from direct measurements. To obtain the EO parameters of all image lines via interpolation, the EO parameters are usually interpolated with respect to the scan time \(t\) (Di et al. 2014). There are many methods for EO parameter interpolation. The polynomial representation is a feasible choice and widely used. The third-order polynomial is chosen to model the three EO parameters as shown in Equation 2:

\[
\begin{align*}
X(t) &= a_2 + a_3 t + a_3 t^2 + a_4 t^3 \\
Y(t) &= b_0 + b_1 t + b_2 t^2 + b_3 t^3 \\
Z(t) &= c_0 + c_1 t + c_2 t^2 + c_3 t^3 \\
\alpha(t) &= d_0 + d_1 t + d_2 t^2 + d_3 t^3 \\
\beta(t) &= e_0 + e_1 t + e_2 t^2 + e_3 t^3 \\
\gamma(t) &= f_0 + f_1 t + f_2 t^2 + f_3 t^3
\end{align*}
\]

where \(a_1, a_2, \ldots, f_3\) are the polynomial coefficients of the six EO parameters \((X(t), Y(t), Z(t), \alpha(t), \beta(t), \gamma(t))\).

The focal plane image coordinates \((x, y)\) can be obtained by transforming from the image coordinates \((row, sample)\) using IO parameters as follows:
where PIXEL_PITCH is the pixel size of the image. \textit{BORESIGHT_SAMPLE} is the principal point coordinate, x_i is the distorted position (the measured position), r is the distance between the optical center and image point, k_i is the distortion coefficient, and x is the corrected focal plane position in millimeters (mm). The 10 parameters of the left and right cameras (NAC-L and NAC-R) can be found in the SPICE kernels of the LRO mission. The NAC cameras are line scanners (single-line CCD); y_i is unmeasured and probably unimportant, and thus y is assumed to be zero according to the LROC Instrument Kernel file (NAIF 2014; Liu et al. 2017).

The RFMs are represented as the ratio of the polynomials shown in Equation 6 as follows:

$$r_n = \frac{P_1(x_n, y_n, z_n)}{P_2(x_n, y_n, z_n)}$$

$$c_n = \frac{P_3(x_n, y_n, z_n)}{P_4(x_n, y_n, z_n)}$$

where (r_n, c_n) and (x_n, y_n, z_n) are the normalized image coordinates and ground coordinates, respectively. The third-order polynomial $P_{j}(i = 1, 2, 3, and 4)$ has a general form as follows:

$$P_j(x_n, y_n, z_n) = a_1 + a_2 x_n + a_3 y_n + a_4 z_n + a_5 x_n y_n + a_6 x_n z_n + a_7 y_n z_n + a_8 x_n^2 + a_9 y_n^2 + a_{10} z_n^2 + a_{11} x_n y_n z_n + a_{12} x_n^2 y_n + a_{13} y_n^2 z_n + a_{14} z_n^2 x_n + a_{15} x_n^2 z_n + a_{16} y_n^2 z_n + a_{17} z_n^2 y_n + a_{18} x_n y_n z_n + a_{19} x_n^2 y_n z_n + a_{20} y_n^2 z_n x_n + a_{21} z_n^2 y_n z_n$$

where a_1, a_2, \ldots, a_{21} are the coefficients of the polynomial function P_j, named rational polynomial coefficients (RPCs).

The RFM of the LROC NAC imagery was established by least-squares fitting with a large number of virtual control points generated by RSM of the image (Di et al. 2018). A series of grid points in a certain interval were created first in every image as the virtual control points in image space, after which the elevation in the object space was divided into several layers and the planar ground coordinates of the virtual control points in every layer were calculated using the RSM. Finally, the RPCs were derived using these virtual control points via least-squares fitting (Liu et al. 2017).

Subarea Planar Block Adjustment

The accuracy of the constructed RSM of LROC NAC imagery depends on the accuracy of the orbit and attitude of the LRO. Consequently, the fitted RFM also contains errors at the same level as that of the RSM. Benefiting from lunar gravity field data of the Gravity Recovery and Interior Laboratory mission, the LRO orbit determination obtained an accuracy of ~20 m. The accuracy was further improved to ~14 m after incorporating crossovers of LOLA data (Mazarico et al. 2012). The errors of the RSMs and RFMs of the images cause positional deviations of adjacent rectified images that should be reduced to a subpixel level to better support engineering and science applications. Photogrammetric block adjustment is an effective means to improve the geopositioning accuracy of a geometric model (Gwinner et al. 2010; Wu and Liu 2017). Traditionally, three-dimensional ground coordinates of the tie points are solved using stereo block adjustment. However, if the stereo convergence angle is very small (e.g., <10°), the normal equations of the block adjustment will be ill-conditioned, and as a result, the calculated ground height will be abnormal. This is widespread in our experiments because of the lack of coverage of stereo LROC NAC pairs.

The traditional DOM registration is also a widely used method to remove the geometric deviations between images with low convergence angles. This is usually accomplished with the help of high-precision control data. However, the lack of high-precision control data of the lunar surface limits the registration precision. It is hard to make the NAC DOMs geometric seamless by using the traditional registration method with control points from presently available DOM mosaics or DEMs.

To resolve the problem, a DEM-aided planar block adjustment was developed to refine the RFMs of the LROC NAC images. In order to ortho-rectify the LROC NAC images and support collaborative analysis of produced DOM mosaic and existing DEM in various science applications, the geometric models of the images should be corresponded to the reference DEM. Thus, in each subarea block adjustment, a few control points were manually selected using SLDEM2015 as the reference. The control points are mostly centers of small craters and are evenly distributed in the research area. The extracted feature points in every NAC image are matched automatically to obtain tie points. After that, the distribution of tie points is checked carefully to ensure that every overlapping area has evenly distributed points. If such a condition is not satisfied, manually selected tie points will be used. Most of the NAC images (750 out of 765 images used) were taken in the afternoon and have similar illumination conditions, and they can be automatically matched for tie point selection. A very small number of images (15) were taken in the morning and have severe illumination differences with neighboring images taken in the afternoon, and manual selection is necessary to obtain tie points in these images. Image matching under different illumination condition is still a challenging issue. Recently, Wu et al. (2018) have done some related work in automatic matching of planetary images using illumination-invariant feature points. The issue is worth of further study to make the adjustment process more efficient.

The error equations of the block adjustment are shown in Equation 8. Compared to stereo block adjustment, planar block adjustment is a method that calculates only the tie point ground plane coordinates, while the elevation coordinates can be interpolated from a DEM. In the block adjustment, the affine transformation model in image space (Equation 8) is used to compensate the systematic errors rather than recalculating the RPCs:

$$F_x = e_0 + e_1 \cdot \text{sample} + e_2 \cdot \text{line} - x$$
$$F_y = f_0 + f_1 \cdot \text{sample} + f_2 \cdot \text{line} - y$$

where the image coordinates acquired by back-projecting the ground coordinates with the RFM (as shown in Equation 6) are represented by \text{sample} and \text{line}, while the measured image coordinates are shown as x and y; $e_0, e_1, e_2, f_0, f_1, f_2$ are the affine transformation parameters in the sample direction, and $e_0, e_1, e_2, f_0, f_1, f_2$ are the affine transformation parameters in the line direction.

Because the error equations of planar block adjustment are nonlinear relative to the ground coordinates, a Taylor series expansion is used to linearize the error equations as shown in Equation 9. The unknowns to be solved include the tie point ground plane coordinates (lat, lon) and the affine transformation model parameters as shown in Equation 9.

The elevation coordinates are interpolated from a DEM iteratively:

$$v_x = \frac{\partial F_x}{\partial e_0} \cdot \Delta e_0 + \frac{\partial F_x}{\partial e_1} \cdot \Delta e_1 + \frac{\partial F_x}{\partial e_2} \cdot \Delta e_2 + \frac{\partial F_x}{\partial \text{lat}} \cdot \Delta \text{lat} + \frac{\partial F_x}{\partial \text{lon}} \cdot \Delta \text{lon} - l_x$$
$$v_y = \frac{\partial F_y}{\partial f_0} \cdot \Delta f_0 + \frac{\partial F_y}{\partial f_1} \cdot \Delta f_1 + \frac{\partial F_y}{\partial f_2} \cdot \Delta f_2 + \frac{\partial F_y}{\partial \text{lat}} \cdot \Delta \text{lat} + \frac{\partial F_y}{\partial \text{lon}} \cdot \Delta \text{lon} - l_y$$
The error equations for control points are shown in Equation 10, and only the affine transformation parameters need to be calculated for control points:

\[
v_x = \frac{\partial F_x}{\partial e_0} \cdot \Delta e_0 + \frac{\partial F_x}{\partial e_1} \cdot \Delta e_1 + \frac{\partial F_x}{\partial e_2} \cdot \Delta e_2 - l_x
\]

\[
v_y = \frac{\partial F_y}{\partial f_0} \cdot \Delta f_0 + \frac{\partial F_y}{\partial f_1} \cdot \Delta f_1 + \frac{\partial F_y}{\partial f_2} \cdot \Delta f_2 - l_y
\]

The error equations of each control point and tie point can be constructed using Equations 9 and 10. The unknown parameters can be calculated iteratively using the least-squares algorithm until the termination condition of iteration is satisfied.

In this research, the planar block adjustment was conducted in each subarea independently. Using the RPCs and the calculated affine transformation parameters, the NAC images were ortho-rectified with respect to SLEDEM2015, through which the image distortions caused by topographic relief and the imprecision of the original EO parameters were simultaneously corrected. Finally, the subarea seamless DOM mosaics were produced using the individual DOMs within the subarea.

TPS-Based Large-Area Image Registration

The planar block adjustment can remove the geometric deviations among images within each subarea, but inconsistencies remain among the subarea DOM mosaics because of the limited control precision. Therefore, registration between subarea mosaics is needed to eliminate the residual geometric inconsistencies. We propose a novel method of TPS model–based large-area image registration to seamlessly register the subarea DOMs while simultaneously maintaining mapping accuracy.

The TPS model is an effective technique for data interpolation and smoothing and has been widely used in image alignment, shape matching, image warping, spatial data interpolation, and other circumstances that require the modeling of nonrigid deformation. As shown in Equation 11, the TPS model consists of an affine transformation model and a distance-related quantity that indicates that the impact of the control point on the interpolation point depends on the distance between them:

\[
f(x, y) = a_0 + a_1x + a_2y + \sum_{j=1}^{m} \delta_j \psi(r_j)
\]

where the quantity of control points are represented by \(m \) and \(r_j \) is the Euclidean distance from the \(j \)th control point \((x_j, y_j) \) to an arbitrary image point \((x, y) \) as follows:

\[
r_j = \sqrt{(x - x_j)^2 + (y - y_j)^2}
\]

where \(\psi \) is the radial-basis-function kernel

\[
\psi(r) = \begin{cases} r^2 \log(r), r \neq 0 \\ 0, r = 0 \end{cases}
\]

and \(a_0, a_1, a_2, \) and \(\delta_j \) in Equation 12 are the coefficients that should be calculated by minimizing the weighted sum of the error measure \(E(f) \) (Equation 15) and roughness measure \(R(f) \) (Equation 16) (Di et al. 2018) as follows:

\[
\min(E(f) + \lambda R(f))
\]

\[
E(f) = \sum_{j=1}^{m} \parallel f_j - f(x_j, y_j) \parallel^2
\]

\[
R(f) = \iint \left(\frac{\partial^2 f}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 f}{\partial y^2} \right)^2 \right) dxdy
\]

where \(\lambda \) represents a smoothing parameter that is required to be nonnegative. If \(\lambda = 0 \), there will be no smoothness constraint, and all the control points are exactly passed through fitting the TPS model. Otherwise, if \(\lambda = +\infty \), the coefficient \(\delta \) becomes a zero vector, and the TPS model will turn into an affine transformation model (Shen et al. 2017). The variable \(\lambda \) was set to be zero in our experiment so that the registration precision can reach as high a level as possible for the control point pairs and the surrounding area. It is also a guarantee for the subsequent registration process to be implemented simultaneously.

When registering the subarea DOMs with the TPS model, a subarea DOM in the central part of the whole area was used as the reference for neighboring DOMs. Then the registered DOMs become new references for subsequent subarea mosaics until all the subarea DOMs are registered.

For DOM registration, the TPS coefficients are calculated by the matched reference control points and auxiliary control points. The reference control points are the matched points between the target DOM and the reference DOM, while the auxiliary control points are on the opposite-side margin of the target DOM, which are introduced to constrain the geometric error in the local area and avoid overcorrection of the DOM. For example, in Figure 3, the subarea DOM labeled “Left DOM” needs to be registered to the “Reference DOM,” so the reference control points were on the right margin of the “Left DOM,” shown as circles, while the auxiliary control points were marked as crosses and distributed on the left margin of the “Left DOM.” Consequently, when solving TPS coefficients, the reference control point coordinates of the target DOM were corrected with respect to the reference DOM. The coordinates

![Figure 3. Schematic diagram of the DOM registration process based on TPS model. The reference control points are marked as circles, and auxiliary control points are shown as crosses.](image-url)
of the auxiliary control point remain unchanged. Other coordinates in the target DOM were smoothly transformed using the calculated TPS coefficients.

The whole registration process can be implemented simultaneously with all the control points matched in advance. To be specific, the homologous points between every two subarea DOMs are obtained first as reference or auxiliary control points. These control points will be unchanged during the whole registration process. Then the TPS model for every target DOM is established in parallel with the achieved control points. Thus, the registration of every target DOM can be implemented independently and simultaneously. Finally, the DOM mosaic of the entire landing area was generated in high geometric consistency.

Results and Analyses

Planar Block Adjustment Results

The whole planned Chang’e-5 landing area was partitioned into 10 subareas in longitude. The subareas covered approximately 3° in longitudinal direction with an overlap of 1°. The 10 subareas from left to the right were named Parts 1 to 10. The quantity of LROC NAC images in every subarea is displayed in Table 1 together with the control point and tie point numbers for the planar block adjustment. The borders of each subarea overlapping on the selected NAC images are depicted in Figure 4.

The planar block adjustment was performed on the 10 subareas separately, and the results are shown in Table 2. The unit of all the precision assessment results is one NAC image pixel, which is set to be 1.5 m in this research. The control point precision was evaluated in image space by the RMS errors between the back-projected coordinates and the measured-image coordinates. As shown in Table 2, the RMS errors for the control points are approximately 27 NAC image pixels on average, which is about one grid cell size of the SLDEM2015 in the research area, with the maximum error no more than two grid cell size, reflecting that the subarea DOMs are connected well to the SLDEM2015. As for the tie points, the RMS errors were also measured by the difference between the matched image coordinates and the back-projected image coordinates. The RMS errors of tie points, as shown in Tables 1 and 2, are approximately one-half of an NAC image pixel in every part, which indicates that the geometric consistencies of NAC images in the subareas were effectively improved after planar block adjustment.

![Image](https://example.com/image.png)

Figure 4. Footprints of all the selected LROC NAC images and the borders of the 10 subareas. Red and blue colors are used alternately for distinguishing the subarea borders. The yellow rectangle represents the planned landing area of Chang’e-5.

Table 1. Image numbers, control point, and tie point numbers in the ten subareas.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Image number</td>
<td>111</td>
<td>71</td>
<td>73</td>
<td>56</td>
<td>93</td>
<td>84</td>
<td>74</td>
<td>54</td>
<td>85</td>
<td>49</td>
</tr>
<tr>
<td>Control point number</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Tie point number</td>
<td>46386</td>
<td>39279</td>
<td>49005</td>
<td>47174</td>
<td>48243</td>
<td>48253</td>
<td>51425</td>
<td>35485</td>
<td>41601</td>
<td>31148</td>
</tr>
</tbody>
</table>

Table 2. Control point and tie point precisions of the planar block adjustment in ten subareas. The unit is an NAC image pixel assumed to be 1.5 m.

<table>
<thead>
<tr>
<th>Subarea ID</th>
<th>RMS Errors of Control Points (Pixel)</th>
<th>Maximum Errors of Control Points (Pixel)</th>
<th>RMS Errors of Tie Point (Pixel)</th>
<th>Maximum Errors of Tie Point (Pixel)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x y xy</td>
<td>x y xy</td>
<td>x y xy</td>
<td>x y xy</td>
</tr>
<tr>
<td>Part 1</td>
<td>13.10 19.41 23.42 x y xy</td>
<td>1.71 38.42 38.46 x y xy</td>
<td>0.33 0.48 0.58 x y xy</td>
<td>0.33 –3.31 3.33 x y xy</td>
</tr>
<tr>
<td>Part 2</td>
<td>19.18 21.75 29.00 x y xy</td>
<td>27.49 –25.76 37.68 x y xy</td>
<td>0.37 0.45 0.58 x y xy</td>
<td>0.75 –2.84 2.93 x y xy</td>
</tr>
<tr>
<td>Part 3</td>
<td>17.75 19.81 26.60 x y xy</td>
<td>21.92 37.94 43.82 x y xy</td>
<td>0.46 0.62 0.77 x y xy</td>
<td>0.11 –2.83 2.83 x y xy</td>
</tr>
<tr>
<td>Part 4</td>
<td>17.70 13.23 22.10 x y xy</td>
<td>34.60 9.24 35.81 x y xy</td>
<td>0.17 0.30 0.34 x y xy</td>
<td>–0.33 1.43 1.47 x y xy</td>
</tr>
<tr>
<td>Part 5</td>
<td>18.71 13.71 23.20 x y xy</td>
<td>32.50 3.14 32.65 x y xy</td>
<td>0.16 0.18 0.24 x y xy</td>
<td>2.80 0.24 2.81 x y xy</td>
</tr>
<tr>
<td>Part 6</td>
<td>17.08 13.04 21.49 x y xy</td>
<td>17.07 –21.94 27.80 x y xy</td>
<td>0.23 0.36 0.43 x y xy</td>
<td>2.53 –0.26 2.54 x y xy</td>
</tr>
<tr>
<td>Part 7</td>
<td>23.44 15.52 28.11 x y xy</td>
<td>40.90 11.76 42.56 x y xy</td>
<td>0.26 0.38 0.46 x y xy</td>
<td>–1.85 1.10 2.15 x y xy</td>
</tr>
<tr>
<td>Part 8</td>
<td>32.13 19.30 37.48 x y xy</td>
<td>43.67 –35.92 56.54 x y xy</td>
<td>0.41 0.43 0.59 x y xy</td>
<td>–3.40 1.50 3.72 x y xy</td>
</tr>
<tr>
<td>Part 9</td>
<td>36.41 8.10 37.30 x y xy</td>
<td>40.78 –11.34 42.33 x y xy</td>
<td>0.26 0.21 0.33 x y xy</td>
<td>2.45 0.50 2.50 x y xy</td>
</tr>
<tr>
<td>Part 10</td>
<td>19.37 15.39 24.74 x y xy</td>
<td>36.83 –13.60 39.26 x y xy</td>
<td>0.25 0.51 0.57 x y xy</td>
<td>0.50 –2.75 2.80 x y xy</td>
</tr>
</tbody>
</table>
After planar block adjustment, the DOMs of the NAC images were automatically generated via ortho-rectification. The block adjustment results can also be assessed by the geometric deviations between these DOMs. Figure 5 displays three examples of the positional deviations of two neighboring NAC DOMs before and after block adjustment. The upper three subfigures show parts of the DOMs rectified using the original RFMs, while the lower three are the DOMs produced from the same images but with the block adjustment–refined RFMs. The three groups of examples come from Part 1 ((a) and (d)), Part 5 ((b) and (e)), and Part 10 ((c) and (f)), respectively. It can be seen that in subfigures (a), (b), and (c) that there exist up to 100-m geometric deviations that are almost completely removed by the block adjustment as depicted in subfigures (e), (f), and (g).

