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ASPRS 2022 Annual Conference—Virtual Technical Program
March 21 – 25, 2022

Missing the In-Person event at Geo Week this year! You can still...

SUBMITSUBMIT a proposal to present a 15-minute oral presentation, 5-minute Ignite-style talk, or a poster for our online Poster Gal-
lery! https://my.asprs.org/2022Conference/Call-for-Abstracts

ATTENDATTEND ASPRS workshops as live webinars and access as on-demand recordings through our online learning platform, ProLearn!

ATTENDATTEND oral presentations made by researchers, professionals, and students from around the world highlighting applications of 
photogrammetry and remote sensing in areas such as:

•	 Sustainability

•	 Urban planning and modeling

•	 Hydrologic modeling

•	 Food production and crop management

•	 Disaster response

•	 Wildfire management and response

•	 …

HEARHEAR and see industry leaders and policy makers discuss the roadmap forward in areas such as:

•	 new guidelines and specifications for UAS mapping that will become a reference for many contracting agencies at the federal, 
state, and local level

•	 revisions to positional accuracy standards that will accommodate very high resolution lidar and imagery collected from UAS

•	 transition to the NGS modernized gravity-based National Spatial Reference System (NSRS)

•	 standards for mapping to support autonomous vehicle operation on intelligent road networks

•	 ….

EARNEARN Professional Development Hours based on Zoom attendance at virtual technical sessions and workshops.

Last year, over 350 participants from 16 countries joined in the week of virtual presentations! Don’t miss 
it this year! 

REGISTER NOW!REGISTER NOW!

ASPRS 2022 Annual Conference — Virtual
March 21-25, 2022

https://my.asprs.org/2022Conference

https://my.asprs.org/2022Conference
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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

Teledyne Geospatial  announced the sale of its next genera-
tion bathymetric   CZMIL SuperNova to leading professional 
services firm Dewberry. Dewberry is the first private North 
American company to purchase the CZMIL SuperNova, add-
ing this unique capability in support of state and federal 
coastal zone mapping programs, surveying of wetlands, lacus-
trine and riverine systems, submerged habitat detection and 
offshore mapping for renewable energy governance.

The CZMIL SuperNova’s ability to deliver Quality Level 
1 (QL1) data from altitudes greater than 1,200 feet and its 
Secchi depth penetration range (down to 70 meters in optimal 
conditions) will allow Dewberry to deliver the quality data 
required for their projects. Leveraging advanced artificial 
intelligence and machine learning (AI/ML) techniques for 
automated land/water discrimination and noise classification, 
the CZMIL SuperNova bathymetric solution also sets a new 
standard in processing workflow efficiency through automation 
in the CARIS software suite without compromising quality.

¼½¼½ 

USGS Landsat 9 Collection 2 Level-1 and Level-2 data will be 
made available for download from EarthExplorer, Machine to 
Machine (M2M), and LandsatLook.  Initially, USGS will pro-
vide only full-bundle downloads. USGS will provide single 
band downloads and browse images, and Landsat 9 Collection 
2 U.S. Analysis Ready Data shortly thereafter.  Commercial 
cloud data distribution will take 3-5 days to reach full capacity. 

The recently deployed  Landsat 9 satellite passed  its 
post-launch assessment review  and is now operation-
al.  This  milestone  marks the beginning of the satellite’s 
mission to extend  Landsat’s  unparalleled,  50-year  record 
of  imaging Earth’s land surfaces, surface waters, and coast-
al regions  from  space.  Landsat 9 launched September 27, 
2021, from Vandenberg Space Force Base in California. The 
satellite carries two science instruments, the Operational 
Land Imager 2 (OLI-2) and the Thermal Infrared Sensor  2 
(TIRS-2).  The OLI–2 captures  observations of the Earth’s 
surface in visible, near-infrared, and shortwave-infrared 
bands, and TIRS-2 measures  thermal infrared radiation, or 
heat, emitted from the Earth’s surface. 