Figure 6 compares the positional differences between NAC DOMs and SLDEM2015 before (subfigures (a), (b), and (c)) and after (subfigures (d), (e), and (f)) the planar block adjustment. The NAC DOMs in subfigures (a) and (d) are part of m1221740903r in Part 1, (b) and (e) are part of m1758095061 in Part 5, and (c) and (f) are part of m1145135367l in Part 10. It can be seen that the geometric differences before block adjustment are about two grid sizes of the SLDEM. After block adjustment processing, these deviations are almost completely corrected with the manually selected control points.

Seamless DOM mosaics were generated for each subarea via the process of planar block adjustment, image ortho-rectification, grayscale balancing, and final DOM mosaicking. The LROC WAC mosaic product was chosen as the reference for histogram matching–based grayscale balancing. Most of the time, the seam lines were automatically extracted. However, if two adjacent images had obvious illumination difference, the seam lines would need some manual editing to guarantee natural transition of the grayscale.

Overall Block Adjustment Evaluation

Although mapping with partitions is widely used when dealing with a large amount of data or large-area mapping, there is little research on the evaluation of the attainable accuracy between the overall block adjustment and the subareas block adjustment. In this article, we gave a specific analysis on this issue using LROC NAC images in our study area.

The block adjustment using the same control points and tie points of the subarea blocks was performed with all the images involved in the subarea block adjustment, the results of which are shown in Table 3. It demonstrates that the RMS errors of tie points can achieve subpixel-level accuracy in both subarea and overall block adjustment in our study case. But the maximum error of the tie points from the overall adjustment is almost twice the maximum errors from the subarea block adjustment. This indicates that a partition can improve the quality of DOM and mosaicking products. Both RMS and maximum errors show that the precision at control points decreased remarkably. This may be partially due to the insufficient precision of control points selected from a lower-resolution reference. To rectify the orbital images to the reference DEM for synergetic analysis of different data sets in further applications, the orbital images should be well coregistered to the reference DEM. In this perspective, the partition strategy for planar block adjustment is meaningful and effective.

Figure 5. The geometric consistency comparisons between two neighboring DOMs. The upper three subfigures are the DOMs generated using original RFMs, and the lower three are the DOMs rectified by the planar block adjustment refined RFMs. Subfigures (a) and (d) are part of m1221740903r and m1191136940l in Part 1, (b) and (e) are part of m1208769920r and m1758095061 in Part 5, and (c) and (f) are part of m181502892le and m1145135367l in Part 10.
TPS-Based DOM Registration Results

Due to the limited resolution of the SLDEM2015 compared with the LROC NAC images, geometric inconsistencies still exist between the seamlessly mosaicked adjacent subarea DOMs. The upper two subfigures in Figure 7 show examples of the geometric inconsistencies between Part 1 and 2 as well as Part 9 and 10 mosaicked DOMs, which were effectively reduced by the image registration process based on the TPS model as indicated in subfigures (c) and (d) in Figure 7. The registration was conducted subarea by subarea using the procedure detailed in the section “TPS-Based Large-Area Image Registration.” A quantitative evaluation of the registration results can also be realized by measuring the differences of the check point pair coordinates between any two overlapping subarea DOM mosaics. Parts 1 and 2 are taken as examples. Ten evenly distributed check point pairs were automatically matched in the overlapping region, as shown in Figure 8.

The deviations of the check point coordinates in the latitudinal and longitudinal directions are listed in Table 4. After the TPS-based registration, the planar deviations are reduced to about 1 pixel, and the largest difference is 2.69 m, which is no more than 2 pixels of the output DOM, reflecting a high-precision registration.

Table 3. Image numbers, control point numbers and tie point numbers and control point and tie point precisions of the overall block adjustment using all the selected NAC images involved in the subarea block adjustment. The unit for precision assessment is an NAC image pixel assumed to be 1.5 m.

<table>
<thead>
<tr>
<th>Image Number</th>
<th>Control Point Number</th>
<th>Tie Point Number</th>
<th>RMS Errors of Control Points (Pixel)</th>
<th>Maximum Errors of Control Points (Pixel)</th>
<th>RMS Errors of Tie Point (Pixel)</th>
<th>Maximum Errors of Tie Point (Pixel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>95</td>
<td>437 999</td>
<td>x y xy</td>
<td>x y xy</td>
<td>x y xy</td>
<td>x y xy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.69 26.13 35.27</td>
<td>49.87 78.93 93.37</td>
<td>0.27 0.37 0.46</td>
<td>0.94 5.62 5.7</td>
</tr>
</tbody>
</table>

Landing Area DOM and Potential Applications

After subarea planar block adjustment and TPS-based image registration of the subarea DOMs, a seamless DOM mosaic of the entire Chang’e-5 planned landing area was produced. The generated radiometrically homogeneous and geometrically seamless DOM mosaic is shown in Figure 9 (zoomed-out view). This final DOM mosaic has the image size of 224 721 columns and 44 945 rows with a ground sample distance of 1.5 m.

This high-resolution 10-gigapixel DOM has many potential applications for detailed morphological and geological studies. For example, using the high-resolution map, craters can be precisely measured to determine the age of surface units (Michael and Neukum 2010); small, particularly fresh craters (e.g., flat-bottomed, central-mound, and concentric craters) can be used to estimate the depth of the lunar regolith (Bart et al. 2011; DI et al. 2016); rocks/boulders on the ejecta of a crater can be identified and the spatial density used to estimate the formation time of the crater (Li et al. 2017); and so on. More important, distribution pattern analyses of crater rays, crater chains, and boulders are significant in helping identify source locations of the exposed features (e.g., rock and soil samples to be collected by the lander), which will directly contribute to the major scientific objective of the sample return mission.
Figure 7. The positional difference comparisons between two neighboring subarea DOMs before (upper two) and after (lower two) the image registration process based on the TPS model. Subfigures (a) and (c) are from the overlapping area of Parts 1 and 2, and (b) and (d) are from the overlapping area of Parts 9 and 10.

Figure 8. Check points (green circles) between Parts 1 and 2 subarea DOM mosaics for precision evaluation of the TPS-based image registration. The red polygon is the border of Part 1, the blue polygon is the border of Part 2, and the yellow rectangle shows part of the planned landing area of Chang’e-5.

Table 4. TPS-based DOM registration precision between Part 1 and Part 2 subarea DOM mosaics (1.5 m/pixel). “Lat Diff” and “Long Diff” represent the coordinate differences in latitude and longitude directions, respectively; “chk” represents check point.

<table>
<thead>
<tr>
<th>Chk ID</th>
<th>Before DOM Registration (m)</th>
<th>After DOM Registration (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long Diff</td>
<td>Lat Diff</td>
</tr>
<tr>
<td>chk1</td>
<td>4.69</td>
<td>−14.30</td>
</tr>
<tr>
<td>chk2</td>
<td>15.72</td>
<td>−15.87</td>
</tr>
<tr>
<td>chk3</td>
<td>−11.05</td>
<td>−21.96</td>
</tr>
<tr>
<td>chk4</td>
<td>11.68</td>
<td>−16.57</td>
</tr>
<tr>
<td>chk5</td>
<td>−4.29</td>
<td>17.76</td>
</tr>
<tr>
<td>chk6</td>
<td>4.56</td>
<td>24.05</td>
</tr>
<tr>
<td>chk7</td>
<td>−10.15</td>
<td>29.91</td>
</tr>
<tr>
<td>chk8</td>
<td>6.08</td>
<td>32.38</td>
</tr>
<tr>
<td>chk9</td>
<td>15.63</td>
<td>10.85</td>
</tr>
<tr>
<td>chk10</td>
<td>6.08</td>
<td>−9.95</td>
</tr>
</tbody>
</table>
Conclusions
To solve the problems of large-area controlled seamless DOM production using LROC NAC images, a systematic method consisting of two stages of data processing is developed in this study. First, the RFM-based planar block adjustment is used to improve the relative positional consistencies of the LROC NAC images to the subpixel level and at the same time tie the NAC images to the control source (SLDEM2015). Second, a TPS-based image registration is used to reduce the geometric inconsistencies between two neighboring subarea DOM mosaics and ensures final DOM being seamlessly mosaicked throughout the entire area.

A high-resolution seamless DOM mosaic is produced with the proposed two-stage method for the Chang‘e-5 planned landing area using 765 NAC images. Consequently, the tie point RMS errors are all approximately one-half pixel, showing satisfactory geometric consistencies among NAC images. The control point RMS errors were approximately one grid cell size of SLDEM2015, which means that the produced DOM has been registered to SLDEM2015 with high precision. After DOM registration with the TPS model, the planar precision is mostly smaller than one pixel in the output DOM. The resultant DOM mosaic, covering 49°–69° west longitude and 41°–45° north latitude, has an image size of 224,721 columns × 44,945 rows with a ground sample distance of 1.5 m. This high-resolution DOM is of great importance for detailed morphological and geological analysis of the Chang‘e-5 landing area. The developed method is applicable to high-resolution mapping of other large areas on the lunar surface using LROC NAC images.

Acknowledgments
This work was supported by the Key Research Program of the Chinese Academy of Sciences (grant no. XDPB11) and the National Natural Science Foundation of China (grant nos. 41671458, 41590851, and 41771490). We thank all those who worked on the Planetary Data System archive to make the LRO imagery and SLDEM2015 publicly available.

References

Figure 9. Produced seamless DOM mosaic of the Chang’e-5 planned landing area.
<table>
<thead>
<tr>
<th>SUSTAINING MEMBERS</th>
</tr>
</thead>
</table>
| **ACI USA Inc.**
Weston, Florida
acicorporation.com
Member Since: 1/2018
| **Geojango**
Pleasanton, California
https://geojango.com/
Member Since: 05-2019
| **Pickett and Associates, Inc.**
Bartow, Florida
www.pickettusa.com
Member Since: 4/2007
| **Airbus Defense and Space**
Chantilly, Virginia
www.intelligence-airbusds.com
Member Since: 6/2016
| **Geomni, Inc.**
Lehi, Utah
Geomni.net/psm
Member Since: 03/2018
| **PixElement**
Columbus, Ohio
www.pixelement.com
Member Since: 1/2017
| **Axis GeoSpatial, LLC**
Easton, Maryland
www.axisgeospatial.com
Member Since: 10/2002
| **GeoWing Mapping Inc.**
Oakland, California
www.geowingmapping.com
Member Since: 1/2017
| **Quantum Spatial, Inc.**
Sheboygan Falls, Wisconsin
www.quantumspatial.com
Member Since 1/1974
| **Ayres Associates, Inc.**
Madison, Wisconsin
www.AyresAssociates.com
Member Since: 1/1953
| **Global Science & Technology, Inc.**
Greenbelt, Maryland
www.gst.com
Member Since: 10/2010
| **Riegl USA, Inc.**
Orlando, Florida
www.rieglusa.com
Member Since: 11/2004
| **Bohannan Huston, Inc.**
Albuquerque, New Mexico
www.bhinc.com
Member Since: 11/1992
| **Harris Corporation**
Broomfield, Colorado
www.harris.com
Member Since: 10/1994
| **Robinson Aerial Survey, Inc. (RAS)**
Hackettstown, New Jersey
www.robinsonaerial.com
Member Since: 1/1954
| **Cardinal Systems, LLC**
Flagler Beach, Florida
www.cardinalsystems.net
Member Since: 1/2001
| **Keystone Aerial Surveys, Inc.**
Philadelphia, Pennsylvania
www.keystoneaerialsurveys.com
Member Since: 1/1985
| **Routescene, Inc.**
Durango, Colorado
www/routescene.com/
Member Since: 12/2007
| **CompassData, Inc.**
Centennial, Colorado
www.compassdatainc.com
Member Since: 1/2012
| **Kucera International**
Willoughby, Ohio
www.kucerainternational.com
Member Since: 1/1992
| **Sanborn Map Company**
Colorado Springs, Colorado
www.sanborn.com
Member Since: 10/1984
| **DAT/EM Systems International**
Anchorage, Alaska
www.datem.com
Member Since: 1/1996
| **Lead’Air, Inc.**
Kissimmee, Florida
www.trackair.com
Member Since: 5/2001
| **Teledyne Optech**
Toronto, Canada
www.teledyneoptech.com
Member Since: 1/1999
| **DigitalGlobe, Inc.**
Longmont, Colorado
www.digitalglobe.com
Member Since: 1/2001
| **Martinez Geospatial, Inc. (MTZ)**
Eagan, Minnesota
www.mtzgeo.com
Member Since: 1/1979
| **Terra Remote Sensing (USA) Inc.**
Bellevue, Washington
www.terraremote.com
Member Since: 10/2016
| **Environmental Research Incorporated**
Linden, Virginia
www.eri.us.com
Member Since: 8/2008
| **MDA Information Systems LLC**
Gaithersburg, Maryland
www.mdaus.com
Member Since: 1/1983
| **Towill, Inc.**
San Francisco, California
www.towill.com
Member Since: 1/1952
| **Esri**
Redlands, California
www.esri.com
Member Since: 1/1987
| **Merrick & Company**
Greenwood Village, Colorado
www.merrick.com/gis
Member Since: 4/1995
| **University of Twente/Faculty ITC**
Enschede, Netherlands
www.itc.nl
Member Since: 1/1992
| **GeoBC**
Victoria, Canada
www.geobc.gov.bc.ca
Member Since: 12/2008
| **Observera, Inc.**
Chantilly, Virginia
www.observera.com
Member Since: 4/2002
| **U.S. Geological Survey**
Reston, Virginia
www.usgs.gov
Member Since: 4/2002
| **GeoCue Group**
Madison, Alabama
info@geocue.com
Member Since: 10/2003
| **PCI Geomatics**
Richmond Hill, Ontario, Canada
www.pcigeomatics.com
Member Since: 1/1989
| **Woolpert LLP**
Dayton, Ohio
www.woolpert.com
Member Since: 1/1985
|
Occlusion Probability in Operational Forest Inventory Field Sampling with ForeStereo

Abstract
Field data in forest inventories are increasingly obtained using proximal sensing technologies, often under fixed-point sampling. Under fixed-point sampling some trees are not detected due to instrument bias and occlusions, hence involving an underestimation of the number of trees per hectare (N). The aim here is to evaluate various approaches to correct tree occlusions and instrument bias estimates calculated with data from ForeStereo (proximal sensor based on stereoscopic hemispherical images) under a fixed-point sampling strategy. Distance-sampling and the new hemispherical photogrammetric correction (HPC), which combines image segmentation-based correction for instrument bias with a novel approach for estimating the proportion of shadowed sampling area in stereoscopic hemispherical images, best estimated N and basal area (BA). Distance-sampling slightly overestimated N (11% bias, 0.60 Pearson coefficient with the reference measures) and BA (4%, 0.82). HPC provided less biased N estimates (-6%, 0.61) but underestimated BA (-8%, 0.83). HPC most accurately retrieved the diameter distribution.

Introduction
Understanding forests dynamics is necessary for sustainable forest management. Forest inventories supported by data measured on the ground and data acquired remotely via aerial or satellite platforms enable the monitoring of forest structure, growth, change in composition, responses to silvicultural traits, and decline originated by climatic or biotic factors. Continuous development of technology for data acquisition, processing, and analysis contributes to improving the quality of forest inventories. Remote sensing provides information on forest variables such as cover (Morsdorf et al. 2006), structure (Gómez et al. 2011), volume (Vauhkonen et al. 2011), or biomass (Næsset and Gobakken 2008), with complete spatial coverage. A wide range of sensors with different spatial resolutions (from hundreds to less than 1 m) are suitable for forest applications (White et al. 2016). Satellite imagery and aerial Light Detection and Ranging (LiDAR) data support mapping and updating National Forest Inventory estimations (e.g. in Finland, (Tomppo et al. 2008) or in Canada (Hilker et al. 2008)). Changes in land cover and forest variables like biomass are mapped and monitored with optical and radar satellite platforms enabling structural characterization (Valbuena et al. 2013; Bottalico et al. 2017) and measurement of individual tree attributes (Hauglin et al. 2014). LiDAR provides precise digital elevation models and metrics for characterization of height distribution (Lindberg et al. 2012) and is increasingly being used to generalize the sampling plot data to the whole area through area-based models (Næsset 2002; Bouvier et al. 2015). Research is ongoing to overcome LiDAR limitations in the estimation of tree diameter distribution (Magnussen et al. 2013) or species composition (Maltamo et al. 2009), which may benefit from the combination with other sensors (Holmgren et al. 2008; Puttonen et al. 2010; Zhao et al. 2018). Forest canopy surface height can also be estimated comparing image-based point clouds derived from digital aerial photography and terrain elevation models of high spatial resolution generated with LiDAR (Leberl et al. 2010). Digital aerial photography is less costly than LiDAR (White et al. 2013) and provide spectral information to support species classification (St-Onge et al. 2015); however, image-based point clouds do not penetrate through tree crowns in dense stands (White et al. 2013) being LiDAR more informative for forest inventory applications. Equipped with optical sensors unmanned aerial vehicles (UAVs) can retrieve photogrammetric surface models at local scale with very high spatial resolution, and spectral vegetation indices to support species classification (Tuominen et al. 2018). To date, practical concerns in the use of UAVs include data processing, power autonomy, payload weight, and local regulations (Gómez and Green, 2017; Manfreda et al. 2018).

Although the contribution of remotely sensed data to forest inventories is constantly increasing, field data is needed to calibrate and validate the models (Brosowski et al. 2014). Field data is expensive to acquire, therefore, a sampling survey approach is generally used (Mandallaz and Ye 1999). Proximal Sensing (PS) techniques, which refer to the acquisition of data with a sensor from a relatively short distance, may provide information on variables which are complex to measure manually, such as spatial arrangement and dimensions of trees (Rodríguez-García et al. 2014), canopy features (Seidel et al. 2012), stand volume (Astrup et al. 2014), or forest fuel (Piemont et al. 2015), complementing the field measurement and enhancing performance (Dassot et al. 2011). The combination of remote sensing and proximal sensing may improve estimations and reduce the cost of inventories (Lindberg et al. 2012). The development of point sampling PS technologies—based on laser distance or photogrammetry—to measure tree dimensions and to estimate forest parameters at plot or stand level began in the early 2000s (Clark et al. 2000; Lovell et al. 2009). For estimation of forest inventory variables at regional scale LiDAR is the most precise technology (Wulder et al. 2013) enabling structural characterization (Valbuena et al. 2013; Bottalico et al. 2017) and measurement of individual tree attributes (Hauglin et al. 2014). LiDAR provides precise digital elevation models and metrics for characterization of height distribution (Lindberg et al. 2012) and is increasingly being used to generalize the sampling plot data to the whole area through area-based models (Næsset 2002; Bouvier et al. 2015). Research is ongoing to overcome LiDAR limitations in the estimation of tree diameter distribution (Magnussen et al. 2013) or species composition (Maltamo et al. 2009), which may benefit from the combination with other sensors (Holmgren et al. 2008; Puttonen et al. 2010; Zhao et al. 2018). Forest canopy surface height can also be estimated comparing image-based point clouds derived from digital aerial photography and terrain elevation models of high spatial resolution generated with LiDAR (Leberl et al. 2010). Digital aerial photography is less costly than LiDAR (White et al. 2013) and provide spectral information to support species classification (St-Onge et al. 2015); however, image-based point clouds do not penetrate through tree crowns in dense stands (White et al. 2013) being LiDAR more informative for forest inventory applications. Equipped with optical sensors unmanned aerial vehicles (UAVs) can retrieve photogrammetric surface models at local scale with very high spatial resolution, and spectral vegetation indices to support species classification (Tuominen et al. 2018). To date, practical concerns in the use of UAVs include data processing, power autonomy, payload weight, and local regulations (Gómez and Green, 2017; Manfreda et al. 2018). Although the contribution of remotely sensed data to forest inventories is constantly increasing, field data is needed to calibrate and validate the models (Brosowski et al. 2014). Field data is expensive to acquire, therefore, a sampling survey approach is generally used (Mandallaz and Ye 1999). Proximal Sensing (PS) techniques, which refer to the acquisition of data with a sensor from a relatively short distance, may provide information on variables which are complex to measure manually, such as spatial arrangement and dimensions of trees (Rodríguez-García et al. 2014), canopy features (Seidel et al. 2012), stand volume (Astrup et al. 2014), or forest fuel (Piemont et al. 2015), complementing the field measurement and enhancing performance (Dassot et al. 2011). The combination of remote sensing and proximal sensing may improve estimations and reduce the cost of inventories (Lindberg et al. 2012).