Landsat 9 improvements include higher radiometric resolu-
tion for OLI-2 (14-bit quantization increased from 12-bits for 
Landsat 8), enabling sensors to detect more subtle differenc-
es, especially over darker areas such as water or dense for-
ests. With this higher radiometric resolution, Landsat 9 can 

differentiate 16,384 shades of a given wavelength. In compar-
ison, Landsat 8 provides 12-bit data and 4,096 shades, and 
Landsat 7 detects only 256 shades with its 8-bit resolution. In 
addition to the OLI-2 improvement, TIRS-2 has significantly 
reduced stray light compared to the Landsat 8 TIRS, which 
enables improved atmospheric correction and more accurate 
surface temperature measurements. 

All commissioning and calibration activities show Landsat 9 
performing just as well, if not better, than Landsat 8. In addi-
tion to routine calibration methods  (i.e.,  on-board calibration 
sources, lunar observations, pseudo invariant calibration sites 
(PICS), and direct field in situ measurements), an underfly of 
Landsat 9 with Landsat 8  in mid-November  2021  provid-
ed cross-calibration between the two satellites’ onboard instru-
ments, ensuring data consistency across the Landsat  Collec-
tion 2 archive. 

Working in tandem with Landsat 8, Landsat 9 will provide 
major improvements to the nation’s land imaging, sustain-
able resource management, and climate science capabilities. 
Landsat’s imagery provides a landscape-level view of the land 
surface, surface waters (inland lakes and rivers) and coast-
al zones, and the changes that occur from both natural pro-
cesses and human-induced activity.  

“Landsat 9 is distinctive among Earth observation missions 
because it carries the honor to extend the 50-year Landsat 
observational record into the next 50 years,” said Chris Craw-
ford, USGS Landsat 9 Project Scientist.  Partnered in orbit 
with Landsat 8,  Landsat 9  will  ensure continued  eight-day 
global land and near-shore revisit.” 

Since October 31, 2021, Landsat 9 has collected over 57,000 im-
ages of the planet and will collect approximately 750 images of 
Earth each day. These images will be processed, archived, and 
distributed from the USGS Earth Resources Observation and 
Science  (EROS) Center in Sioux Falls, South Dakota. Since 
2008, the USGS Landsat Archive has provided more than 100 
million images to data users around the world, free of charge. 

Landsat 9 is a joint mission between the USGS and NASA and 
is the latest in the Landsat series of remote sensing satellites. 
The Landsat Program has been providing global coverage of 
landscape change since 1972. Landsat’s unique long-term 
data record provides the basis for a critical understanding of 
environmental and climate changes occurring in the United 
States and around the world. 

TECHNOLOGY

Applanix, a Trimble Company announced the Trimble® AP+ 
Land GNSS-inertial OEM solution for accurate and robust po-
sition and orientation for georeferencing sensors and position-

ing vehicles in land mobile mapping applications. This enables 
users to accurately and efficiently track and monitor fleets, pro-
duce high-definition (HD) maps and 3D models, or act as a ref-

mailto:rkelley@asprs.org
http://link.mediaoutreach.meltwater.com/ls/click?upn=Hf7bkT6kC0smZFEvm4jNiNrz4y2gVpgGank1YYOEyv8Cx6wrF-2FCBEH4WeZJ8Dx4ZExt4ZinF4KquxuX0l-2Blh-2F9iyG99DaT3DeSj18fYL6Ne07iOSvsS2ztmmJKjaTtLslJ81_9xpBzVhCfR8ghcaS-2BO1M-2FHwMVjpJiyNZ335iT8hrDcirOsuHjOwXWjPLlgRK2O11G70icBeQxpIJxgIhPGs5NbQ6hf-2B64c02MfR1651rOKPd-2FrtTn2CyZMKpgMs-2FO1iaelgkDXsXBBbZUD781pkAMBkg-2FciQe3KVXlOU2oHY4VG-2BpY3ZIMhh-2BuBw4IjibuKQaDUK0nbbq-2FfG8slJJtVxRQ156jzianx-2BOpb6H1j-2F8bxkdxupzWRXEKWHbRMux8wZxLTptBKuFukzmBCghbmi1bOMyjYvS8IqbA9gYj-2BcD-2BWdVVZ5Zv0DxtlcPXQVrDcoaErJPOZUBQgXMc-2FhAFOahjyVB3AgcgLHQE7qfM5BA54-2BMd5M9LWbp31-2Bew0XjuTd
https://earthexplorer.usgs.gov/
https://m2m.cr.usgs.gov/
https://m2m.cr.usgs.gov/
https://landsatlook.usgs.gov/
https://www.usgs.gov/landsat-missions/landsat-commercial-cloud-data-access
https://www.usgs.gov/landsat-missions/landsat-commercial-cloud-data-access
https://blogs.nasa.gov/landsat9/2022/01/31/nasa-usgs-landsat-9-passes-review-now-operational/
https://blogs.nasa.gov/landsat9/2022/01/31/nasa-usgs-landsat-9-passes-review-now-operational/
https://www.usgs.gov/centers/eros
https://www.usgs.gov/centers/eros
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-satellite-missions
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INDUSTRYNEWS
erence solution for advanced driver-assistance systems (ADAS) 
testing, even in the most challenging GNSS environments. 