The development of point sampling PS technologies—based on laser distance or photogrammetry—to measure tree dimensions and to estimate forest parameters at plot or stand level began in the early 2000s (Clark et al. 2000; Lovell et al. 2009). For estimation of forest inventory variables at regional scale LiDAR is the most precise technology (Wulder et al. 2013) enabling structural characterization (Valbuena et al. 2013; Bottalico et al. 2017) and measurement of individual tree attributes (Hauglin et al. 2014). LiDAR provides precise digital elevation models and metrics for characterization of height distribution (Lindberg et al. 2012) and is increasingly being used to generalize the sampling plot data to the whole area through area-based models (Næsset 2002; Bouvier et al. 2015). Research is ongoing to overcome LiDAR limitations in the estimation of tree diameter distribution (Magnussen et al. 2013) or species composition (Maltamo et al. 2009), which may benefit from the combination with other sensors (Holmgren et al. 2008; Puttonen et al. 2010; Zhao et al. 2018). Forest canopy surface height can also be estimated comparing image-based point clouds derived from digital aerial photography and terrain elevation models of high spatial resolution generated with LiDAR (Leberl et al. 2010). Digital aerial photography is less costly than LiDAR (White et al. 2013) and provide spectral information to support species classification (St-Onge et al. 2015); however, image-based point clouds do not penetrate through tree crowns in dense stands (White et al. 2013) being LiDAR more informative for forest inventory applications. Equipped with optical sensors unmanned aerial vehicles (UAVs) can retrieve photogrammetric surface models at local scale with very high spatial resolution, and spectral vegetation indices to support species classification (Tuominen et al. 2018). To date, practical concerns in the use of UAVs include data processing, power autonomy, payload weight, and local regulations (Gómez and Green, 2017; Manfreda et al. 2018).
2003). Some PS technologies have been optimized for forestry, such as ForeStereo (a camera system with fish-eye lenses (Montes et al. 2009)) and Terrestrial Laser Scanning (TLS) (Liang et al. 2016; Newnham et al. 2015).

ForeStereo is a passive optical sensor composed of two hemispherical cameras capturing the visible radiation reflected by the surface of surrounding objects (e.g. trees) in a single shot. The stereoscopic hemispherical images were firstly used for measurement of tree diameter, height, and volume by Rodríguez-García et al. (2014). ForeStereo technology has been incorporated into the Spanish National Forest Inventory (Sánchez-González et al. 2016) and National Parks forest monitoring in Spain (Sangüesa-Barreda et al. 2015; Rubio-Cuadrado et al. 2016a; Rubio-Cuadrado et al. 2016b). ForeStereo is widely used as part of the field survey in natural forests and plantations of different species in Spain and it is being tested in Brazil and Chile. Computer vision techniques have been developed for the segmentation of ForeStereo images to identify trees (Sánchez-González et al. 2016) and a methodology has been proposed for the three-dimensional (3D) reconstruction of stem profiles from the angular disparity between the matched stem sections in both stereoscopic images and epipolarity restrictions (Rodríguez-García et al. 2014). ForeStereo has been specifically developed for forestry and employs software designed specifically to estimate stand variables such as basal area (BA) or number of trees per hectare (N) (Sánchez-González et al. 2016). Applications for vertical distribution of forest fuel assessment (Marino et al. 2018) or species classification (Geo-Izquierdo et al. 2015) have also been developed.

Terrestrial Laser Scanner used in forest inventories provides a dense point cloud that enables the 3D structural reconstruction (Strahler et al. 2008; Yao et al. 2011) and estimation of forest inventory variables such as N, BA, volume or biomass (Lovell et al. 2011; Astrup et al. 2014; Liang et al. 2016). TLS provides detailed data of below-canopy forest structure that can be used for precise biomass estimations and development of allometric equations, as well as crown shape and tree morphology modelling (Côte et al. 2012; Raumanen et al. 2013; Hauglin et al. 2013). However, the big amount of beam returns generated by TLS requires complex data processing to select returns from stems, foliage or shrubs and to fit geometrical models for diameter and volume estimation (Newnham et al. 2015). In addition, TLS devices are expensive and its use for the field stage in large scale forest inventories usually is not justified (White et al. 2016). Modern TLS devices reduce weight, and two-dimensional (2D) laser scanner offers an easy to handle solution, but data is limited to the sensors plane (Ringdahl et al. 2013; Brunner and Gizachew 2014). Compared with TLS, photogrammetric PS techniques (including ForeStereo) have better battery performance and reduced device weight, and faster image processing through computer vision techniques (Herrera et al. 2009; Herrera et al. 2011). Photogrammetric PS technologies employing conventional lenses require multiple image acquisitions (Forsman et al. 2000; Varjo et al. 2006; Forsman et al. 2012), and processing becomes complicated. ForeStereo employs fisheye lenses with 180° field of view, so all features above the horizontal plane passing through the lens are projected in the image, enabling the 3D forest structural reconstruction around the sampling point from a single pair of images.

Large-scale operational forest inventories require a large number of sampling points covering the target area, therefore single scan plots are an economically advantageous option (Ducey et al. 2014). In order to become functional, a PS instrument for use in operational forest inventories should provide repeatable measures of the forest variables in a fast and economic manner, as well as a measure of the accuracy and reliability of the acquired data. For estimation of stand level variables like BA or N, the fixed-point techniques are based on the angle count sampling method, which is the basis of the Relaskop (Bitterlich 1947). In the angle count sampling method, those stems projected in the visor which are wider than a reference threshold are sampled, so the maximum distance of detection depends on the size of each tree. Fixed point sampling typically underestimates the number of trees for two main reasons: (1) the instrument bias derived from a limited range of detection, which depends on the resolution of the scan or image and the diameter of trees (Seidel and Ammer 2014) and (2) the process of tree retrieval from a single scan or image: some trees actually present in the plot are occluded by others, hence reducing the tree detection rate (Lovell et al. 2011). The underestimation issue becomes more important in very dense forests and has been analyzed in recent studies (Yang et al. 2013; Brunner and Gizachew 2014). Three main methods have been proposed to correct the effects of tree occlusion on the estimation of plot and stand level variables, leading to less biased estimations:

i) Attenuation model (Strahler et al. 2008). This method assumes that the gap probability—where a gap is the area between trees that allows clear visibility to more distant trees—decreases exponentially as a function of the distance to the sensor and an effective diameter of trees, following a Poisson model. The effective diameter includes branches, foliage, shrubs, and any other intercepting elements. This method has been used for counting stems and for estimation of biomass from TLS data (Yao et al. 2011).

ii) Modelling a detection function based on distance-sampling (Ducey et al. 2013). In this case, the probability of detecting a tree depends on its distance from the sensor. The function to model probabilities is fitted to the distribution of distances of trees that are actually detected (apparent trees). Distance-sampling methods are widely used in ecology, where the mathematical framework for population summary statistics and variance estimation has been established (Buckland et al. 2001). Astrup et al. (2014) employed two functions to model the probability of tree detection, namely Half-Normal and Hazard-Rate, and estimated volumes with data from TLS.

iii) Estimation of the proportion of sampling area shadowed by the apparent trees (Seidel and Ammer 2014). The plot area shadowed by trees can be calculated from the diameter and the actual distance from the sensor of all retrieved trees. This method was adapted by Sánchez-González et al. (2016) for ForeStereo.

These methods have been tested with TLS data mainly focused on plantations of even-aged stands managed for timber production, but comparative works using ForeStereo data are lacking. The first two methods depend on parameters linked to the stand conditions (density, beam interception by foliage or shrubs, and other features hampering the detection of trees) and may show limitations in natural heterogeneous forests, where the method proposed by Seidel and Ammer (2014) seems more suitable. Under the last method the apparent trees generate a shadowed angular sector behind them. The shadowed area is then subtracted from the sampling plot area. However, this method may underestimate the number of trees of smaller Diameter at Breast Height (DBH) classes for which the probability of nondetection is greater (Sánchez-González et al. 2016). Moreover, the method proposed by Seidel and Ammer (2014) must be adapted for use with ForeStereo because in the case of stereoscopic hemispherical images, mensuration requires correspondence between the projection of the tree in both images of the stereoscopic pair, so occlusion in either of the two images hampers tree detection.
The incorporation of PS technologies in operational forest inventories requires information on the accuracy of methods implemented in end-user tools. The accuracy of individual tree diameter at 1.3 m height (DBH) estimation using ForeStereo has been demonstrated in previous studies: Rodríguez-García et al. (2014) reported a root mean square error of 0.015 m for DBH in 8 m radius plots, whereas Sánchez-González et al. (2016) obtained a Pearson coefficient between DBH field measurement and ForeStereo estimates of 0.86. Sánchez-González et al. (2016) also analyzed stand level estimation of N, BA, and mean DBH from ForeStereo data, reporting high agreement between field measurements and ForeStereo estimates in the case of BA but a notable underestimation of N, especially for smaller DBH classes. We present a comparative work in which a ForeStereo dataset is used to estimate plot level variables (N, BA, and DBH distribution) with the aforementioned inference methods, and compared with the noncorrected estimates. We adapt the method proposed by Seidel and Ammer (2014) for estimating the proportion of the sampling area shadowed in the case of stereoscopic hemispherical images acquired with ForeStereo.

Material and Methods

Data Set

Data from mixed stands of *Pinus sylvestris* L. and *Fagus sylvatica* L. were used in this work. Stereo-pairs of hemispherical photos were captured using ForeStereo from the centre of 44 plots randomly selected from a management inventory in a public forest at Ansó, located in the Spanish Pyrenees (Figure 1), and covering a broad range of stand densities and light conditions. The stand originates from natural regeneration and timber is the main production, although it also contains protected areas. The ForeStereo device was located in the plot centre, displacing the center if necessary just to ensure that the nearest tree was at least 0.5 m distant. In addition to the pair of hemispherical photos, the field crew measured the DBH with a calliper and the distance from the plot centre of all trees with DBH > 0.075 m was also measured using a Vertex IV (©Haglöf Sweden 2016). These values were used to calculate basal area and number of trees in fixed radius circular plots of 8 m and 9.8 m, to serve as ground truth reference. The mean N was 1167 trees/ha (SD = 681) and the mean BA was 41 m²/ha (SD = 18).

The ForeStereo device used for measurement is a prototype of the MU2005-01738. It is composed of two Fujinon FE185C057HA-1 fish-eye lenses and two Hitachi Kokusai Electric Inc. KP-FD500GV cameras with 5 Mp, a 2/3’ charge-coupled device sensor wired to a laptop through Gigabit Ethernet interface (Figure 2). The two cameras are 0.5 m apart and mounted on a light framework. The optical axes of the lenses are parallel and should be vertically aligned when shooting. The image acquisition software was developed using GENICAM™ with a shooting sequence that automatically acquires four pairs of stereoscopic hemispherical photos at 1/9 s, 1/60 s, 1/200 s and 1/1000 s exposures, as proposed by Pueschel (2012) for gap fraction retrieval from hemispherical photos.
Of the four pairs captured by default, the light conditions at the time of data acquisition determine the most suitable pair of hemispherical photos for identification of trees in the sampling plot. To identify the apparent trees (those viewed in the hemispherical photos) and to estimate the stand variables, an automatic process, fully described in Sánchez-González et al. (2016) is implemented in a Matlab® software package developed for the purpose. Basically, the image is segmented into basic components: sky, tree stems, and foliage (Figure 3). During the image segmentation process tree stems are identified in each image through a pixel-based dichotomous hierarchical classification followed by a region-growing process for individual tree labeling. The pixel-based classification establishes four criteria: intensity to discriminate the sky, ratio between green intensity, and the sum of red, green, blue (RGB) intensities to separate the foliage from the stems, and local color variance in the radial and tangential directions to identify homogeneity of texture along the stem and stem boundaries, respectively. The computation of these criteria requires a minimum window size of 7 × 7 pixels, which in turn determines the minimum size of projected stems identifiable during segmentation. Cross-sectional slices are extracted from the classified image, connected under geometrical constraints, and labeled as individual stems in the region-growing process.

The correspondence process, that is, the matching of a tree identified in both images of a pair, establishes the correspondence between the homologous cross-sectional slices of the segmented stem requiring identification of at least three sections of the tree (Figure 3). The correspondence between sections in both images is determined under restrictions of epipolarity (homologous points lie over the epipolar line in the other image), ordering (height order of sections is maintained), similarity (diameter disparity is minimized), and uniqueness (points have a single match) (Herrera et al. 2009). A user-guided matching method was used for identification of apparent trees missed by the automatic matching process (Sánchez-González et al. 2016). The distance from the left camera \((d_1) \) is calculated with the equations developed by Rodriguez-García et al. (2014):

\[
d_i = d_b / \left(\frac{\sin(a_i)}{\sin(a_b)} \cos(a_i) - \cos(a_b) \right)
\]

Figure 3. Above: pair of stereoscopic hemispherical images. The colored point series indicate the matched sections; below: classified image of the sky, foliage, and stems.
where \(d_i \) is the distance between the optical axes of the cameras, and \(a_i \) and \(b_i \) are the azimuth angles between the base-line and the visual to the target point in the images 1 and 2, respectively. The diameter \((D_i)\) of each stem section is then calculated through the covering angle of the stem section in the left image \(e_i \) (Figure 4).

\[
D_i = 2 * d_i * \sin(e_i / 2)
\]

(2)

The accuracy of the distance calculation is limited in the proximity of the base line, where \(e_i \) and \(e_s \) form a very acute angle. For this reason, the alignment of trees with the base line was avoided during image acquisition.

Due to the equidistant projection of fish-eye lenses and the verticality of the lens optical axis, the zenith direction \((\theta 1, \theta 2)\) in the left and right images respectively) is proportional to the projected radius. The height of the stem section with respect to the lens plane can be determined as:

\[
h = d_i * \cos(\theta_i) / \sin(\theta_i)
\]

(3)

For each matched section, the correspondence process provides the azimuth direction, horizontal distance, height referred to the lens plane, and diameter. To determine each section height (i.e. the distance to the base of the stem, \(H \)), a terrain plane is defined using information self-contained in the images by fitting the projected horizon line. Species specific linear taper equations are fitted to the diameter \((D)\) and height \((h)\) of the sections obtained in the matching process as follows:

\[
D = a_s + b_s H
\]

(4)

where \(D \) is the stem diameter at height \(H \) from the base of tree \(i \) of species \(s \), \(a_s \) is the intercept parameter and \(b_s \) is the regression coefficient, which is unique for all trees of the same species measured in the plot. We are interested in the diameter at 1.30 m height \(\text{DBH} \), necessary for estimation of \(\text{BA} \). To calculate the \(\text{DBH} \) of each tree \(i \) we obtain \(D \) at \(H = 1.30 \) m through Equation 4.

Estimation of Plot Level Variables

To characterize the forest stand structure, \(N \) and \(\text{BA} \) were used. These variables are calculated for a circular sample plot of radius \(R \) as:

\[
N = n * 10000 / (\pi R^2)
\]

(5)

Diameter classes of 50 mm intervals were considered, with the smaller trees accounted for (7.5-12.5 cm) belonging to the 10 cm class. The number of trees in each diameter class is calculated analogously to \(N \).

These variables are estimated from the trees identified in the ForeStereo images. During measurements, the sensor resolution limits the maximum range of detection and as a consequence, the sampling area, particularly for the smaller diameter classes. This effect is known as instrument bias. Furthermore, occlusions by nearby stems hamper the detection of other trees, so shaded sectors should be discounted from the sampling area (Appendix 1). In this work, plot estimates calculated according to three methods that treat occlusions and instrument bias differently have been compared: Relas-kop-based estimation to deal with instrument bias combined with the Poisson attenuation model to correct the effect of occlusions; distance-sampling based correction of instrument bias and occlusions; and a new method termed hemispherical photogrammetric correction (HPC), that combines the segmentation based correction for instrument bias proposed by Sánchez-González et al. (2016) with a new approach for estimation of occlusion probability which adapts the method proposed by Seidel and Ammer (2014) to the case of stereoscopic hemispherical images.

During the image segmentation and correspondence processes some error from classification of pixels and their correspondence may occur. Missing identification of matching trees leads to some underestimation of \(N \), whereas pixel classification errors and erroneous matching lead to stem diameter measurement errors and affect the estimation of \(\text{DBH} \) and \(\text{BA} \) through the fitting of taper equations. In addition, since \(\text{DBH} \) is not directly measured at 1.3 m height in the hemispherical images (it is estimated through the linear taper equations) and the height to the measured sections is derived from the fitted terrain model (assumed to be plane for the sampling area), this may contribute to the estimation error in \(\text{DBH} \) and \(\text{BA} \) estimates. The quality of \(N \) and \(\text{BA} \) estimates was evaluated comparing the outcomes with reference data measured in the field, through values of the Pearson correlation coefficient \((r)\) and bias, calculated as the mean of differences between estimated minus field values as a percentage of the mean value measured in field (ME). The histograms of diameter distribution were

Figure 4. Representation of ForeStereo geometry.
obtained from ForeStereo data with each of the three methods as well as with the caliper measurements, establishing a bin interval of 0.05 m and a minimum value of DBH = 0.075 m. The histograms derived from ForeStereo data and from caliper measurements were compared through the quadratic-form distance (Equation 6), proposed by Hafner et al. (1995) to assess the similarity between histogram distributions.

\[
d(H_{\text{GroundTruth}} - H_F) = \sqrt{\left(H_{\text{GroundTruth}} - H_F\right)^T A \left(H_{\text{GroundTruth}} - H_F\right)}
\]

where \((H_{\text{GroundTruth}})\) is the matrix of histogram bin values as derived from caliper measurements and \((H_F)\) the matrix of histogram bin values derived from ForeStereo data. \(A\) is a similarity matrix with \([a_{ij}]\) denoting the similarity between histogram bins \(i\) and \(j\), calculated as \(a_{ij} = 1 - \left| \frac{i - j}{\max(\max_i \mid i - j)} \right|\). Lower values of the quadratic-form distance indicate higher similarity between histogram distributions.

Relaskop-Based Estimation Combined with Correction of Occlusion Effect Based on Poisson Attenuation Model

The Relaskop-based approach for estimation of plot or stand level variables is based on the angle-count sampling and has frequently been used in TLS measurement to reduce the instrument bias (e.g., Strahler et al. 2008, Lovell 2011). Only trees with DBH apparently wider than an angular span \(\kappa\) (which depends on a predefined basal area factor (BAF)) are included in the sample. The BAF is typically (and for convenience) set as 0.0002 m²/m². With our dataset, the number of trees per m² \(\lambda\) was calculated from the \(n\) trees included in the sample as (Equation 7):

\[
\lambda = \frac{n \text{BAF}}{\pi \left(\text{DBH}_i / 2\right)^2}
\]

where

\[
\text{BAF} = \sin^2(\kappa / 2)
\]

The gap probability decreases exponentially with distance \(r\) following a Poisson model of the form \(P_{\text{gap}} = \exp(-\lambda D_g t)\). The number of trees \(n_{\text{act}}\) expected to actually exist in an area of radius \(r_{\max}\) (including detected and occluded trees), is expressed as a product of the number of trees actually measured \(n\) and a factor of attenuation \(F(t)\):

\[
n_{\text{act}} = n \cdot F(t)
\]

\(F(t)\) depends on \(\lambda\), the effective diameter calculated for all the trees of the plot \(D_g\) and the distance \(r_{\max}\):

\[
F(t) = \frac{2}{t} \left(1 - \exp\left(-\lambda D_g t / (1 + t)\right)\right)
\]

The effective diameter takes into account the occlusive effect of stems, low branches, and understory. Strahler et al. (2008) proposed considering a \(D_g\) which depends on the average diameter of the trees actually measured and their variability (Equation 11, where \(C_v\) is a coefficient of variation):

\[
D_g = \text{DBH} \left(1 + C_v^2\right)^2
\]

\((n_{\text{act}})\) is then estimated for each detected tree and summarized to estimate \(N\):

\[
N = \sum_{i=1}^{n} \left(\frac{n_{\text{act}}}{n}\right) \cdot 10000 / \left(\pi r_{\max}^2\right)
\]

Distance-Sampling Based Correction of Instrument Bias and Occlusion Effect

In this approach, the probability of detecting trees in the plot is modeled through the detection function \(g(r, \theta)\). As in Astrup et al. (2014), we employed the Half-Normal function:

\[
g(r, \theta) = \exp\left(-r^2 / (2\sigma^2)\right)
\]

and the Hazard-Rate function:

\[
g(r, \theta) = 1 - \exp\left(-(r / \sigma)^k\right)
\]

In \(g(r, \theta)\) the parameter \(\theta\) comprises both the scale \(\sigma\) (in the Half-Normal and the Hazard-Rate functions) and shape \(b\) (only in the Hazard-Rate function) parameters. The inclusion of DBH as a covariate was explored in both models, as in Ducey et al. (2014), expanding the scale parameter \(\sigma = a_\sigma \cdot \exp(a_\sigma \cdot \text{DBH})\).

The parameters \(\theta\) are obtained by maximum likelihood (Marques and Buckland 2003; Miller and Thomas 2015; Clark 2016). The probability of detection for tree \(i\) in a plot of radius \(R\) is given by Equation 15. Our sampling was truncated at 8 m, 9.6 m, and 15 m to analyze the effect of different \(R\) values on estimates:

\[
P_i = \frac{2}{R} \int_0^R g(r, \theta) \, dr
\]

Finally, \(N\) is estimated as in Equation 16. Note that \(P_i\) is identical for all \(i\) in models without covariate:

\[
N = \sum_{i=1}^{n} 10000 / \left(P_i \cdot \pi R^2\right)
\]

Hemispherical Photogrammetric Correction (HPC)

Here we propose a new approach for estimating forest variables at plot and stand level from data obtained using ForeStereo. This approach combines the segmentation-based correction for instrument bias described with detail in Sánchez-González et al. (2016), and a new method for estimating the probability of occlusions which adapts the method proposed by Seidel and Ammer (2014) to the case of stereoscopic hemispherical images.

The probability of occlusion correction proposed by Sánchez-González et al. (2016) the range of detection depends on the stem diameter and the inclination angle of the viewing direction. Stem sections thinner than the minimum window size, defined in pixels as \(p_{\text{sel}}\), are not detected (as mentioned in the segmentation process description). Assuming there are no occlusions, each tree sampling area \(A_i\) is calculated integrating a circular area of radius defined by the user \(R\) or the maximum horizontal distance \(r_{\max}\) at which the section of the tree wider than \(p_{\text{sel}}\) is projected on the images (Sánchez-González et al. 2016) (Equation 17):

\[
A_i = \frac{1}{2} \int_0^{\min\{R, r_{\max}\}} \left(\min\{R, r_{\max}\}\right)^2 \, da
\]
where D_m is the mean diameter of the target tree i three lowest sections matched (see full description of the matching process in Sánchez-González et al. 2016) and the $\theta(a)$ is the zenith angle of the viewing direction at each azimuthal direction for the the third lowest section estimated from all the matched trees using cubic splines (Sánchez-González et al. 2016).

The effect of occlusions should be corrected using the information contained in the sample of apparent (i.e. not occluded) trees. To estimate the actual nonshaded sampling area, the theoretical sampling area A_i (Equation 17) is multiplied by the probability of detection P_i of each apparent tree i. N is then computed as:

$$N = \sum_{i=1}^{n} 10000 \left(\frac{P_i \cdot A_i}{\pi \cdot r_{\text{max}}^2} \right)$$ \hspace{1cm} (18)

If S_0 is the nonshaded area, the probability of detecting tree 0 in a sampling plot of radius r_{max}, considering the potential shadowing of all other apparent trees is determined as:

$$P_0 = \frac{S_0}{\pi r_{\text{max}}^2}$$ \hspace{1cm} (19)

The term shadowing in this case refers to nondetection during the matching process. Matching fails to detect or identify a tree when the stem is partially or completely missed in any of the two stereo-images. In contrast, the method developed for application to TLS data by Seidel and Ammer (2014) estimates the shadowed area for a single scan.

In order to calculate S_0, let d_{01} and d_{02} be the horizontal distances from the left and right cameras to tree 0 (Figure 5a) and analogously d_i and d_{0i} the horizontal distances from the left and right cameras to tree i, ($i = 1 \ldots n$, n being the number of apparent trees). S_0 can be computed as the integral of the circumference length, from $d_{01} = 0$ to the maximum sampling radius r_{max} (remember r_{max} depends on the tree size) multiplied by the probability of no occlusion at d_{0i}:

$$S_0 = \int_{d_{01}}^{r_{\text{max}}} 2\pi \cdot P(d_{0i}) \, dd_{0i}$$ \hspace{1cm} (20)

For each distance d_{0i}, the probability of no occlusion $P(d_{0i})$ is the product of no occlusion probability in the left image $P(S_{01} | S_{01})$ and no occlusion probability in the right image, conditional on being visible in the left image $P(S_{02} | S_{01})$:

$$P(d_{0i}) = P(S_{01}) \cdot P(S_{02} | S_{01})$$

$$P(S_{01}) = S_{01}/2\pi$$

$$P(S_{02} | S_{01}) = S_{02}/S_{01}$$ \hspace{1cm} (21)

where S_{01} is the angle where there is no occlusion in the left image and S_{02} is the angle where there is no occlusion in the right image conditional on being visible in the left image. In order to calculate S_{01} and S_{02}, let ϵ_{01} and ϵ_{02} be the angle span covered by tree 0 in the left and right images respectively (Figure 5b)—and analogously ϵ_i and δ_{0i} for tree i. S_{01} equals a complete sampling round 2π minus the sum of occlusion angles in the left image ϵ_{01} produced by all shading trees i closer to the device (Equation 22, where $I(d_{0i} < d_{01})$ equals 1 if $d_{0i} < d_{01}$ and 0 in any other case):

$$S_{01} = 2\pi - \sum \epsilon_{i01} - I(d_{0i} < d_{01})$$ \hspace{1cm} (22)

Likewise, S_{02} can be computed as the difference of the visible angle in the left image S_{01} minus the sum of occlusion angles ϵ_{i02} of trees located closer to the device:

$$S_{02} = S_{01} - \sum \epsilon_{i02} - I(d_{02} < d_{02})$$ \hspace{1cm} (23)

Tree 0 occlusion angle produced by tree i (ϵ_{i0}) is the angle at which tree 0 is totally or partially shaded by tree i, calculated as a sum of covering angles:

Figure 5. (a) Angular displacement δ_{0i} between tree 0 projection in the left and right images and (b) tree i (with covering angle in the left image ϵ_{i0}) shading angle over tree 0 (with covering angle ϵ_{01}).
The occlusion angle σ_{02} conditional on no occlusion in the left image require that the projection of tree 0 in the right image be conditioned by it being visible in the left image. Moreover, in order to estimate the integral in Equation 20, σ_{01} and σ_{02}, and henceforth e_{01} and e_{02}, should be expressed as a function of d_{01}. Thus, let a_{01} and a_{02} be the azimuthal angles formed by the visual line from the left and right cameras to tree 0 with the camera baseline (Figure 5a) and α_{01} and α_{02} the analogous angles for tree i. e_{01} depends on the diameter and distance to the device of tree 0, which in turn depends on the horizontal distance and the terrain slope in the direction towards tree 0 (Equation 25), σ_{max} being the maximum slope in the plot and σ_{max} the direction upslope.

$$e_{01} = 2 \cdot \sin \left(\frac{\text{DBH}_0}{2d_{01} \cdot \cos (\tan (\sigma_{max} \cdot \cos (a_{01} - a_{max})))} \right)$$

(25)

Analogously, the covering angle of tree 0 in the right image is:

$$e_{02} = 2 \cdot \sin \left(\frac{\text{DBH}_0}{2d_{02} \cdot \cos (\tan (\sigma_{max} \cdot \cos (a_{02} - a_{max})))} \right)$$

(26)

If δ is the angular displacement between the projection of tree 0 in the left and right images (Figure 5a) then:

$$\sigma_{02} = \sigma_{01} + \delta$$

(27)

The displacement between tree 0 projected in the left and right images can be expressed by Equation 21 (Rodríguez-García et al. 2014 and Figure 5a). For convenience, we refer d_{01} to d_{02}:

$$\delta = \sin \left(\frac{\text{baseline} \cdot \sin (a_{01})}{d_{02}} \right)$$

(28)

$$d_{02} = \sqrt{\text{baseline}^2 + \delta_{01}^2 - 2 \cdot \text{baseline} \cdot \delta_{01} \cos (a_{01})}$$

In order to calculate a_{02}, we should define a_{01min}, a_{01max} as the enclosing angles of a_{01}. As Figure 5b shows, a_{01min} and a_{01max} can be expressed as:

$$a_{01min} = a_{1} - \frac{\sigma_{01}}{2} \quad a_{01max} = a_{1} + \frac{\sigma_{01}}{2}$$

(29)

Analogously, a_{02min}, a_{02max} are the enclosing angles of the nonconditioned occlusion angle in the right image and can be expressed as:

$$a_{02min} = a_{2} - \frac{e_{02} + e_{03}}{2} \quad a_{02max} = a_{2} + \frac{e_{02} + e_{03}}{2}$$

(30)

To calculate the occlusion angle in the right image conditional on being visible in the left image, we must subtract the azimuth angles in the right image corresponding to occluded angles in the left image. Depending on the distance from the tree to the device, the projection angle in the right image is displaced along the epipolar line. Thus, the projection of tree 0 in the right image conditional on no occlusion in the left image should be in the range between $a_{01max} + \delta_{0max}$ and $a_{01max} + \delta_{0max}$. Three cases can be distinguished (Figure 6) to calculate a_{02}, depending on the angular displacement of trees i and 0:

Case 1. $a_{02min} > a_{01max} + \delta_{0max}$

In this case the angle shaded by tree i in the right image lies completely within the range of tree 0 projection in the right image conditional on no occlusion in the left image. Therefore, in the right image, the occlusion angle conditional on no occlusion in the left image coincides with the shaded angle:

$$a_{02} = a_{02max} - a_{02min}$$

(31)

Case 2. $a_{02min} > a_{01max} + \delta_{0max}$ and $a_{02min} > a_{01min} + \delta_{0min}$

In this case the angle shaded by tree i in the right image lies partially within the range of tree 0 projection in the right image conditional on no occlusion in the left image, and the angular displacement of tree i (from left to right image) is greater than the angular displacement of tree 0. The occlusion...
angle in the right image conditional on no occlusion in the left image coincides with the intersection of the total shaded angle and the range in the right image corresponding to being visible in the left image:

\[\alpha_{i02} = \alpha_{i01\text{max}} - (\alpha_{i01\text{max}} + \delta_{0\text{max}}) \] (32)

Table 1. Bias (ME) and Pearson coefficient (r) of the relationship between measured and estimated number of trees per ha (N) in plots of 8 m, 9.8 m, and 15 m radius R.

<table>
<thead>
<tr>
<th>R = 8 m</th>
<th>R = 9.8 m</th>
<th>R = 15 m*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME (%)</td>
<td>r</td>
<td>ME (%)</td>
</tr>
<tr>
<td>ForeStereo sample without correction</td>
<td>−42</td>
<td>0.54</td>
</tr>
<tr>
<td>Relaskop sampling + Poisson attenuation model</td>
<td>−35</td>
<td>0.52</td>
</tr>
<tr>
<td>Distance-sampling (Hazard-Rate)</td>
<td>16</td>
<td>0.54</td>
</tr>
<tr>
<td>Distance-sampling (Hazard-Rate + covariate)</td>
<td>11</td>
<td>0.60</td>
</tr>
<tr>
<td>Distance-sampling (Half-Normal + covariate)</td>
<td>33</td>
<td>0.62</td>
</tr>
<tr>
<td>HPC</td>
<td>−6</td>
<td>0.61</td>
</tr>
</tbody>
</table>

*ForeStereo estimates with 15 m maximum distance are compared with the values calculated with the 9.8 m radius field plot.

Case 3. \(\alpha_{i02\text{min}} < \alpha_{i01\text{min}} + \delta_{0\text{min}} \)

In this case the angle shaded by tree \(i \) in the right image lies partially in the range of tree 0 projection in the right image conditional on no occlusion in the left image. Also, the angular displacement of tree \(i \) (from left to right image) is smaller than the angular displacement of tree 0. The occlusion angle in the right image conditional on no occlusion in the left image coincides with the intersection of the angle shaded and the range in the right image corresponding to being visible in the left image:

\[\alpha_{i02} = \alpha_{i01\text{min}} + \delta_{0\text{min}} - \alpha_{i02\text{min}} \] (33)

We calculated \(\alpha_{i02\text{max}} \) and \(\alpha_{i02\text{min}} \) for both \(\alpha_{i01\text{max}} \) and for \(\alpha_{i01\text{min}} \), obtaining the maximum and minimum (not necessarily in that order) values for \(\alpha_{i02} \). The final \(\alpha_{i02} \) is the average of \(\alpha_{i02} \) calculated for \(\alpha_{i01\text{max}} \) and for \(\alpha_{i01\text{min}} \).

Results

Number of Trees

As expected, \(N \) was largely underestimated with the ForeStereo sample of matched trees when not corrected for instrument bias and occlusion effect; the bias increased with the maximum sampling distance and the mean error ranged from 42% to 77% (Table 1). The underestimation of \(N \) was more relevant in plots of higher density (Figure 7)—those occupied by smaller trees. The Relaskop-based sampling with Poisson

Figure 7. Number of trees per ha (N) estimates from ForeStereo vs N estimated from field measurements and regression line of linear models in plots of 8 m (empty triangles and dashed line) and 9.8 m radius (filled squares and dash-dot line). A: uncorrected, B: Relaskop-based sampling and Poisson attenuation model, C: distance-sampling Hazard-Rate function, D: distance sampling with Hazard-Rate function and DBH as covariate, E: distance sampling with Half-Normal function and DBH as covariate, F: hemispherical photogrammetric correction.
attenuation model for correction of occlusions reduced the estimation bias slightly, to between 35%–69%. Among the distance-sampling options the Hazard-Rate function performed better than the Half-Normal function in terms of bias, although the latter showed higher values of correlation with field data. Although the distance-sampling method tends to overestimate N, this overestimation is more notable with the Half-Normal function. The Half-Normal model does not accurately fit the distribution of distances: the $r^*g(r, \theta)$ function should be proportional to the frequency histogram by distance bins, however, the curve (scaled to make the integral of the curve between 0 and R equal to the number of detected trees) is over the detected frequencies at short as well as large distances and below the detected frequencies for intermediate distances (Figure 8). As most detected trees are located at intermediate distances (3–5 m), the underestimation of the sampling probability for these distances results in an overestimation of N. HPC estimates had the lowest bias for 8 m and 9.8 m sampling distances (-6% and -10%, respectively), but tended to underestimate N when the distance sampled increased to 15 m (bias of -33%). To help disentangle the effect of instrument bias and occlusion effect corrections, Figure 9 compares the distribution of sampling areas of all detected trees in the 15 m plots in the cases of instrument bias correction alone and instrument bias combined with the occlusion corrections for the Relaskop-based sampling with Poisson attenuation model and for the HPC. The first method bases the instrument bias correction on DBH, whereas HPC employs the diameters detected during image segmentation, which are usually over 1.30 m height and are smaller than the DBH, resulting in a greater reduction in sampling area for most trees (Figure 9). Moreover, the Poisson attenuation model mainly depends on plot density, providing a similar reduction in sampling area for all trees in the plot, whereas the occlusion correction proposed by HPC varies for each tree depending on the size and position of all other trees within the plot.

![Figure 8](image_url)

Figure 8. Number of trees by distance bins detected by ForeStereo compared with the scaled $r^*g(r, \theta)$ of distance-sampling with Hazard-Rate function (left), Hazard-Rate function with DBH as covariate (middle), and Half-Normal function with DBH as covariate (right) for distance of truncation 8 m (above) and 15 m (below).

![Figure 9](image_url)

Figure 9. Estimated sampling areas corresponding to all detected trees in the 15 m radius plots when applying instrument bias correction (black filled dots) and instrument bias and occlusion corrections (grey empty dots) for Relaskop-based sampling and Poisson attenuation model (A) and hemispherical photogrammetric correction (B).
Diameter Distribution
The distributions of DBH derived from field data and from ForEstereo estimates are compared in Figure 10. The histograms derived from ForEstereo estimates without correction and those corrected using Relaskop-based estimation combined with the Poisson attenuation model are similar; tending to underestimate the number of trees by diameter class, especially for the smaller diameters (0.075 m–0.125 m class) and in larger plots. The majority of approaches correcting instrument bias and tree occlusions improved the noncorrected estimates and had lower quadratic-form distances than the field measured distribution (Table 2). The distance-sampling method using Hazard-Rate function without covariate underestimates the smallest diameter class (0.075 m) and overestimates classes over 0.125 m. As observed in Figure 8, the globally adjusted distance distribution function $g(r, \theta)$ for the Hazard Rate model without covariate is influenced by the distance distribution of the smaller classes, which are not detected at long distances. This may be the reason for the overestimation of the detection probability of larger trees at greater distances, leading to an over-correction for these trees. This problem is solved when DBH is included as covariate. The distance-sampling with Half-Normal function overestimates the number of trees with DBH < 0.275 m as a consequence of the underestimation of the detection probability for these diameter classes, shown as a flattening of the $r^* g(r, \theta)$ curve (Figure 8). When DBH is included as covariate, the distance-sampling with Hazard-Rate function results in a diameter distribution with greater similarity to the diameter distribution measured in the field—as assessed by the quadratic form distance—when the maximum sampling distance is 9.8 or 15 m (Table 2).

The DBH distribution obtained with HPC showed the closest agreement with field data measured in 8 m plots and the overall minimum quadratic form distance (Table 2 and Figure 10). When the distance was increased to 15 m HPC underestimated the density of most DBH classes (Figure 10, right).

Basal Area
BA was underestimated in the majority of plots when no correction was applied to the sample of detected trees (Figure 11). The degree of underestimation is greater in dense plots with high values of BA and for large maximum sampling distances. Relaskop-based estimations with the Poisson attenuation correction reduced the estimate bias from 35% to 28% (Table 3). Distance-sampling using the Hazard-Rate function without covariate and with Half-Normal function with covariate resulted in a notable overestimation of BA. However, this method showed better results in terms of bias when the detection function used was the Hazard-Rate with covariate (4%–11%). The HPC method with 8 m plots slightly underestimated BA (–8%) but showed the highest Pearson correlation.

Table 2. Quadratic form distance between the DBH histograms derived from the field data and the DBH histograms derived from ForeStereo data in plots of 8 m, 9.8 m, and 15 m radius R.