The Trimble AP+ Land is a comprehensive solution for land 
vehicle applications that is small enough to easily integrate 
into the most compact mobile mapping systems. It is also com-
patible with virtually any type of mapping sensor, including 
single or multi-lidar systems, video cameras, photogrammet-
ric and panoramic cameras and other similar sensors.

Configurable to meet the mapping, positioning and direct geo-
referencing (DG) accuracy demands of mapping and position-
ing applications in challenging GNSS signal environments.

The Trimble AP+ Land OEM solution is fully supported by 
the industry-leading Applanix POSPac MMS post-processing 
software, which features Trimble CenterPoint RTX post-pro-
cessing for centimeter-level positioning globally without the 
need for base stations. These capabilities make it an ideal 
solution for integrators to produce a highly efficient land mo-
bile mapping system.

For lidar integrators, the Trimble AP+ Land OEM is compati-
ble with the POSPac MMS LiDAR QC tools.  SLAM technolo-
gy computes the IMU to lidar boresight misalignment angles 
and also adjusts the trajectory to achieve the highest level of 
georeferencing accuracy in the generated point cloud.

The Trimble AP+ Land OEM solution and POSPac MMS are 
available through Applanix sales channels. For more informa-
tion visit: mobilemapping.applanix.com.

¼½¼½

Phase One, a leading developer of digital imaging technolo-
gies, announced the iXM-GS120 aerial camera built to meet 

the demanding needs of national security and geo-intelligence 
gathering projects. Designed for use on unmanned aerial ve-
hicles (UAVs), fixed-wing aircraft, and helicopters, the iXM-
GS120 is the first wide-area, 120MP resolution camera de-
signed around advanced global shutter sensor technology.

The iXM-GS120 underscores the Phase One commitment to pi-
oneering development of reliable and innovative aerial imaging 
solutions. The single-sensor design combined with 120MP res-
olution guarantees fast collection of detailed information over 
a wide area of interest in every frame, reducing flight times 
and enhancing effectiveness. With regards to processing, this 
design also eliminates the time-consuming stitching together 
of image scenes from multi-sensor camera systems.

The new camera is the most productive airborne system ever 
developed by Phase One. Integrating a CMOS global shutter 
sensor, the iXM-GS120 boasts a remarkable seven frame-per-
second capture rate and broad dynamic range. The high-sen-
sitivity, low-noise technology gives the camera an ability to 
collect data in low-light conditions, thereby expanding its op-
erating window by several hours per day. 

Available in RGB color and monochrome versions, the iXM-
GS120’s range of applications is further broadened by an ex-
pansive selection of Fields of View for operation at numerous 
different aircraft altitudes and speeds. Compatible fields of 
view include a range of lenses from 35mm to 300mm.

Weighing just 630 grams, the compact camera body mounts 
easily on a wide range of platforms, including Group 3 tactical 
unmanned aircraft for long endurance operation.

Learn more at: https://phaseone.ws/security_and_space. 