<table>
<thead>
<tr>
<th>R</th>
<th>ForeStereo sample without correction</th>
<th>Relaskop sampling + Poisson attenuation model</th>
<th>Distance-sampling with Hazard-Rate function</th>
<th>Distance-sampling with Hazard-Rate function + covariate</th>
<th>Distance-sampling with Half-Normal function + covariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m</td>
<td>501.84</td>
<td>425.53</td>
<td>209.07</td>
<td>78.50</td>
<td>424.35</td>
</tr>
<tr>
<td>9.8 m</td>
<td>561.57</td>
<td>497.09</td>
<td>319.80</td>
<td>78.96</td>
<td>583.97</td>
</tr>
<tr>
<td>15 m*</td>
<td>854.03</td>
<td>762.19</td>
<td>273.75</td>
<td>139.26</td>
<td>543.91</td>
</tr>
</tbody>
</table>

Table 3. Bias (ME (\%)) and Pearson coefficient (r) between measured and estimated basal area (m2/ha) in plots of 8 m, 9.8 m, and 15 m radius R.

<table>
<thead>
<tr>
<th>R</th>
<th>ME (%)</th>
<th>r</th>
<th>ME (%)</th>
<th>r</th>
<th>ME (%)</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m</td>
<td>−35</td>
<td>0.78</td>
<td>−42</td>
<td>0.67</td>
<td>−66</td>
<td>0.48</td>
</tr>
<tr>
<td>9.8 m</td>
<td>−28</td>
<td>0.79</td>
<td>−36</td>
<td>0.68</td>
<td>−61</td>
<td>0.51</td>
</tr>
<tr>
<td>15 m*</td>
<td>29</td>
<td>0.78</td>
<td>57</td>
<td>0.66</td>
<td>92</td>
<td>0.47</td>
</tr>
<tr>
<td>8 m</td>
<td>4</td>
<td>0.82</td>
<td>13</td>
<td>0.71</td>
<td>5</td>
<td>0.59</td>
</tr>
<tr>
<td>9.8 m</td>
<td>16</td>
<td>0.82</td>
<td>36</td>
<td>0.71</td>
<td>35</td>
<td>0.59</td>
</tr>
<tr>
<td>15 m*</td>
<td>−8</td>
<td>0.83</td>
<td>−11</td>
<td>0.78</td>
<td>−35</td>
<td>0.60</td>
</tr>
</tbody>
</table>

*ForeStereo estimates with 15 m maximum distance are compared with the values calculated with the 9.8 m radius field plot.

Figure 10. DBH distribution from ForeStereo up to a maximum sampling distance of 8 m (A), 9.8 m (B), and 15 m (C) vs DBH distribution measured in the field.
Discussion and Conclusions

Estimation of forest stand variables from sample data captured using ForeStereo requires precise knowledge of the sources of error associated with sampling schemes, image processing, and estimation methods. This work analyzed the performance of different methods for estimating sampling probability. Working with a single point sampling design the probability of sampling a tree depends on two factors: the relationship between the distance range of detection and the tree size, and the probability of being occluded by another tree. In addition, in order to attain unbiased estimations, the locations of the plot centres should be selected randomly or on a regular grid, but not prevailing open locations within the plot. The displacement of the device to a distance of 0.5 m from the nearest tree is necessary as the variability of textures within the stem associated with the macro-acquisition of images hampers stem segmentation. Due to the wide field of view of the fish eye lens, the size of the features projected decreases rapidly at 0.5 m and the occlusion effect is reduced substantially. However, this displacement is small when compared with the tree spacing and should not cause a noticeable bias. The relationship between the distance range of detection and the tree size is defined by the image resolution and by the algorithms used in the segmentation process. The probability of occlusion has to be inferred from the actual distribution of the apparent trees. Employing ForeStereo data from a forest inventory, we tested and compared three approaches for estimating the sampling probability and calculating plot level variables: Relaskop-based sampling and correction of occlusions with Poisson attenuation model, distance-sampling based correction for instrument bias and occlusions, and the proposed IPC, which combines the segmentation based correction for instrument bias method (Sanchez-González et al. 2016) and a new correction of occlusions effect calculating the shadowed area, based on the Seidel and Ammer (2014) method. The three approaches incorporate some kind of correction for instrument bias and occlusion of trees, and all three led to an improvement in the raw estimates; reducing the estimate bias and increasing the correlation with ground truth data.

Each method for estimating sampling probability is supported by different assumptions, and the suitability of one or other method depends on the forest structure and on the characteristics of the PS technology employed. For example, the approach consisting of Relaskop-based sampling and correction of occlusions with Poisson attenuation model (Strahler et al. 2008) depends on the DBH of the apparent trees and on the basal area factor selected and assumes a Poisson distribution of tree distances from the sensor. For an accurate determination of the effective tree diameter D_{E}, this method may require calibration (e.g. with traditionally measured plots). Ducey et al. (2014) and Astrup et al. (2014) proposed a distance-sampling based approach relying on the actual distribution of the apparent tree distances. Under this approach, the assumptions are implicit in the model selected for probability of detection (e.g. Half-Normal or Hazard-Rate functions). Employing

![Figure 11. Basal area (BA) estimates from ForeStereo vs BA derived from field data and regression line of linear models in plots of 8 m (empty triangles and dashed line) and 9.8 m radius (filled squares and dash-dot line). A: uncorrected, B: Relaskop-based sampling and Poisson attenuation model, C: distance-sampling with Hazard-Rate function, D: distance sampling with Hazard-Rate function and DBH as covariate, E: distance sampling with Half-Normal function and DBH as covariate, F: hemispherical photogrammetric correction.](image-url)
actual distances makes this approach more adaptable than the attenuation model to the forest stand conditions that affect the detection of trees (e.g., presence of under-canopy vegetation). However, the parameterization of the detection function is based on the distances actually measured in all plots within a stand or strata, so this method would seem to be more appropriate for homogeneous stands. Unlike applications described in Ducey et al. (2014) and Astrup et al. (2014), where the inclusion of covariates in the models did not significantly improve the estimates, we achieved the better performance by incorporating DBH as covariate in the detection probability. Sánchez-González et al. (2016) proposed an approach for estimating sampling probability which combines an instrument bias correction based on the minimum window size allowed by the process of image segmentation and an occlusion effect correction adapted to ForeStereo from that of Seidel and Ammer (2014) using TLS data. The hemispherical photogrammetric correction described here combines the instrument bias correction proposed by Sánchez-González et al. (2016) with an improved correction of the occlusion effect. This method integrates the probability of no occlusion for the entire sampling range calculated from the size and position of apparent trees. Seidel and Ammer (2014) worked with circular plots of 2 m radius in dense poplar plantations and obtained correlations of 0.9 between BA estimates from data captured with TLS and ground truth data; the estimate bias was reduced by 1.4% (from -9.8% to -8.4%) after correction. The HPC approach reduced the bias of BA estimates in plots of 6 m radius from -35% to -8% in structurally diverse forests (i.e., with irregular distribution of tree sizes). Notwithstanding the differences in stand structure and between TLS data and stereo-hemispherical photos, the more significant improvement in our analysis may be related to the integration of the instrument bias correction and to an improved estimation of the area occluded. In the estimation of the occlusion probability with stereo-hemispherical photos, partial blockage hinders tree matching; therefore, the occlusion angle is the sum of the coverage angles of the occluded and shading trees (Ducey et al. 2014).

Correspondence between the projections of a tree in both stereo images captured with ForeStereo is necessary in order to detect the tree. The probability of detection has therefore to be computed as a product of the probability of no occlusion in the left image, by the probability of no occlusion in the right image conditional on being visible in the left. This need for this correspondence may explain the underestimation of BA and N in our analyses with the Poisson attenuation model correction of occlusions. The distance-sampling based approach relies on the distance distribution of apparent trees and, in contrast, is not affected by the correspondence issue. Single scan sampling with TLS typically overestimates the mean DBH, since the occlusion probability is greater for smaller trees (Strahler et al. 2008; Lovell et al. 2011; Yao et al. 2011; Seidel and Ammer 2014). We estimated the occlusion probability as an integral over the range of detection for each tree, and the relation between the covering angles of the target trees.

Appendix 1

Figure A1. Example of instrument bias: The stem section marked with a red arrow cannot be detected due to instrument bias because the pixel size is of similar magnitude to the stem projection width.

Figure A2. Example of occlusion: The tree marked with an arrow in the right image is occluded by tree marked with a triangle in the left image.
and shading trees is recalculated for each distance, providing a reduced bias in the estimation of the number of trees of smaller DBH classes.

The Relaskop-based method for correction of instrument bias combined with the Poisson attenuation model for correction of occlusions has proved to substantially reduce bias in N (Strahler et al. 2008) and BA (Strahler et al. 2008; Lovell et al. 2011) estimated with single scan TLS data. Likewise, Yao et al. (2011) reported correlations of 0.902 and 0.656 with field data when estimating N and BA with the Poisson attenuation model for correction of occlusions without the Relaskop sampling. However, in our analysis using ForeStereo data this method yields biased results when compared with HPC estimates. In contrast to TLS, where tree detection is better at the lower part of the stem, stem sections viewed under an inclination angle over the crown of more distant trees—seen against the sky—are most accurately detected in the hemispherical images. The Relaskop-based method selects trees depending on DBH, whereas the method based on image segmentation considers the diameter at the height corresponding to the inclination angle of view, making the latter preferable for the RGB photos acquired using ForeStereo. However, the Relaskop-based and Poisson attenuation model methods performance may be improved through the adjustment of BAF and Dc.

The results described in this work demonstrate the effectiveness of ForeStereo as a PS technology for field sampling in operational forest inventories. Cost analyses are beyond the scope of this study, but the performance capacity shown by ForeStereo in field surveys for this study—a team of two people surveyed 16 sampling points located on a systematic grid of 400 x 400 m, covering 256 ha per day on average—enables increased sampling and cost optimization of the forest inventory field stage. Two stage sampling design, combining PS technologies and spatially explicit remotely sensed data, may improve the accuracy of inference estimations in forest inventories (Brosøfske et al. 2014). Precise and unbiased estimators for plot level variables are still to be developed. The approaches tested in this work can be used to deal with bias, our results pointing to the distance-sampling using DBH as covariate and the HPC method proposed here as suitable approaches with ForeStereo data. Other sources of error affecting ForeStereo estimates—light conditions, stand density or species on image segmentation, or the limited accuracy of distance estimations in the proximity of the base line—are beyond the scope of this study and should be the subject of future research. As an alternative, remote sensing and PS data may be integrated during data processing: Korpela et al. (2007) combined photogrammetry and field triangulation for complete mapping of the stand, whereas Liang et al. (2016) suggested the use of TLS for retrieval of individual tree attributes and airborne remote sensing data to extend the estimation of tree attributes to all trees within the stand, which renders the estimation of stand-level summary statistics from TLS data unnecessary. Whichever approach is chosen, the next step is to implement these methods in user-friendly software packages—such as the ForeStereo software presented in Sánchez-González et al. (2016), which has been used for this study—so that these methods can be made available for foresters and stakeholders.

Acknowledgments

The authors wish to thank Roberto Vallejo and the National Forest Inventory team of the Spanish Ministry of Agriculture, Fisheries, Food and Environment and Mancomunidad Forestal Ansó-Fago for their support with field data. This research has been funded by the National Parks Autonomous Agency of the Spanish Ministry of Agriculture, Fisheries, Food and Environment through the project 979S/2010 of National Parks and the Spanish Ministry of Economy and Competitiveness through the project AGL2016-76769-C2-1-R.

References

A Novel Method for Separating Woody and Herbaceous Time Series

Qiang Zhou, Shuguang Liu, and Michael J Hill

Abstract
Mapping the spatial distribution of woody and herbaceous vegetation in high temporal resolution in savannas would be beneficial for modeling interrelationships between trees and grasses, and monitoring fuel loads and biomass for livestock. In this study, we developed a frequency decomposition method to separate woody and herbaceous vegetation components using Normalized Difference Vegetation Index (NDVI) time series. The results were validated using fractional cover data derived from high-resolution images. The validation revealed a close relationship between our decomposed NDVI and corresponding fractional cover (R² = 0.55 and 0.64 for woody and herbaceous components, respectively). We examined the spatial and temporal patterns of the decomposed NDVI, where woody and herbaceous NDVI showed different responses to precipitation. The methods proposed in this study can be used to separate the woody and herbaceous NDVI time series as an alternative approach for monitoring woody and herbaceous vegetation interrelationships related to climatic drivers.

Introduction
Savannas provide essential ecosystem services to environments and societies, including supporting the subsistence economy, climate regulation, biodiversity, water balance, and hydrodynamics (Seghieri et al. 1995; Guerschman et al. 2006). On the other hand, savannas are very dynamic ecosystems under the influences of various forces, including climate variability and change, fire, herbivory, and land use change (Verbesselt et al. 2006; Verbesselt et al. 2007; Coetsee et al. 2010; Sankaran et al. 2005; Bucini and Hanan 2007; Staver et al. 2011; Gessner et al. 2013). The mosaics of woody canopy and herbaceous cover of savannas form a distinct vegetation structure and, separately and together, they provide various essential functions to the ecosystem (e.g., carbon sequestration, wildfire ignition, and biodiversity conservation) to human livelihoods (e.g., grazing, fuelwood, and agriculture) (Gessner et al. 2013). Thus, mapping the spatial and temporal changes of the relative abundance and phenology of the woody and herbaceous components in highly dynamic savannas is critical for further understanding the impacts of climate change, land use, and disturbances on ecosystem structures and services including wildlife habitats, productivity, and biogeochemical cycles (Kahiu and Hanan 2018). In addition, understanding the dynamics of these structural variables provides the basis for effective management decisions over extensive and heterogeneous savanna regions (Knoop and Walker 1985; Bucini and Hanan 2007; Sankaran et al. 2008).

Separating the woody and herbaceous components over large areas remains a challenge due to the similarity of the seasonal variation between the two components. Remote sensing technology has been the primary tool to investigate phenological dynamics of evergreen (or semideciduous) woody and seasonal herbaceous components (Lu et al. 2003; Donohue et al. 2009; Helman et al. 2015; Zhou et al. 2016). Various approaches have been proposed to decompose time series of satellite-derived vegetation signals. For example, Lu et al. (2003) separated 10-day evergreen woody and seasonal herbaceous time series in Australia using the Normalized Difference Vegetation Index (NDVI) from the Advanced Very High-Resolution Radiometer (AVHRR) dataset, by applying empirical relationships between evergreen woody and seasonal herbaceous variations. Helman et al. (2015) used the dry season NDVI to extract the evergreen woody component and then used the wet season NDVI to estimate the seasonal herbaceous component from the Moderate Resolution Imaging Spectroradiometer (MODIS). Both studies used a constant NDVI to reduce the soil background influence. However, these methods cannot distinguish between woody deciduous and seasonal herbaceous vegetation components. Woody vegetation with varying degrees of deciduousness is prevalent in southern African savannas such as the Mopane woodlands and Kalahari Acacia-Baikiaea woodlands. Moreover, the diverse species of woody vegetation exhibit wide variation in intra-seasonal phenology and canopy morphology and density, which makes the separation from the herbaceous signal more challenging.

A range of techniques have been applied to extract vegetation phenology dynamics from remote sensing time series. Seasonal and Trend decomposition using Loess (STL) (seasonal decomposition of time series by LOcally wEighted Scatterplot Smoothing (LOESS)) was used to separate seasonal component from multi-year trends based on the LOESS methods (Cleveland et al. 1990). The harmonic analysis of NDVI time series (Menenti et al. 1993) was used to smooth data (Jun et al. 2004), correlate responses with climatic variables (Lhermitte et al. 2008; Roerink et al. 2003; Bradley et al. 2011), extract vegetation phenology information (Leinenkugel et al. 2013), and classify vegetation types with distinct phenology (Jakubauskas et al. 2002; Yui et al. 2004; Geerken et al. 2005). In the harmonic analysis, the first two harmonics were used mostly in vegetation phenology studies: The amplitude of the first harmonic was associated with the dominance of annual vegetation species, the amplitude of the second harmonic indicated the...
mixture of woody and herbaceous vegetation, and the phase of the harmonic suggested the timing of leaf-on (Moody and Johnson 2001). Although harmonics have been used to extract and classify phenology information, to our knowledge, they have not been used to separate phenological dynamics of woody and herbaceous vegetation components in African savannas. This paper aims to (1) develop a new approach based on harmonic analysis to separate the deciduous woody and herbaceous phenological dynamics in savanna area, and (2) apply the method to map the spatial and temporal changes of vegetation components in southern Africa. Deciduous woody and herbaceous covers have different timings of green-up and senescence in southern Africa (Archibald and Scholes 2007). For example, woody vegetation flushes its leaves right before the rainy season, while herbaceous vegetation does not grow leaves until the rainy season starts (Higgins et al. 2011). The phenological difference leads to distinct seasonal NDVI characteristics for woody and herbaceous covers, which can be captured by frequency components in the harmonic analysis. Our science questions are: (1) Can the new approach developed in this study be used to characterize the compositional phenology changes of savanna (using southern African savanna as a case study)? (2) What are the spatial and temporal dynamics of the phenology patterns of the woody and herbaceous components in southern African savanna? (3) How does climatic variation drive the phenological patterns?

Study Area

The study area covers portions of Angola, Zambia, Zimbabwe, Namibia, and Botswana of southern Africa, lying between 10°52′23″S and 21°44′44″S and between 15°59′24″E and 26°58′52″E. The area covers approximately 1 450 000 km² with a mean minimum and maximum temperature range from 9°C to 27°C, and annual precipitation from 1500 to 2911 mm (Hijmans et al. 2005). From north to south, the vegetation shifts from woodlands and open deciduous forests to arid shrubland (Cowling et al. 2009). Three types of woody canopy are found in the study area: 1) Miombo is covered by a dense canopy that is mostly broad leaf evergreen but with a short partially deciduous period (Fuller 1999; Chidumayo 2002; Richer 2008; Vancutsem et al. 2009); 2) Mopane is mostly covered by broad leaf deciduous, but more mixed in density (Fuller 1999; Veenendaal et al. 2008); and 3) Kalahari is mostly deciduous forest, varying from a heterogeneous mixture of open woodland savannas (Burkeo-Pterocarpetea) to shrubland (Acaciaeta, Strobichab and Petersen 2007; Gessner et al. 2009). The study area consists of eight ecoregions (Table 1) defined by the Terrestrial Ecoregions of the World (Figure 1) (Olson et al. 2001). Nonsavanna ecoregions (Etoosa Pan, Western Zambezian grasslands, Zambezian Cryptosepalum dry forests, Zambezian flooded grasslands, and Zambezian halophytics) are excluded in this study. The land use and grazing intensity across the study region is shown in Figure 2a. The map shows that the drier grassy savanna types are grazed whilst the wetter denser woody savannas of the Miombo woodlands are largely ungrazed. The precipitation that drives growth across the study region exhibits a very strong latitudinal gradient declining markedly from north to south (Figure 2b).

Material and Methods

The MODIS eight-day 500 m Bidirectional Reflectance Distribution Function (BRDF)-adjusted reflectance product (MCD43A4) (Schaaf et al. 2002, 2010) from January 2002 to December 2011 was acquired for the study area. The NDVI time series was derived from the red band (620–670 nm) and near-infrared band (841–876 nm). The MODIS observations often contain noise due to clouds, cloud shadows, and other artificial sources, which creates false high or low values in the NDVI time series (Lunetta et al. 2006; Shao et al. 2016). In this study, we detected the noise using the quality assurance layer within the MODIS reflectance product, which labeled it as “not good quality”. Additionally, we detected the noise using a moving window differencing filter, which calculated the difference between the current observation and the observation at the previous time step (Lu et al. 2003; Zhou et al. 2016; Hill et al. 2016). The detected noise was removed from the time series and replaced by applying the spline interpolation (Zhou et al. 2016). We chose the 500 m MODIS dataset because our research project included a separate study on separation of photosynthetic vegetation, nonphotosynthetic vegetation, and bare soil, which required short-wave infrared (SWIR) bands that were not available in the finer resolution 250 m dataset.

Frequency Decomposition

We propose a frequency decomposition method to separate the seasonal time series variation of a mixed pixel into woody and herbaceous variation (Figure 3). Time series can be represented by a sequence of regular frequencies according to a standard Fourier transform (Bracewell 1965):

\[
X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi ikn}{N}} \quad k = 0, \ldots, N-1
\]

where \(N\) is the total sample size (e.g., \(N = 460\) for the eight-day composites from 2002 to 2011), \(k\) is the number of cycles, \(k/N\) is the frequency (e.g., \(n = 10, 20, 30\) represents once a year, twice a year, and three times a year in this study), \(x_n\) is the \(n\)th value of time series, and \(X_k\) is a complex number that represents the amplitude and phase at the given frequency. In this study, we use a subset range of frequencies to represent the seasonal vegetation variation.

Table 1. Characteristics of African savanna ecoregions.

<table>
<thead>
<tr>
<th>Ecoregion</th>
<th>Annual Rainfall (mm)</th>
<th>Tree Genus and Species</th>
<th>Grass Genus and Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Zambezian Miombo (ER2)</td>
<td>667–1503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Miombo (ER3)</td>
<td>605–832</td>
<td>Colophospermum mopane; Combretum; Acacia; Kirkia spp.</td>
<td>Aristida; Digetaria; Erarostis; Echinochloa spp.</td>
</tr>
<tr>
<td>Zambezian & Mopane (ER4)</td>
<td>847–922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Africa Bushveld (ER6)</td>
<td>336–844</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zambezian Baikiaea (ER7)</td>
<td>459–1027</td>
<td>Baikiaea plurijuga</td>
<td>Sparse grasses</td>
</tr>
<tr>
<td>Kalahari Acacia-Baikiaea (ER8)</td>
<td>298–594</td>
<td>Lonchocarpus; Terminalia; Burkea; Combretum; Grewia; Acacia; Commiphora spp.</td>
<td>Aristida; Enagrostis; Heteropogon; Digetaria spp.</td>
</tr>
</tbody>
</table>

Figure 1. Southern African savanna ecosystems defined by Olson et al. (2001). Nonsavanna (white) ecoregions are masked out. The black crosses are validation sites based on Google Earth data. The zoom in panel shows the extents of two IKONOS images within the red box.

Figure 2. a) FAO Land Use characteristics including indications of livestock density (LD) (FAO/ISRIC 2003); and b) Mean annual precipitation (1950–2000) in the Africa savanna from WorClim—Global Climate Data (Hijmans et al. 2005).
The frequency sequence of the mixed pixel can be decomposed into frequency sequences of endmembers (i.e., pure herbaceous and woody vegetation; selection method is described in the section “Selection of Endmembers”) based on the linearity of the Fourier transform:

\[
F(c_1V_1 + c_2V_2) = c_1F(V_1) + c_2F(V_2)
\]

where \(V_1\) and \(V_2\) represent the time series of two endmembers, function \(F\) represents the Fourier transform, and \(c_1\) and \(c_2\) are complex numbers. The phases of \(c_1\) and \(c_2\) represent the temporal shift compared to the variables \(V_1\) and \(V_2\), and the amplitude of \(c_1\) and \(c_2\) shows the amount of \(V_1\) and \(V_2\) in the mixed pixel time series.

The frequency decomposition intends to separate woody and herbaceous vegetation seasonal variation. However, we assume that the NDVI time series contains three types of variations. Type 1 is the baseline variation from semideciduous woody vegetation (typically when photosynthetically-active herbaceous vegetation is absent during dry seasons) and soil background information. Type 2 are the seasonal variations from both herbaceous and woody vegetation that are related to climate. Type 3 is the short-term variation from herbaceous and woody vegetation that are related to local environment and weather variations. The type 3 variation can introduce uncertainties to the frequency decomposition, because the same woody and herbaceous combination may have different local environment and weather variations at various regions. Therefore, only type 2 is used to decompose the woody and herbaceous variation, while types 1 and 3 are integrated into the time series after the decomposition. Previous studies showed that the NDVI variation mostly comes from green woody and green herbaceous vegetation while the
SOIL BACKGROUND INFORMATION is minor, and a constant low NDVI value was often used to represent the background information (Lu et al. 2003; Helman et al. 2015). Accordingly, we used a constant value of 0.1 to represent the background contribution based on another study in our study area (Hill et al. 2016). The constant value was subtracted from the type 1 variation. The detailed procedure of the frequency decomposition consists of five steps (Figure 4).

Step 1: Retrieve type 1 variation. The type 1 variation is retrieved from the NDVI time series using the statistical method STL (Cleveland et al. 1990). We also considered using the Fourier transform to retrieve type 1 variation and remove noise. But then we had to determine an arbitrary frequency threshold for noise and long-term variation, which could be controversial for this high temporal resolution dataset. One the other hand, STL is a popular method for decomposing time series, and outputs trend component and seasonal component. The trend component is equivalent to the type 1 variation that is added to the woody variation after the frequency decomposition. The seasonal component, however, contains both type 2 and 3 variations as defined in this study.

Step 2: Separate type 2 and 3 variations. The seasonal component from the STL is converted to a sequence of frequencies. By comparing the amplitude distribution of frequency sequence (Figure 3), we assume that frequencies from 1–5 cycles per year have most of the seasonal component information and enough variation to determine the regression coefficients. So, we use frequencies from 1–5 cycles to represent type 2 variation and higher frequencies to represent type 3 variation. A multi-frequency combination of one cycle per year (red), two cycles per year (green), and three cycles per year (blue) is shown in Figure 5. The type 3 variation is restored after the decomposition at Step 4.

Step 3: Build frequency decomposition model. The coefficients c_1 and c_2 of woody and herbaceous components are estimated using the type 2 frequencies of mixed pixels based on Equation 2.

$$F(V) = c_1 F_s(V_t) + \frac{\text{abs}(c_1)}{\text{abs}(c_1) + \text{abs}(c_2)} F_o(V)$$

Where $F_s(V_t)$ is the seasonal frequencies of the woody endmember, and $c_1 F_s(V_t)$ is the derived seasonal frequencies of woody components. $F_o(V)$ is the short-term signal from the mixed pixel, while $F(V)$ is the derived full woody frequency sequence of the mixed pixel. The full woody frequency sequence is assembled in the same way.

Step 4: Restore type 3 variation. The type 3 variation is assigned back to woody and herbaceous components based on the amplitudes of c_1 and c_2:

$$F(V) = c_1 F_s(V_t) + \frac{\text{abs}(c_1)}{\text{abs}(c_1) + \text{abs}(c_2)} F_o(V)$$

Step 5: Construct separate time series for herbaceous and woody vegetation. The full woody and herbaceous frequency sequences are transformed to NDVI time series of herbaceous and woody components. The type 1 variation is added to the woody time series. The final outputs are woody and herbaceous eight-day NDVI time series from 2002 to 2011.
across the study area (Figure 5a). The ecosystem-based endmember time series exhibits the spatial variation of the two endmembers. Although the woody or herbaceous vegetation have some variation across ecosystems, the two endmembers are still distinct from each other. In general, the woody endmember has steeper increase, starts earlier (in September), remains high longer (until May), and declines later than the herbaceous endmember (Figure 5b).

Validation of the Derived Products

Verifying the method using ground observations was not practical since measurements of woody and herbaceous canopy cover, leaf area index, or NDVI were not available at a suitable scale for comparison. However, we were able to validate the method using three approaches:

a. Simulation of woody and herbaceous NDVI by adding variation to endmember time series;
b. Comparisons of decomposed woody and herbaceous components with cover fractions derived from high resolution satellite imagery (Helman et al. 2015);
c. Transect-based visual sampling of high resolution Google Earth images to create MODIS pixel scale estimates of woody and herbaceous cover and retrieval of supplementary point data derived from published studies for comparison.

Simulated Data

Data for validation were simulated by adding random values (range from -0.1 to 0.1) to each observation of the two endmember time series to simulate the two components of a mixed time series. The mixed time series is calculated as sum of fractions of the two simulated components. We then decomposed the mixed time series based on the two endmembers using our method. The results from the decomposition were then compared to the simulated components.

Cover Fractions from High Resolution Imagery

High-resolution images including IKONOS and Google Earth data were used to generate the fractional cover dataset. Two IKONOS images acquired during the dry season (Figure 1) on 11 May and 11 June 2010 were available. The multispectral bands (4 m resolution) were fused with the panchromatic band (1 m resolution) to create pan-sharpened multispectral images. Each pan-sharpened image was previously clustered into 100 groups and further classified into photosynthetic vegetation (PV), nonphotosynthetic vegetation, bare soil, and other land cover classes (Hill et al. 2016). In this study, the cluster groups within the PV class were further separated into green woody and green herbaceous classes (Figure 6). Classification results were evaluated using manually selected woody and herbaceous patches from high-resolution images. The overall classification accuracy was 86.2% for the 11 May image and 92.6% for the 11 June image at 1 m resolution (Table 2). The classification images were converted to the fractional cover of green woody and herbaceous vegetation within the grids of the MODIS images. We then developed a regression tree model that correlates the decomposed NDVI with a subset of the fractional cover dataset. Regression tree models

Table 2. IKONOS image classification accuracy.

<table>
<thead>
<tr>
<th>Image Date</th>
<th>Class</th>
<th>Product Accuracy (%)</th>
<th>User Accuracy (%)</th>
<th>Overall Accuracy (%)</th>
<th>Kappa Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 11</td>
<td>green woody vegetation</td>
<td>77.03</td>
<td>96.57</td>
<td>86.20</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>Green herbaceous vegetation</td>
<td>96.83</td>
<td>78.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 11</td>
<td>Green woody vegetation</td>
<td>87.82</td>
<td>97.68</td>
<td>92.62</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Green grass vegetation</td>
<td>97.76</td>
<td>88.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. Illustration of generating MODIS-resolution fractional cover validation data from high-resolution images. The top box shows the procedure of converting an IKONOS image to 500 m fractional cover image. The bottom box shows the fractional cover calculation from Google Earth images at selected sites.
were developed using 75 randomly selected points from the fractional cover dataset using software R with default settings. The regression tree models were then validated against the remaining dataset (82 points).

Google Earth Visual Transects and Data from the Literature

Growing season images (i.e., 9 March 2004, 27 February 2010, and 23 April 2007) were acquired from Google Earth Pro are © 2017 DigitalGlobe. A total of 100 validation sites, each the size of a MODIS pixel, were also selected from Google Earth, and the fractional covers of herbaceous and woody vegetation within these points were estimated. The sites scattered across ecoregions (ER1, ER4, and ER7, representing diverse vegetation cover ranging from dense woodland to grassland with a variety of species combinations. A total of 80 equally spaced sampling points along four transects (Figure 6) within the sampling site were used to count their corresponding cover types (i.e., woody, herbaceous, and others). Green woody and green herbaceous fractional covers within each site were calculated from these observations.

Results

NDVI Decomposition at Four Representative Sites

Figure 7 shows the decomposition results at four locations (Figure 1) representing four typical land cover types from the Food and Agriculture Organization (FAO) land use characteristics. Site A (forest) had a total NDVI varying between 0.4 and 0.8. Most of the NDVI came from woody component while herbaceous NDVI was less than 0.1. Site B (protected shrubland) had lower total NDVI with a faster decreasing rate in most years than site A. Both woody and herbaceous vegetation was prevalent on this site, and herbaceous NDVI achieved 0.17. Site C (shrubland with moderate livestock density) had the lowest total NDVI of the four sites and negligible woody vegetation. The woody NDVI remained low except in 2006 and 2007, and reached its maximum at the early growing season of 2007. Site D (open shrubland) was mostly covered by grass with sparse woody vegetation. Virtually all of the seasonal signal at this site was provided by the herbaceous component. The herbaceous NDVI achieved a maximum value of 0.4 and dominated the total NDVI seasonal variation. The decreasing fraction of woody NDVI and increasing fraction of herbaceous NDVI from Site A to Site D agreed with the gradients shown in FAO land use (Figure 2a) and Ecoregion characteristics (Figure 1) from forest to shrubland and grassland. Moreover, the woody time series exhibited an earlier increase and later decrease in NDVI than the herbaceous time series at all four sites.

Spatial and Temporal Variation of Decomposed NDVI Signals

Figure 8 shows the monthly NDVI of the woody and herbaceous vegetation averaged for the period 2002–2011. Woody NDVI exhibits an overall gradient decreasing from north to south, while herbaceous NDVI showed more heterogeneous distribution. The northern ecoregions (i.e., ER1 and ER2) showed high woody NDVI with strong seasonal variation (Figure 8) because of the dominant presence of semideciduous Miombo tree species which only drop leaves for a short period (Fuller 1999; Veenendaal et al. 2008). However, a close-up examination of variation in the Angolan Miombo Woodlands (red box) shows high herbaceous and low woody NDVI, corresponding to agriculture and urban areas in the Google Earth image. The

central ecoregions (i.e., ER4 and ER7 ecoregions) showed the largest seasonal variations with woody NDVI reaching the highest value in January and the lowest in August. Those ecoregions also showed a transition from dominant woody to herbaceous NDVI from north to south. The southern ecoregions (i.e., ER3, ER5, and ER8) showed very low woody NDVI and low temporal variation, related to low woody cover driven by low precipitation. The ER8 showed decreasing herbaceous NDVI from north to south, and both woody and herbaceous NDVI were minor in the southern ER8. The maps showed very low NDVI between July and September (Figure 8), associated with senescence of the grasses, loss of leaves from tree species, and general decline in vegetation cover as a result of herbivory in the dry season.

Validation of Woody and Herbaceous Components

Figure 9a shows the time series endmembers used in the simulation. Figure 9b and Figure 9c showed very strong linear relationships between the decomposed and simulated components ($R^2 = 0.92$ and 0.98, respectively). X_1 was the dominant component in the mixed time series, and the estimated value matched well with the simulated value with the regression line overlapped with the 1-1 line. X_2 contributed less to the mixed time series, and it was slightly underestimated based on the regression line. It noteworthy that the noise ($±0.1$) in X_1 is relatively more significant than the noise in X_2 based on the magnitude of the endmember time series. This comparison indicates that the method performs robustly in separating mixtures of distinct signals assuming these signals are representative of the actual vegetation on the ground.

The results of the fractional cover-based comparison are shown in Figures 6a and 6b). The herbaceous decomposed NDVI fractions showed a better correspondence with the corresponding image-based cover fraction than did the woody decomposed NDVI fraction ($R^2 = 0.55$ for woody and $R^2 = 0.64$ for herbaceous). There was a wide range of woody cover at high resolution for a given level of decomposed woody NDVI fraction. However, there was better correspondence between the decomposed woody NDVI fraction and combined data from Google Earth visual transects and data acquired in previously published studies (Figure 10c).

Discussion

This paper demonstrated a new method and the framework to separate the phenological dynamics of deciduous woody and herbaceous vegetation using frequency information. Traditional methods assumed that the evergreen woody phenological dynamics are negligible or the same (but small proportion) as herbaceous vegetation, which were reasonable for savannas with only evergreen woody (Lu et al. 2003; Helman et al. 2015). Comparing to traditional approaches, the approach has several advantages. First, it captures seasonal differences of deciduous woody and herbaceous vegetation and omits high frequency variation due to discrete events such as precipitation or disturbances (Figure 5). Second, it can fit not only the amplitude but also the phases of seasonal variation, which could reduce errors caused by the temporal shifts between the pure woody/herbaceous vegetation and the mixed vegetation. These attributes are important for improved monitoring temporal changes in savanna ecosystems and for further understanding their impact on productivity, wildfire, and biogeochemical cycles (Kahiu and Hanan 2018).

The approach is considered successful because of the consistent relationship between the simulated and decomposed components (Figure 9) and between the decomposed NDVI and fractional cover data (Figures 6a and 6b). The relatively poor correspondence between the decomposed woody NDVI and woody cover fraction from the high resolution images may be explained by specific heterogeneity in woody density and distribution at these image limited locations interacting with the 500 m pixel scale, since they could not be considered representative of the wide array of vegetation across the study region. The fractional cover data derived from high-resolution imagery covered various vegetation species in both the dry season and rainy season. The linear relationship between

Figure 8. Estimates of monthly average woody and herbaceous NDVI (2002–2011). The color ramp from dark blue to orange indicates the NDVI value from high to low. A zoom in area (red box) shows agriculture and urban cover based on the Google Earth image. The bottom row exhibits the ecosystem boundary.
Figure 9. Validation of the decomposition method based on the simulated data. Plot a) shows time series of endmembers E1 and E2. X1 and X2 are the simulated components which are fractions of the two endmembers with noises (random values from -0.1 to 0.1). The simulated mixed pixel time series (y) is the sum of two components X1 and X2. The time series (y) is decomposed based on E1 and E2 and compared to X1 and X2, as shown in plots b) and c). The solid lines in b) and c) are 1-to-1 lines, and the dashed lines are regression results.

Figure 10. Comparison between the fractional covers derived from the frequency decomposition approach and cover measured from high-resolution images: (a) woody components comparison, (b) herbaceous components comparison. The regression line with R², and residual standard error are displayed. c) Linear relationship between the woody NDVI and IKONOS and Google Earth derived fractional cover compared to previous studies.
woody NDVI and all fractional cover data from this study (Figure 10c) also agreed well with previous findings (Chávez et al. 2013; Campos et al. 2014). The ideal comparison would be a study that compared NDVI and fractional cover for woody and herbaceous vegetation separately. However, few studies had been conducted before. Chaves’ (Chaves et al. 2013) work was the best match as it 1) focused on woody vegetation only and eliminated herbaceous influence; and 2) the study area was arid savanna and the woody vegetation was semideciduous, which matches our study. Campos’ work (Campos et al. 2014) matches our study because their study site had a homogeneous land cover type. The similarity in the relationship between woody NDVI and its fractional cover signifies our decomposition of savanna NDVI into woody and herbaceous components are successful.

The frequency decomposition of woody and herbaceous NDVI at the MODIS scale showed agreement with previous vegetation phenology studies in the region (Monasterio and Sarmiento 1976; Williams et al. 1997; Zhang et al. 2005; Higgins et al. 2011). For example, the previous study suggested that in this region woody vegetation flushes leaves right before the rainy season, while herbaceous vegetation does not grow leaves until rainy season starts (Higgins et al. 2011). This study showed the woody NDVI started to increase in October and decrease in May while the similar variation of herbaceous NDVI appeared between November and April in the Zambezian and Mopane Woodlands where the rainfall period was between November and April.

The spatial and temporal patterns of precipitation strongly affect the composition and temporal and seasonal patterns of woody and herbaceous vegetation in the region. For example, our study showed high woody NDVI with small seasonal variation in the northern area where annual precipitation was higher than ~760 mm (Figure 2b and Figure 8), which indicated the domination of semideciduous woody vegetation. Previous studies also found that the mean annual precipitation constrained the woody cover distribution; precipitation was not a limiting factor above ~650 mm to 700 mm (Sankaran et al. 2005; Sankaran et al. 2008). The subtle herbaceous NDVI in high precipitation regions suggested that herbaceous vegetation was suppressed by woody vegetation (Guan et al. 2012). On the other hand, we found, in the very southern part of the study area, the woody seasonal variation was minor comparing to the multi-year trend (type 1 variation), though Google Earth images showed some sparse shrub vegetation (Figure 7). Possible reasons for the minor woody seasonal variation were the sensitivity of MODIS sensor at the 500 m scale and the changing sensor view angle throughout the year (Helman et al. 2015). This indicates an uncertainty of the woody NDVI at the open shrubland region.