EVENTS

The 22nd William T. Pecora Memorial Remote Sensing Sym-
posium (Pecora 22) will convene in Denver, Colorado, USA 
from October 23 – 28, 2022, and will  focus on all aspects of 
Earth observation, spanning scientific discoveries to opera-
tional applications, and from sensors to decisions.    Contin-
uous monitoring of the Earth involves the integration and 
analysis of both historical and contemporary remotely sensed 
imagery.  It occurs across spatial and temporal scales, mea-
surement objectives, and embraces a broad range of remote 
sensing and analytical methodologies. 

The Pecora 22 conference will also celebrate the 50th anniver-
sary of the launch of the first Landsat satellite and the accom-
plishments that followed.  The conference theme, Opening the 
Aperture to Innovation: Expanding Our Collective Understand-
ing of a Changing Earth, embraces both the innovations and 

discoveries that resulted from 50 years of Landsat Earth obser-
vations, and also current and future innovations in science and 
technology that are contributing to our ability to improve our 
understanding and better manage the Earth’s environment. 

We are currently accepting proposals for conference  ses-
sions and abstracts.  

The deadline for both is now March 15, 2022.   

For more information see the conference website at  http://
pecora22.org 

Questions? Contact the Pecora 22 Technical Program Com-
mittee at pecora@usgs.gov. 

¼½¼½ 

CALENDAR

•	3-6 October, GIS-PRO 2022, Boise, Idaho. For more information, visit https://www.urisa.org/gis-pro.

•	23-27 October, Pecora 22, Denver, Colorado. For more information, visit https://pecora22.org/.

http://link.mediaoutreach.meltwater.com/ls/click?upn=YpihtrIphX0kZCK3dWWFgTKo7YTl52bn18UPnmTE31aPgiuAlrlTtgkhpJN2Gxua3gh-2FTBxSnq-2FZ-2FKQFbf-2B-2F4Q9rM-2BF4S9YJXttm8FJ9nUs5UtuR2-2BxlX9ERT8bouQKcgEegrfq4l0AKH5KG4v6kQsiayFnbCHqTA6j3FyTSv1I-3DpNX8_9xpBzVhCfR8ghcaS-2BO1M-2FHwMVjpJiyNZ335iT8hrDcirOsuHjOwXWjPLlgRK2O11ZgfImz0bj9Iux8vLen1cmnFk0lv45s3q76Z4fkSrSI0r2qyMKLS1tCuJdnMpF8xXkQfXsrdGD0h35WvSAB5wPlkOYmu-2BkAF2lTgkBmjgiQrcEAlVpI-2FU5Bw9xHYtgrti08aPV-2Bwb3CrmAAvx0KJ33oKJ8lU52twDtDoIp1x0m6SmNTQIhVBt4OTDhrIsrw8nm7hXHvLJOwZYlX9GKC7y8hLYpG6YZejtwh85utQhGgIxYYNmeEopnlTNsr1M5UQcqFdMKQuvHvgLSVVRYRE73DRCnDxvL0JUnAE4EaKYi2pVqIUKjjLFbdHjWRzjkSZ8
https://phaseone.ws/security_and_space
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpecora22.org%2Fcall-for-sessions%2F&data=04%7C01%7Cpecora%40usgs.gov%7C38da5d9f2f7848afe31d08d9eb47e024%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C637799516201699280%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=ob2zI7qDRSztG69VYYc%2FLmQnOkE2wt1HrTUHyWDLbtw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpecora22.org%2Fcall-for-sessions%2F&data=04%7C01%7Cpecora%40usgs.gov%7C38da5d9f2f7848afe31d08d9eb47e024%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C637799516201699280%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=ob2zI7qDRSztG69VYYc%2FLmQnOkE2wt1HrTUHyWDLbtw%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpecora22.org%2Fcall-for-abstracts%2F&data=04%7C01%7Cpecora%40usgs.gov%7C38da5d9f2f7848afe31d08d9eb47e024%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C637799516201699280%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=MP%2FFrkcWXJjJ7NvRWBQ0KJzTh2rRNzyjVxf%2Bid4O%2FvQ%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpecora22.org%2F&data=04%7C01%7Cpecora%40usgs.gov%7C38da5d9f2f7848afe31d08d9eb47e024%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C637799516201699280%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=TAsK86yyFKogbYy7mE95SsRXPIQbmy35tUgkoTfV4NY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fpecora22.org%2F&data=04%7C01%7Cpecora%40usgs.gov%7C38da5d9f2f7848afe31d08d9eb47e024%7C0693b5ba4b184d7b9341f32f400a5494%7C0%7C0%7C637799516201699280%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=TAsK86yyFKogbYy7mE95SsRXPIQbmy35tUgkoTfV4NY%3D&reserved=0
mailto:pecora@usgs.gov
https://www.urisa.org/gis-pro
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155	 Potential of Open Source Remote Sensing Data for Improved Spatiotemporal 
Monitoring of Inland Water Quality in India: Case Study of Gujarat
Neetu Singh, Shivanand Mallikarjun Nalgire, Meeta Gupta, and Pennan Chinnasamy

Unison of in situ data with satellite remote sensing data has been widely used for water body quality monitoring; 
however, the developed synergized model is unique and thus needs to be recalibrated and revalidated before 
applying to other water bodies. In some Indian locations, water quality monitoring is conducted only once a 
year due to associated costs and time. To aid such instances, in this article, stepwise linear regression models 
were developed using in situ (annual) and Landsat 7 (biweekly) remote sensing data and validated for two inland 
water bodies (Sursagar and Nalsarovar lakes) in Gujarat state for dissolved oxygen, biochemical oxygen demand, 
electrical conductivity, pH, and nitrate.

165	 Automated 3D Reconstruction of LoD2 and LoD1 Models for All 10 Million Buildings of 
the Netherlands
Ravi Peters, Balázs Dukai, Stelios Vitalis, Jordi van Liempt, and Jantien Stoter

In this article, we present our workflow to automatically reconstruct three-dimensional (3D) building models 
based on two-dimensional building polygons and a lidar point cloud.

171	 Dynamic Linkage Between Urbanization, Electrical Power Consumption, and 
Suitability Analysis Using Remote Sensing and GIS Techniques
Muhammad Nasar Ahmad, Qimin Cheng, and Fang Luo

This article proposes an estimation method for assessing urban sprawl using multispectral remote sensing data: 
SNPP-VIIRS, DMSP/OLS, Landsat 5-TM, and Landsat 8-OLI. This study focuses on the impacts of human activities, 
in terms of increased electrical-power consumption (EPC) due to urbanization.

181	 An Optimal GeoAI Workflow for Pan-Arctic Permafrost Feature Detection from High-
Resolution Satellite Imagery
Mahendra R. Udawalpola, Amit Hasan, Anna Liljedahl, Aiman Soliman, Jeffrey Terstriep, and Chandi Witharana

High-spatial-resolution satellite imagery enables transformational opportunities to observe, map, and document 
the micro-topographic transitions occurring in Arctic polygonal tundra at multiple spatial and temporal frequencies. 
Knowledge discovery through artificial intelligence, big imagery, and high-performance computing (HPC) resources 
is just starting to be realized in Arctic permafrost science. We have developed a novel high-performance image-
analysis frame-work—Mapping Application for Arctic Permafrost Land Environment (MAPLE)—that enables 
the integration of operational-scale GeoAI capabilities into Arctic permafrost modeling. Interoperability across 
heterogeneous HPC systems and optimal usage of computational resources are key design goals of MAPLE.

189	 Assessing the Impact of Land Use Changes on Net Primary Productivity in Wuhan, China
Yan Gu, Zhenfeng Shao, Xiao Huang, Yuanhao Fu, Jiyuan Gao, and Yewen Fan

Since 2000, major changes have taken place in Wuhan city. Land use and land cover (LULC) has changed 
significantly, characterized by increased construction land, reducing farmland, grassland, and forest land 
due to the rapid urbanization process. Taking advantage of LULC data and Moderate Resolution Imaging 
Spectroradiometer Net Primary Production (MODIS NPP) data from 2000 to 2020, we analyze the impact of LULC 
type transformation on NPP, reveal the relationship between LULC type and NPP, and quantify the impact of urban 
expansion on NPP by taking Wuhan, China as a study case.