There are, however, some limitations in this study. First, the endmembers selected might be mixed pixels because of the coarse resolution and the heterogeneous savanna cover. The pure woody pixels could be easily found as there is a large amount of dense forest at the ER1 and ER2. There is often scattered woody vegetation in grassland pixels, though the woody coverage is minor and has limited influence at the 500 m scale. This study is part of a project that aims to separate green woody, green herbaceous, dry vegetation, and bare soil using NDVI and SWIR bands. Thus the 500 m NDVI time series were used. However, a higher spatial resolution dataset is preferred for this method to reduce the mixed pixel issue. Second, this study separates the green woody and green herbaceous seasonal variation without explicit separation of the soil and dry vegetation (Hill et al. 2016). This is also the reason we decomposed NDVI instead of spectral bands, as NDVI mainly captures green vegetation dynamics and is insensitive to soil and dry vegetation. To further reduce the influence of soil and dry vegetation, a solution from previous research (Lu et al. 2003; Helman et al., 2015) was applied in this study. Third, the woody and herbaceous time series were separated using observations for a 10-year period without explicitly considering possible impacts of abrupt disturbances such as fire or land conversion. In this case, if both woody and herbaceous vegetation grew back after disturbances and retained the relative covers, the method can still decompose the two components. However, if the relative woody and herbaceous vegetation coverages were changed after disturbances, the method could have a bias. A practical solution in the future is first to break the time series into segments when abrupt changes occur using the Continuous Change Detection and Classification (Zhe et al. 2014) or the breaks for additive season and trend (BFast) (Verbesselt et al. 2010) algorithms. The frequency decomposition approach proposed here could then be applied to each time series segment identified. In combination with the above change detection algorithms, the proposed approach has the potential to map woody and herbaceous phenology changes after disturbances such as fire or drought.

Conclusions
This study presents a new method to decompose deciduous woody and herbaceous components from the MODIS NDVI time series using the following procedure:

1. Disintegrate the NDVI time series into woody vegetation only baseline and seasonal variation using the traditional STL procedure.
2. Decompose the seasonal variation into woody and herbaceous components using the new frequency decomposition method proposed in this study.
3. Represent the woody NDVI change by adding the NDVI baseline and the seasonal variation of woody components.

This approach was applied and tested in a savanna region in southern Africa. The woody and herbaceous fractional covers were validated against IKONOS and Google Earth images with R² = 0.55 and 0.64, respectively. The spatial patterns and interannual variability of fractional NDVI and cover showed obvious regional differences that were mainly determined by the amount and seasonality of precipitation as well as disturbances such as land conversion. Those phenological dynamics information would be helpful for understanding ecosystem changes, driving forces, and consequences (Knoop and Walker 1985; Bucini and Hanan 2007; Sankaran et al. 2008), and for further understanding their impact on productivity, wildfire, and biogeochemical cycles (Kahiu and Hanan 2018).

The frequency decomposition method has been, as a case study, successfully applied to derive compositional phenology changes from NDVI data in southern Africa. We do not see any hurdles that prevent this approach from being applied to savanna in other regions or to different types of indexes (EVI, Tasseled Cap transformation indexes) or remotely sensed time series (Landsat, Sentinel-2, MODIS). The Interactive Data Language (IDL) code developed for the frequency decomposition is available by contacting the author.

Acknowledgments
IKONOS images were kindly provided by Dr. Kelley Crews from Department of Geography and Environment at the University of Texas Austin. The authors would also like to thank the editor and anonymous reviewers for their valuable comments on the improvement of the paper. This work was partially supported by a grant from NASA (grant number #NNX10AH20G).

Examining the Effectiveness of Spectrally Transformed SMA in Urban Environments

Yingbin Deng and Changshan Wu

Abstract
Spectral transformation has been applied to address the spectral variability in spectral mixture analysis. However, there is not a study addressing the necessity and applicability of transformed models. This article, therefore, aims to answer two questions: whether significantly different results will be generated through applying a spectral transformation, and which spectral transformation performs better in urban environments. In particular, 26 spectrally transformed schemes were examined in three cities. Results of paired-sample t tests demonstrated that normalized spectral mixture analysis performed significantly better than the untransformed scheme in all three study areas. Derivative analysis, independent component analysis, and minimum noise fraction outperformed the untransformed scheme in one or two study areas but underperformed in others. Other schemes are unnecessary, as they have significantly lower accuracy compared to the untransformed scheme.

Introduction
Spectral mixture analysis (SMA) has been widely applied to estimate fractional land covers within each pixel of coarse-resolution remote sensing imagery. Spectral transformation, which converts the original spectra linearly or nonlinearly, is one of the widely applied approaches in SMA to address spectral-variability problems. It focuses on enhancing the spectral characteristics to reduce within-class variability and enhance between-classes variability. Spectral transformation has been employed in a large number of remote sensing applications. Wu (2004) proposed a normalized SMA (NSMA) to extract land use and land cover information in the city of Columbus, Ohio, United States. Results indicated that brightness variations were reduced and improved results could be achieved from the NSMA. Asner and Lobell (2000) applied a tie spectral transformation before estimating the fractions of vegetation and soil covers. They concluded that significant variations of soil moisture, canopy architecture, leaf and litter area index, and tissue optics could be compressed using the tied spectra. Zhang, Rivard, and Sánchez-Azofeifa (2004) summarized that second-order derivative spectral unmixing is promising for fraction estimation using hyperspectral data. Similar studies include the research of Tsai and Philpot (1998), Laba, Tsai, Ogurcak, Smith, and Richmond (2005), and Huguenin and Jones (1986). Further, Debbia, Carranza, van der Meer, and Stein (2006) concluded that higher-order derivatives contribute more to remote sensing imagery with higher signal-to-noise ratios. Li (2004) compared the discrete wavelet transform (DWT) with principal components analysis (PCA; Richards and Richards 1999; Chuvieco and Huete 2009) and found that DWT could bring more separability than PCA, leading to improvement of fractional estimations. Similar conclusions were achieved in the studies of Bruce, Koger, and Li (2002) and Zhang, Rivard, Sánchez-Azofeifa, and Castro-Esau (2006). Yougentob et al. (2011) examined the performance of continuum-removal (CR) analysis using hyperspectral data, and the results showed improvement in overall accuracy. Further, PCA (Pearson 1901; Byrne, Crapper and Mayo 1980; Richards and Richards 1999), the minimum noise fraction (MNF) transform (Green, Berman, Switzer and Craig 1988; Geladi, Isaksen, Lindqvist, Wold and Esbensen 1989; Boardman and Kruse 1994), tasseled cap (TC; Kauth and Thomas 1976; Jensen and Pulla 1987), and independent component analysis (ICA; Bell and Gualtieri and Crompt 1998; Chen and Zhang 1999; Hyvärinen and Oja 2000) are commonly employed for the land surface feature enhancement before applying SMA. Spectral characteristics of different land cover classes are highlighted in different output layers of these transformations. Many researchers have used these transformation techniques to assist in the selection of end members, reduce spectral within-class variability, and enhance between-classes variability. Further, different spatial filters, such as low-pass (LP; Green et al. 1988), high-pass (HP; Yu et al. 2006), Gaussian high-pass (GHP; Schowengerdt 2006), and Gaussian low-pass (GLP; Schowengerdt 2006), are commonly used to enhance the spectral characteristics’ edges or to smooth remote sensing imagery (Xu et al. 2011).

Although many researchers have applied spectral-transformation techniques in remote sensing applications, there is still a lack of comprehensive and systematic studies to examine their effectiveness. In particular, researchers use different transformed schemes based on their own knowledge and expertise. The necessity of applying a transformed scheme has not been adequately discussed in the literature. In addition, because of the existence of spectral variability, the reliability of each transformed scheme is still unclear, and most researchers apply the transformed schemes in only one study area. It is unknown whether consistent results can be obtained other study areas. Therefore, this study aims to examine whether there is a significant difference in SMA results after applying spectral transformation and to find out which spectral-transformation approach generates consistently better results. The structure of this article is as follows: The next section introduces the background of SMA and spectral-transformation techniques, followed by the experiments and the results in three study areas with Landsat Thematic Mapper data. The next section discusses the results and is followed by the conclusions of this study.

Yingbin Deng is with the Guangdong Open Laboratory of Geospatial Information Technology and Application, Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou Institute of Geography, Guangzhou, China; and the Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI 53211.

Changshan Wu is with the School of Geology and Geomatics, Tianjin Chengjian University, Tianjin, China; and the Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (cswu@uwm.edu).

Photogrammetric Engineering & Remote Sensing
0099-1112/19/521–528
© 2019 American Society for Photogrammetry and Remote Sensing
doi: 10.14358/PERS.85.7.521
Background

SMA

SMA assumes that more than one land cover class exists in a mixed pixel. The objective of SMA is to estimate the fraction of each end member within a mixed pixel. Generally, two constraints—sum-to-one \(\sum_{j}^{m} f_{j} = 1 \) and nonnegative \(0 \leq f_{j} \leq 1 \)—should be met in fully constrained SMA, which can be expressed as

\[
R_k = \sum_{j}^{m} f_{j} R_{k,j} + e_k ,
\]

where \(R_k \) is the spectral reflectance of a mixed pixel on band \(k \), \(f_{j} \) is the fraction of end member \(j \) within the pixel, \(R_{k,j} \) is the spectral reflectance of end member \(j \) on band \(k \), \(e_k \) is the error of band \(k \), and \(m \) is the number of end members.

Mean absolute error (MAE) is used to evaluate the performance of SMA. It calculates the absolute difference between the estimated fraction and the reference fraction of the corresponding land cover class:

\[
\text{MAE} = \frac{1}{m} \sum_{i=1}^{m} \text{ABS}(f_{i,e} - f_{i,r}) ,
\]

where \(f_{i,e} \) and \(f_{i,r} \) are the estimated and reference fractions, respectively, of sample \(i \) and \(m \) is the number of samples.

Spectral Transformations

Thirteen linear and 13 nonlinear transformed schemes were examined in this study, as well as the untransformed scheme. These schemes were selected because they are the most common in the literature. Many commercial software applications, such as ERDAS and ENVI, have embedded these models. Researchers can easily implement these transformed schemes in their applications.

Linear Spectral Transformations

Seven linear spectral transformations were examined (see Table 1): derivative analysis (DA; Tsai and Philpot 1998), PCA (Richards and Richards 1999), ICA (Hyvärinen 1999; Hyvärinen and Oja 2000), MNF (Green et al. 1988; Boardman and Kruse 1994), TC (Kauth and Thomas 1976), band normalization (BN), and DWT (Vetterli and Herley 1992; Strang and Nguyen 1996; Li 2002). Detailed descriptions of these methods follow.

DA is sensitive to curve shape instead of the scale of reflectance (Tsai and Philpot 1998). With this advantage, DAs, especially those of a higher order, are effective for eliminating background signals and illumination effects caused by cloud coverage, sun angle, and topography. Detailed calculation of first, second, and third DAs is given by Tsai and Philpot (1998).

The purpose of PCA (Richards and Richards 1999; Chuvieco and Huete 2009) is to create a new set of orthogonal axes which can maximize data variance. PCA compresses the original intercorrelated data into several uncorrelated variables, called principal components. The amount of variance decreases with increasing component number. Generally, the first three components in PCA contribute more than 90% of the variance in the original data set.

ICA is based on a non-Gaussian assumption of independent sources and applies higher-order statistics to extract the characteristics in non-Gaussian data sets (Hyvärinen 1999; Hyvärinen and Oja 2000). It commonly contains three steps: centering and whitening sample data with the mean, eigenvectors, and eigenvalues; conducting negentropy maximization with the whitened samples to estimate the ICA transform matrix; and transforming the original data using the independent components transform matrix.

MNF transformation, like PCA, separates noise and reduces data dimension (Green et al. 1988; Boardman and Kruse 1994). First, in the noise-whitening step, the noise covariance matrix of PCA is used to decorrelate and rescale the noise in the data. Second, a rotation based on the first step’s outcome is implemented. Specific channel information can be maintained in MNF, since each component’s weighting is contributed by all the original bands. Most of the variance can be explained with the first three components, while the remaining components are contributed mainly by noise (Boardman 1993).

Similarly, TC transformation orthogonally transforms the original data into a three-dimensional space (Kauth and Thomas 1976) of brightness, greenness, and wetness (Jensen and Lulla 1987). If the data set is Landsat-7 Enhanced Thematic Plus with six spectral bands, results also contain three more outputs—the fourth, fifth, and sixth components. The first TC band relates to the overall brightness of the image, while the second output band corresponds to the degree of greenness. The third band indicates the wetness of the land surface. TC transformation was originally designed to maximize separation of the different growth statuses of vegetation.

BN reassigns the range of the pixel values in each band linearly. Contrasting information is well presented in the stretched output. BN has two steps: searching the maximum and minimum values in a band and calculating BN through normalization for each pixel:

\[
BN_k = \frac{(R_k - R_{k,min})}{(R_{k,max} - R_{k,min})}.
\]

where \(BN_k \) is the BN value in band \(k \), \(R_k \) is original spectral reflectance in band \(k \), and \(R_{k,min} \) and \(R_{k,max} \) are the maximum and minimum values, respectively, of band \(k \). Light materials will be displayed as lighter colors, while dark regions will appear in darker colors.

DWT can be implemented through a fast wavelet transform (Vetterli and Herley 1992; Strang and Nguyen 1996; Li 2002). The mother wavelet is represented by a set of HP and LP filters in the filter bank. In the beginning, the original image signal goes through the filter bank. The result of the HP filter is the detail coefficients, while the result of the LP filter is called

Table 1. Spectral transformations.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Linearity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA1–3</td>
<td>Linear</td>
<td>Tsai and Philpot 1998</td>
</tr>
<tr>
<td>PCA</td>
<td>Linear</td>
<td>Pearson 1901; Byrne et al. 1980; Richards and Richards 1999</td>
</tr>
<tr>
<td>ICA</td>
<td>Linear</td>
<td>Bayliss, Gualtieri and Crompt 1998; Chen and Zhang 1999; Hyvärinen and Oja 2000</td>
</tr>
<tr>
<td>MNF</td>
<td>Linear</td>
<td>Green, Berman, Switzer and Craig 1988; Boardman and Kruse 1994</td>
</tr>
<tr>
<td>TC</td>
<td>Linear</td>
<td>Kauth and Thomas 1976</td>
</tr>
<tr>
<td>BN</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>DWT1–5</td>
<td>Linear</td>
<td>Vetterli and Herley 1992; Strang and Nguyen 1996; Li 2002</td>
</tr>
<tr>
<td>CR</td>
<td>Nonlinear</td>
<td>Kruse 1988</td>
</tr>
<tr>
<td>GHP, GLP, HP, LP</td>
<td>Nonlinear</td>
<td>Green, et al. 1988; Schowengerdt 2006; Yu et al. 2006</td>
</tr>
<tr>
<td>NSMA</td>
<td>Nonlinear</td>
<td>Wu 2004</td>
</tr>
<tr>
<td>Tiel–7</td>
<td>Nonlinear</td>
<td>Asner and Lobell 2000</td>
</tr>
<tr>
<td>BN</td>
<td>band normalization</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>continuum removal</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>derivative analysis</td>
<td></td>
</tr>
<tr>
<td>DWT</td>
<td>discrete wavelet transform</td>
<td></td>
</tr>
<tr>
<td>GHP</td>
<td>Gaussian high-pass</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>Gaussian low-pass</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>high-pass</td>
<td></td>
</tr>
<tr>
<td>ICA</td>
<td>independent component analysis</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>low-pass</td>
<td></td>
</tr>
<tr>
<td>MNF</td>
<td>minimum noise fraction</td>
<td></td>
</tr>
<tr>
<td>NSMA</td>
<td>normalized spectral mixture analysis</td>
<td></td>
</tr>
<tr>
<td>PCA</td>
<td>principal components analysis</td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>tasseled cap</td>
<td></td>
</tr>
<tr>
<td>Tiel</td>
<td>tie spectral transformation</td>
<td></td>
</tr>
</tbody>
</table>
the approximation coefficients. In the single-step DWT, the original signal goes through the filter once. The image can be well reconstructed by using the approximation coefficients and setting other coefficients to 0 (Li 2002). In this study, only the single-level decomposition was performed with different wavelets—bior1.1 (DWT1), coif1 (DWT2), db1 (DWT3), rbio1.1 (DWT4), and sym2 (DWT5).

Nonlinear Spectral Transformation

In addition to linear spectral transformation methods, we examined four major nonlinear transformation techniques: CR (Kruse 1988), spatial filtering transformation (LP, HP, GLP, and GHP filters), NSMA (Wu 2004), and tie spectral transformation (Asner and Lobell 2000). These transformation methods are summarized in Table 1, and described in the following.

CR is a method of spectral reflectance normalization (see Kruse 1988). During CR, straight-line segments connect every peak of local spectra to construct a convex hull. The first and last peaks in the local spectra are set to 1 in the continuum removal data, while other data points in the original spectral curve are assigned as less than 1. This can enhance the absorption features from a spectral curve, eliminating slope effects, topography, illumination, and the grain-size effect.

Spatial filtering is another type of spectral transformation. Generally, it involves using a moving window to construct a filter. The center value of the original pixel is replaced by a mathematical computation with the pixel value and corresponding filter value (moving window value). The filter can be defined as HP or LP, which highlights the corresponding frequency and suppresses the other type of frequency. That is, an HP filter is likely to highlight heterogeneous areas and compress the information of homogenous areas; conversely, an LP filter emphasizes smooth areas instead of rough. In this study, four filters were examined: LP, HP, GLP, and GHP.

NSMA was proposed by Wu (2004). With NSMA, reflectance is divided by the mean value of the corresponding pixel in all bands. Brightness can be eliminated or reduced through NSMA, improving the separability of urban land cover classes.

Finally, tie spectral transformation was introduced by Asner and Lobell (2000). They used the 2080-nm wave band as the tie point, then implemented the tie transformation through applying other bands minus the tie point. Results indicated that tie spectra could reduce the variation caused by soil moisture, leaf and litter area index, tissue optics, and canopy architecture. Only shortwave infrared were examined in that study. Therefore, it is still necessary to explore the potential tie points in visible and near-infrared wave bands in urban and suburban areas. Thus, in this study all bands were viewed as potential tie points and each tie transformation was calculated respectively.

Experiments

Study Areas and Data Sources

Three cities in the United States were examined in this study (Figure 1): Janesville, Wis., Asheville, N.C., and Columbus, Ohio. Janesville is on the western shore of Lake Michigan, within the humid continental climate. It has long nights in
the winter and cool temperatures in summer. Flat plain is its major landscape in Janesville. Asheville is the largest city in western North Carolina. It is in the Blue Ridge Mountains where two rivers, the Swannanoa and French Broad, merge together. It is in a humid subtropical climate area, which means it is cool in winter and not as hot as in summer as other eastern cities. Mountainous characteristics are significant in the Asheville area, and residential buildings are constructed based on its local terrain. Columbus, the largest city in Ohio, has relatively flat topography. Like Janesville, its climate is humid continental. Winter is cold and dry, while summer is hot and muggy. The three study areas are mainly occupied by commercial buildings, freeways, parking lots, residential houses, soil, and vegetation (tree and grass).

Two scenes of Landsat-8 Operational Land Imager imagery (Janesville: June 3, 2014; Columbus: September 14, 2015) and a scene of Landsat-5 Thematic Mapper imagery (Asheville: June 2, 2009) were used in this study. Image preprocessing was applied, such as radiometric calibration, atmospheric correction using Fast Line-of-sight Atmospheric Analysis of Hypercube with corresponding parameters, and reprojection to Universal Transverse Mercator (Janesville: Zone 16; Asheville and Columbus: Zone 17). Historical high spatial resolution images (Columbus: August 22, 2015; Janesville: June 12, 2014; Asheville: May 30, 2009) acquired on Google Earth were utilized to assess the mapping accuracy.

Method
The main objective of this study was to test whether there is a significant difference after applying a spectral transformation and to figure out which scheme performs better. Thus, we repeatedly applied SMA on each transformed scheme 100 times using different spectra. Such repeated tests can reveal each transformed scheme’s reliability. We then used paired-sample t tests to examine whether the differences were significant and to figure out which scheme performs better. Generally, the entire process comprises four steps: spectral transformation, sample selection, SMA and accuracy assessment, and paired-sample t test. First, each transformation scheme was applied on the original data to create the transformed images. Second, training samples were collected from the transformed images for the construction of a spectral library, and testing samples were selected from the original image and digitized in the corresponding areas of a high-resolution image for accuracy assessment. Third, SMA was applied on each transformed image and the MAE of each test was calculated. Finally, paired-sample t tests were applied on the MAE sets of untransformed and transformed schemes to test their differences.

Spectral Transformation
Spectral transformations were applied to the original data set using the corresponding methods. In particular, DA1–3, PCA, ICA, MNF, TC, CR, GHP, GLP, HP, and LP were calculated directly from ENVI and its extension models. BN was computed using Equation 3 while NSMA was calculated using the method depicted in Wu (2004). DWT1–5 were calculated using MATLAB’s dwt2 function. Tie1–7 (Tie2–7 in Asheville) were created with the method described by Asner and Lobell (2000).

Sample Selection
Training samples were collected from the transformed images. Four land cover classes were selected as training samples in this study: vegetation (V), high-albedo impervious surface area (ISAh), low-albedo impervious surface area (ISAl), and soil (S). They were collected from the transformed images with the assistance of high spatial resolution images to avoid incorrect pixels. We had 50 training samples of each class for each location, and each training-sample set was used for corresponding spectral-library construction.

Testing samples were collected from the original image to assess each scheme’s performance. We selected 64, 60, and 50 testing samples, respectively, for Janesville, Asheville, and Columbus. Each testing sample is 3 × 3 pixels (90 × 90 m) to avoid the geometric error impact acquired from reprojection and data acquisition. Fractions of impervious surface area within the testing samples were calculated through digitizing the corresponding area in high spatial resolution images.

SMA and Accuracy Assessment
Fully constrained linear SMA was applied to transformed and untransformed data using the V-ISAh-ISAl-S end-member model. Each transformed scheme was tested 100 times using randomly selected spectra in the corresponding spectral library.

The performance of each transformed scheme was evaluated with MAE, which was calculated based on comparison between estimated and referenced ISA fractions. Estimated fractions of ISA were calculated by the sum of ISAh and ISAl fractions in the same pixel.

Paired-Sample t Test
Paired-sample t tests were used to test whether there were significant differences in MAE between transformed and untransformed schemes. Unlike analysis of variance, paired-sample t tests compare the differences test by test, which is more reliable for indicating the performance of transformed schemes. Paired-sample t tests provide the variables of mean difference and their significant value. Mean difference is calculated by subtracting the MAE of transformed schemes from that of untransformed ones. Positive values mean the MAE of transformed schemes is larger than that of transformed schemes, while negative values represent the opposite. Significant values indicate the significance of the test result. In addition, the number of improved tests and their improved percentages were counted to demonstrate their performance. The number of improved tests is calculated by counting the number of tests which have a lower MAE than untransformed schemes. The improved percentage is the average MAE of the improved test. In addition, box plots and statistical description were applied to illustrate the general performance of each scheme.

Results
The detailed performances of transformed and untransformed schemes are illustrated with box plots and descriptive statistical analysis for the three study areas (Figures 2–4). A summary of the MAE for the three study areas is as follows.

- Janesville area. The MAE of the original data is 0.11, which is less than those of most transformed schemes—except NSMA. NSMA has the lowest MAE, of 0.10. MAE values of PCA, TC, GLP, Tie4, and Tie5 are similar to that of the untransformed scheme (0.11). Transformed schemes of DA1–3, ICA, MNF, BN, Tie1–3, Tie6, Tie7, and DWT have slightly higher MAEs than the untransformed scheme, varying from 0.12 to 0.14. CR, GHP, and HP, have relatively higher MAEs: 0.20, 0.18, and 0.16, respectively.

- Asheville area. The MAE of the untransformed scheme is as same as in Janesville (0.11). DA1–3, MNF, and Tie3–7 have slightly lower MAEs compared to the untransformed scheme, with values around 0.10. GHP and HP have very high MAE values, of 0.21 both. Other schemes’ MAEs are slightly higher than that of the untransformed scheme.

- Columbus area. The MAE of the untransformed scheme in Columbus is about 0.14, which is worse than in Janesville or Asheville. GHP and HP illustrate extreme high MAEs in this study area, at 0.25 both. DA1–2, ICA, MNF, CR, GLP, LP, NSMA, Tie3, Tie5, DWT1, and DWT5 have small MAEs, between 0.11 and 0.13. DA3, PCA, TC, Tie1, Tie2, Tie6, Tie7, and DWT2–4 have similar MAEs to the untransformed scheme.
Table 2 reports the results of the paired-sample t tests, the number of improved tests, and the average improved percentage. It reveals that only NSMA shows improvement, with MAEs lower than the untransformed scheme in all study areas (positive values in three study areas). Paired-sample t tests also illustrate that the differences between NSMA and the untransformed scheme are significant, as their p values are less than 0.05. Some schemes, such as DA1, DA2, MNF, GLP, and Tie3–5, have slightly lower MAEs compared to the untransformed scheme in two study areas but larger MAEs in another study area. However, a paired-samples t test cannot indicate a significant difference, since many of these transformed schemes have p values higher than 0.05. DA1–3, CR, Tie4, Tie6, and Tie7 have better performance in only one study area, and worse results in the other two. TC, BN, GHP, HP, Tie1, and DWT2–4 have lower accuracy, as the mean differences are negative in all three study areas. Further, significant differences between the untransformed scheme and TC, Tie1, and DWT2–4 cannot be obtained, since their p values are larger than 0.05.

In addition, we counted the number of improved tests as well as the average improved percentage for each scheme. Generally, transformed schemes (DA2, DA3, NSMA, Tie2, Tie4, Tie6, and Tie7) performed better in Asheville than in the other two study areas, as the number of improved tests is generally larger. NSMA performed better than the untransformed scheme in Janesville, Asheville, and Columbus, as 67%, 69%, and 62% of the tests (respectively) have lower MAEs than the untransformed scheme. The performance of CR is very unstable, with the number of improved tests varying greatly from 11 to 32 to 87 in Janesville, Asheville, and Columbus, respectively. In general, the improved percentages in each scheme are relatively high. Many of the transformed schemes improved about 30%.

Discussion

Spectral variability, including between-classes and within-class variability, is widely present in remotely sensed imagery. Factors such as materials’ spectral characteristics, geometry, and other...
Table 2. Results of paired-sample t test and improved statistic.

<table>
<thead>
<tr>
<th>Schemes</th>
<th>Mean difference</th>
<th>Avg. Improvement (%)</th>
<th>Schemes</th>
<th>Mean difference</th>
<th>Avg. Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pair-wise t test and improved statistic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA1</td>
<td>−0.008</td>
<td>0.015</td>
<td>0.012</td>
<td>0.054</td>
<td>0.011</td>
</tr>
<tr>
<td>DA2</td>
<td>−0.008</td>
<td>0.020</td>
<td>0.002</td>
<td>0.043</td>
<td>0.001</td>
</tr>
<tr>
<td>DA3</td>
<td>−0.009</td>
<td>0.012</td>
<td>−0.003</td>
<td>0.059</td>
<td>0.058</td>
</tr>
<tr>
<td>PCA</td>
<td>−0.001</td>
<td>−0.001</td>
<td>−0.006</td>
<td>0.894</td>
<td>0.864</td>
</tr>
<tr>
<td>ICA</td>
<td>−0.009</td>
<td>−0.015</td>
<td>0.014</td>
<td>0.031</td>
<td>0.024</td>
</tr>
<tr>
<td>MNF</td>
<td>−0.009</td>
<td>0.007</td>
<td>0.030</td>
<td>0.069</td>
<td>0.219</td>
</tr>
<tr>
<td>TC</td>
<td>−0.001</td>
<td>−0.002</td>
<td>−0.001</td>
<td>0.908</td>
<td>0.763</td>
</tr>
<tr>
<td>BN</td>
<td>−0.028</td>
<td>−0.014</td>
<td>−0.016</td>
<td>0.000</td>
<td>0.050</td>
</tr>
<tr>
<td>CR</td>
<td>−0.087</td>
<td>−0.036</td>
<td>0.030</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>GHP</td>
<td>−0.069</td>
<td>−0.102</td>
<td>−0.113</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>GLP</td>
<td>−0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.848</td>
<td>0.912</td>
</tr>
<tr>
<td>HP</td>
<td>−0.073</td>
<td>−0.103</td>
<td>−0.112</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>LP</td>
<td>−0.013</td>
<td>−0.013</td>
<td>0.005</td>
<td>0.061</td>
<td>0.100</td>
</tr>
<tr>
<td>NSMA</td>
<td>0.015</td>
<td>0.022</td>
<td>0.014</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Tie1</td>
<td>−0.014</td>
<td>−0.009</td>
<td>0.003</td>
<td>0.000</td>
<td>0.081</td>
</tr>
<tr>
<td>Tie2</td>
<td>−0.012</td>
<td>0.002</td>
<td>−0.016</td>
<td>0.009</td>
<td>0.774</td>
</tr>
<tr>
<td>Tie3</td>
<td>−0.008</td>
<td>0.005</td>
<td>0.001</td>
<td>0.051</td>
<td>0.381</td>
</tr>
<tr>
<td>Tie4</td>
<td>0.003</td>
<td>0.016</td>
<td>−0.005</td>
<td>0.544</td>
<td>0.002</td>
</tr>
<tr>
<td>Tie5</td>
<td>−0.002</td>
<td>0.011</td>
<td>0.010</td>
<td>0.623</td>
<td>0.063</td>
</tr>
<tr>
<td>Tie6</td>
<td>−0.009</td>
<td>0.012</td>
<td>−0.008</td>
<td>0.054</td>
<td>0.049</td>
</tr>
<tr>
<td>Tie7</td>
<td>−0.009</td>
<td>0.008</td>
<td>−0.010</td>
<td>0.071</td>
<td>0.152</td>
</tr>
<tr>
<td>DWT1</td>
<td>−0.013</td>
<td>0.000</td>
<td>0.002</td>
<td>0.030</td>
<td>0.977</td>
</tr>
<tr>
<td>DWT2</td>
<td>−0.014</td>
<td>−0.010</td>
<td>−0.013</td>
<td>0.024</td>
<td>0.073</td>
</tr>
<tr>
<td>DWT3</td>
<td>−0.014</td>
<td>−0.007</td>
<td>−0.004</td>
<td>0.027</td>
<td>0.272</td>
</tr>
<tr>
<td>DWT4</td>
<td>−0.007</td>
<td>−0.007</td>
<td>−0.004</td>
<td>0.094</td>
<td>0.294</td>
</tr>
<tr>
<td>DWT5</td>
<td>−0.009</td>
<td>−0.008</td>
<td>0.002</td>
<td>0.133</td>
<td>0.232</td>
</tr>
</tbody>
</table>

Ashe.: Asheville; BN: band normalization; Col.: Columbus; CR: continuum removal; DA: derivative analysis; DWT: discrete wavelet transform; GHP: Gaussian high-pass; GLP: Gaussian low-pass; HP: high-pass; ICA: independent component analysis; Jane.: Janesville; LP: low-pass; MNF: minimum noise fraction; NSMA: normalized spectral mixture analysis; PCA: principal components analysis; Sig.: significance; TC: tasselled cap; Tie: tie spectral transformation.

Tie spectral transformation in Asheville (Landsat 5 Thematic Mapper) began with Tie2 in order to match the Tie2 of Janesville and Columbus (Landsat 8 Operational Land Imager). Italics indicate nonsignificant better performance compared to the untransformed scheme; bold indicates significantly better performance.

Environmental elements make major contributions to this phenomenon (Portigal et al. 1997; Zhang et al. 2006). They cause significant confusion in image classifications. Efforts such as weighted SMA and spectral transformation are made by researchers to minimize within-class variability and maximize between-classes variability in order to acquire more accurate results.

Although many scholars have applied several spectral transformed schemes in their applications, there is not a comprehensive comparison between them. This study compared 26 spectral transformations in three different study areas. We repeated tests 100 times with different end-member spectra to reveal the reliability of each scheme. Janesville, Asheville, and Columbus are far from each other. Residential areas, commercial areas, soil, trees, and grass are the major land cover types in each of these areas. These regions can be viewed as typical urban and suburban environments in the United States. Therefore, it is meaningful to compare these three locations with the same end-member model, to test the reliability of each transformed scheme.

Spectral variability is widely present in remotely sensed imagery. Thus, research with different backgrounds may select different end members from images. Moreover, end-member selection is a key step for successful SMA. Different end members may give different results. Therefore, evaluating a scheme’s performance based on one-time end-member selection may not be appropriate. Thus, the significant-difference test was based on 100 repeated tests, which to a certain degree includes many potential spectra. In this case, the general reliability of each transformed scheme can be illustrated from these 100 repeated tests. Moreover, three study areas were tested in order to further prove each transformed scheme’s reliability. Thus, the results of the significant-difference test can be reliable in this study.

Is There a Significant Difference After Applying a Transformed Scheme?

Results from paired-sample t tests demonstrated that a significant difference of MAE existed in many transformed schemes. On the one hand, some significant differences were positive, meaning that the MAEs were reduced. On the other hand, some significant differences were negative, meaning that the MAEs increased. Only NSMA had consistent positive differences in all three study areas, as the MAEs were reduced significantly. Other transformed schemes, such as DA1–3, ICA, and MNF, illustrated a positive significant difference in one or two study areas but a negative one in the remaining area(s). The rest of
the weighting schemes all had negative differences, since they all worsened the accuracy in all three study areas.

Which Transformed Scheme Is Better?
Performance evaluation based on MAE indicated that only NSMA could perform better than the untransformed scheme in all three study areas. Other schemes illustrated unstable performance or weakened the accuracy.

DA can get rid of unnecessary signal components and highlight minor absorption features by using spectral smoothing and the feature-reduction method. However, it can also raise the possibility of ignoring essential spectral features (Youngentob et al. 2011). Different locations may have different essential spectral features. DA may miss different features in different study areas. Thus, the performance of DA varies from place to place. The results of this study illustrate unstable performance, since DA performed better only in some regions, while it was weaker in others. Additionally, DA and DA2 showed worse performances than in the research of Zheng et al. (2004). This may be attributed to different data sources, since that study applied hyperspectral data, which are different from the multispectral images we used in this study. Hyperspectral data, with more spectral information compared to multispectral imagery, may be effective for SMA. However, Zhang et al. did not provide a comparison with untransformed and transformed data, which makes it difficult to evaluate the improvement of derivative spectral unmixing.

We did not observe satisfactory performance for PCA, MNF, TC, or BN in this study. PCA evaluates the components based on eigenvalues, while MNF uses the signal-to-noise ratio to rank the importance of each component. The limitations of PCA and MNF may be attributed to many subtle material substances in Landsat images not being identified by second-order statistics (Wang and Chang 2006), which may provide confusion between classes. The last three bands of PCA, TC, and MNF contain little variance. This may reduce between-classes variance and increase within-class variance, adding more confusion during the fraction calculation. BN does not seem to be necessary in SMA, because of its poor performance in all three study areas. ICA showed an opposite result from the study of Wang and Chang (2006): It did not perform better than the second-order statistics-based methods like PCA and MNF. That may be due to the theory of ICA that it conserves only crucial and critical information such as anomalies, end members, and small targets, instead of the variance preserved by PCA and MNF. However, there is not a clear pattern for ICA, PCA, and MNF, as the results indicate that their performance varied from place to place.

DWT performance conflicted with the results of Li (2004). The differences between this study and that one are due to the land cover types, data sources, wavelet types, and end-member model. Li used higher-level wavelet types (e.g., Db3, Sym3), while our study used on only lower-level wavelet transformation (e.g., db1, Sym2). Further, Li’s land cover types were agricultural lands that contained soybean, large crabgrass, and soil, which was different from our study areas containing commercial areas, residential areas, vegetation, and so on. Moreover, Li’s study used two- and three-end-member models, while we used a four-end-member model. Another limitation of Li’s study is that the untransformed scheme was not tested, which limits knowledge of how DWT improved the SMA result. Paired-sample t tests in the current study demonstrated that lower-level DWT might not be effective for SMA, as it could not improve the accuracy.

CR’s performance varied dramatically. Results for Columbus are similar to the results of Youngentob et al. (2011). However, results for Janesville and Ashville demonstrated opposite outcomes. Though CR produced a promising result in estimating chemical concentrations in leaves by removing irrelevant background reflectance and emphasizing absorption features of interest, it did not show stable performance in this study. This may be due to the difference of spectral characteristics between leaves and impervious surfaces and the complexity of spectral reflectance in urban and residential areas. CR can enlarge band-depth differences, reducing the error in spectroscopic estimation of vegetation quality (Mutanga, Skidmore, Kumar and Ferwerda 2005). However, the variability in impervious surface area, of both high and low albedo, is larger than for vegetation, implying that CR may enlarge within-class variance as well. Some scholars state that CR might introduce more signal-to-noise interference, increasing the within-class variability of the same class (Carvalho and Guimaraes 2001), explaining why CR weakened the SMA results for Janesville and Ashville.

Spatial filters, especially HP and GHP, are not suitable for SMA, as they all reduced accuracy dramatically in all three study areas. GLP and LP still provided limited improvement in some areas; however, statistical tests could not achieve significance. Therefore, spatial filters may serve best as edge detection or image smoothing instead of SMA.

NSMA addressed the confusion between impervious surface areas and soil effectively. Between-classes variance between soil and impervious surface increased after application of NSMA. Moreover, the effect of shade can be removed by brightness normalization. Both aspects improve the accuracy of SMA. NSMA had similar performance in all three study areas, proving its stability in urban and suburban environments.

Conclusions
This study examined the performance of 26 transformations in the Janesville, Ashville, and Columbus areas. Each scheme was tested 100 times with different spectra using the V-ISAh-ISAl-S end-member model. Differences between untransformed and transformed schemes were analyzed using paired-sample t tests. Several conclusions can be drawn. First, NSMA is the most reliable transformed scheme, since it showed consistent improvement in all three study areas. Second, some transformed schemes, such as DA1–3, ICA, and MNF, may need careful consideration, since they showed unstable performance in different study areas. Finally, the remaining transformed schemes cannot contribute to the accuracy improvement, since they worsen SMA results in all three study areas.

Acknowledgments
The authors would like to thank the anonymous reviewers for their constructive comments. This work was supported in part by the GDAS Project of Science and Technology Development, China (2019GDASYL-0103004, 2016GDASRC-0211, 2018GDASCX-0403), Guangdong Innovative and Entrepreneurial Research Team Program (2016GDJTD035), the Research Growth Initiative of the Graduate School of the University of Wisconsin-Milwaukee, and the Natural Science Foundation of Hunan Province, China (2016WK2017).

References
Boardman, J. 1993. Spectral angle mapping: A rapid measure of spectral similarity. AVIRIS.

LEARN
DO
GIVE
BELONG

ASPRS Offers
» Cutting-edge conference programs
» Professional development workshops
» Accredited professional certifications
» Scholarships and awards
» Career advancing mentoring programs
» *PE&RS*, the scientific journal of ASPRS

asprs.org
When you have Geomni collect imagery and data for your next project you will be harnessing the power of one of the largest Geo-spatial companies in the United States. With 14 hubs nationally, we are local to your next planned job site. Helping you map for success is our mission. We achieve that goal by providing access to our extensive data library, and offering custom imaging flights, while our fleet provides the regional knowledge, resolution, accuracy, and timeliness to deliver the critical information precision mappers need, at a price point fit for your project budgets.