199	 Information Extraction from High-Resolution Remote Sensing Images Based on Multi-
Scale Segmentation and Case-Based Reasoning
Jun Xu, Jiansong Li, Hao Peng, Yanjun He, and Bin Wu

In object-oriented information extraction from high-resolution remote sensing images, the segmentation and 
classification of images involves considerable manual participation, which limits the development of automation 
and intelligence for these purposes. Based on the multi-scale segmentation strategy and case-based reasoning, 
a new method for extracting high-resolution remote sensing image information by fully using the image and 
nonimage features of the case object is proposed.
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While Inuit people have lived in the Foxe Basin for thousands of years, English mariner 
William Baffin was among the first Europeans to explore this shallow, icy basin north of 
Hudson Bay. Among the details he noted in his 1615 log: the tan color of the sea ice.

More than 400 years later, the phenomenon continues to stand out, even in satellite 
imagery. The Operational Land Imager (OLI) on Landsat 8 captured this image of beige 
ice drifting south of Prince Charles Island on June 22, 2016. The color is likely due to 
staining from silt and sediment—particles of eroded rock and soil that accumulate on 
the ocean floor.

Land surrounds most of the Foxe Basin, so sediment sources are never far away. Since 
the basin is shallow, winds and waves often stir up sediment from the ocean floor. 
Particles circulate throughout the water column, sometimes reaching the surface and 
becoming embedded directly within sea ice. Over time, these sediments can become 
concentrated in ice at the surface because of sublimation and the melting of the ice. In 
some areas, the water is shallow enough that sea ice rubs directly against the ocean 
floor and picks up sediment that way.

Some of the color could also be caused by algae, which can grow under the ice and 
wash up onto the surface during storms.

For more information, visit https://landsat.visibleearth.nasa.gov/view.php?id=149283

NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. 
Geological Survey. Story by Adam Voiland.

www.facebook.com/ASPRS.org
www.twitter.com/ASPRSorg
www.youtube.com/user/ASPRS
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GIS &Tips     Tricks By Dave Maune, Ph.D., CP, GS, PS, 
and Al Karlin, Ph.D, CMS-L, GISP
YoLani Martin & Al Karlin, Ph.D. 
CMS-L, GISP

You May Not Be The Only One Confused About Python Formatting
One of the continuing theses of this column is that with GIS 
software, there are always multiple ways to accomplish the 
same end goal. With Python scripting, it is even more true, 
but with a twist. When scripting there are 101 addition-
al things to think about. Does the function have the right 
inheritance hierarchy? Are there too many comments? Was 
that fourth IF- statement indented properly? And then there 
is an entire additional list of items when geographic infor-
mation system (GIS) software is thrown into the mix. What 
worked perfectly fine in the code editor you are using for your 
development environment suddenly doesn’t cooperate when 
bringing it into another GIS interface. Then, a major factor 
to keep in mind when developing scripts is identifying what 
version of Python your software is using and what format a 
script needs to be written in for the software to understand 
a particular command. For this month’s Tip & Trick, we will 
focus on formatting strings with the F-String function.

In Python, there are three methods of formatted strings 
(f-strings) that can be used to format syntax and change dis-
play expressions. Each method was developed as new versions 
of Python were released; the intent was to make formatting 
simpler, but of course, with different versions, new issues and 
confusion can arise.

For Python version 1.0 
In Python 1.0, the f-string method involves using %format-
ting. The percent (%) operator acts as a placeholder in a 
statement while the variable being formatted is then added 
after the % (Example 1). If there is more than one variable 
needed in a statement, then the variables are included after 
the % operator using parenthesis and commas to separate 
each variable (Example. 2).

Example 1. Basic use of %formatting where variable 
“baker” is being incorporated into a print statement.

baker = “cleo”
print (“Welcome to %s’s bakery”%baker)

Result: Welcome to Cleo’s bakery
Example 2. Formatting with more than one variable.

food = “donuts”
num = 73
baker = “Cleo”
print (“Welcome to %s’s bakery!. There are %s %s in 
stock.”%(baker, num, food)

Result: Welcome to Cleo’s bakery! There are 73 donuts 
in stock.

For Python version 2.0 
In Python 2.0, the f-string method involves using the string 
format; where curly brackets “{}” are used to contain a string 
variable (otherwise known as “str.format())”. The {} act as a 
placeholder for the variable “while .format()” follows after; the 
variable is contained within the parenthesis (Example 3). As 
many variables as needed can be added within the parenthesis, 
where even variables in a dictionary (Example 4) can be called 
and formatted in a statement.

Example 3. Basic use of string format where baker, num-
ber, and food variables are applied to the print statement.

Food = “donuts”
Num = 73
Baker = “Cleo”
Print (“Welcome to {}’s bakery! There are {} {} in 
stock.”format(baker, num, food))

Result: Welcome to Cleo’s bakery! There are 73 donuts 
in stock.

Example 4. Accessing a dictionary with string format for 
the print statement.

bakery = {“baker”:“Daniel”,“food”:”danishes}
print (“Welcome to {baker}’s bakery! We sell 
{food}.”.format (**bakery))

Result: Welcome to Daniel’s bakery! We sell danishes.

For Python version 3.0
In Python version 3.0, the f-string method is similar to str.
format() but now it is written out as f “{}”. By using lowercase 
f or uppercase F in the beginning of the statement, the curly 
brackets containing the variable can be placed more easily 
(Example 5). This method makes editing syntax more efficient 
and easier to follow.

Example 5. Basic use of f”{}” where variables are placed 
throughout the print statement.

baker = “Cleo”
rival = “Daniel”
b1 = “donuts”
b2 = “danishes”
print (f”{rival}’s bakery is {baker}’s rival. But their {b2} 
can’t compare to our {b1}!”)

Result: Daniel’s bakery is Cleo’s rival. But their 
danishes can’t compare to our donuts!
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Understanding the different methods of f-strings is not only 
useful for formatting scripts, but also significant to format-
ting tools for different GIS software systems. Not all GIS sys-
tems may have Python incorporated into their back-end code; 
while some GIS software may use older versions of Python. 
The trick to formatting lines of code with f-strings is knowing 
what version of Python the software uses. 

Every update to a piece of software is going to come with its 
own positives and negatives. One update may solve developing 
needs and make work much easier. On the other hand, an up-
date may have the most up to date version of Python, but may 
take away a feature the last version had that was needed for a 
special kind of analysis or cartographic work. Table 1 summa-
rizes popular GIS software and Python versions, there are a 
variety of packages that come in certain software versions. 

Knowing how to adapt code for frameworks is part of an 
application and script’s life cycle. Not every project requires 
legacy code to function, but having a basis of what format-
ting is required makes the adaptation and troubleshooting 
process run smoother. 

It is important to note that there is no wrong way to write 
scripts and tools; there is always more than one way to 
accomplish the end-goal. Rather, it is a matter of how clear 
they are to users and developers that determines their 
usability. If a project is dependent on features of one system 
version over another, developing code that’s understandable 
for that specific system is essential. But where there are 
limits, there also lies creative bounds. Once a system’s syn-
tax limits are understood, it becomes easier to adapt code 
for the best use of a project or task. 

Below are some additional sources for help with Python 
scripting.

Sources
“Arcgis Notebook Server.” Available Python Libraries-Arc-

GIS Notebook Server | Documentation for ArcGIS En-
terprise, https://enterprise.arcgis.com/en/notebook/latest/
python/windows/available-python-libraries.htm. 

FAQ: What Version of Python Is Used in Arcgis?, https://sup-
port.esri.com/en/technical-article/000013224.

Real Python. “Python 3’s F-Strings: An Improved String 
Formatting Syntax (Guide).” Real Python, Real Python, 
19 Mar. 2021, https://realpython.com/python-f-strings/.

Jablonski, J. “Python 3’s F-Strings: An Improved String 
Formatting Syntax (Guide).” Real Python, Real Python, 
19 Mar. 2021, https://realpython.com/python-f-strings/.

“Microsoft Azure SDK for Python.” Microsoft Docs, https://
docs.microsoft.com/en-us/python/api/overview/azure/mg-
mt-maps-readme?view=azure-python.

“Python in Global Mapper.” Python Scripting, https://www.
bluemarblegeo.com/knowledgebase/global-mapper-23/Py-
thon.htm.

QGIS Documentation, https://qgis.org/en/docs/index.html.
Requirements to Compile Grass GIS 7, https://grass.osgeo.

org/grass74/source/REQUIREMENTS.html.

Send your questions, comments, and tips to GISTT@ASPRS.org.

YoLani Martin is a Geospatial Analyst with Dewberry’s 
Fairfax, VA office. She is a resource for open source tools and 
Python scripting. Al Karlin, Ph.D., CMS-L, GISP is with 
Dewberry’s Geospatial and Technology Services group in 
Tampa, FL. As a senior geospatial scientist, Al works with 
all aspects of Lidar, remote sensing, photogrammetry, and 
GIS-related projects. 

Table 1.  Comparison of several popular GIS software programs and compatible Python versions.

GIS Software Version Python Version Used Recommended 
F-string to use

ArcGIS Desktop 10.0-10.8.1 Python 2.6.5 - Python 
2.7.18

	y % formatting
	y str.format()

ArcGIS Enterprise 10.0 - 10.2.1, 10.5, 10.5.1, 10.6, 10.6.1, 10.7, 10.8, 10.9 Python 2.6.5 - Python 
2.7.18

	y % formatting
	y str.format()

ArcGIS Enterprise cont. 10.4 - 10.9 *(note: versions may include upgraded set of python 
libraries)

Python 3.4.1 - 3.7.9 	y f “{}” formatting

ArcGIs Notebook 10.7 - 10.9 *(note: versions may include upgraded set of python 
libraries)

Python 3 	y f “{}” formatting

ArcGIS Pro 1.0 - 1.2 Python installation required 	y % formatting
	y str.format()
	y f “{}” formatting

ArcGIS Pro cont. 1.3 - 2.8.3 Python 3 	y f “{}” formatting

Global Mapper v22.0 - v23.0 Python 3.9 	y f “{}” formatting

QGIS v3.16 - v3.22 Python 3 	y f “{}” formatting

QGRASS GIS 7.4.4 - 7.8.6 Python 2.7 - Python 3 	y % formatting
	y str.format()
	y f “{}” formatting

Microsoft Azure Maps 2.0 Python 2.7 - Python 3.8 	y % formatting
	y str.format()
	y f “{}” formatting
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Edward Ouko and Robinson Mugo

RCMRD/SERVIR Eastern & Southern Africa Collaborate with Kenya Wildlife Conservancy 
Association (KWCA) to Train Conservancy Managers in the use of GIS and Satellite Data 
for Conservation

The Maasai Mara Wildlife Conservation Association 
(MMWCA)1 and Amboseli Ecosystem Trust (AET)2 are two key 
biodiversity hotspots in Kenya, and whose wildlife corridors 
extend into neighbouring Tanzania.  The two ecosystems con-
stitute habitats for very important wildlife species (keystones 
species such as Elephants). The Mara ecosystem accounts for 
25% of Kenya’s wildlife (Figure 1) and nearly three quarters of 

the protected area population. On the other hand, the Amboseli 
ecosystem is one of Kenya’s premier parks both in terms of 
biodiversity conservation and tourist visitation. The MMWCA 
manages 15 conservancies covering an area of 347,011 acres 
(about 1400 square kilometres), supporting 14,528 land-owners 
and 280 community rangers, while the AET has current mem-
bership of 20 conservancies covering approximately 394,834 
acres (about 1597 square kilometres) supporting 65,881 house-
holds and close to 500 community rangers.

The Mara and Amboseli ecosystems are valuable national and 
community assets, whose conservation and sustainability will 
greatly enhance the wealth and resilience of the local commu-
nities to climate change and economic shocks. Unfortunately, 
the impact of environmental degradation due to human activi-
ties and the effects of climate change are apparent in both eco-
systems, which calls for prudent and data driven conservation 
efforts. However, given the vast areas, and a myriad of threats 
to natural ecosystems and wildlife, conservation managers 
must improve their skills in data collection, analysis and syn-
thesis for prompt decision making. As a result, conservation 
managers, policymakers and others are increasingly relying 
on geospatial information and analysis to monitor and assess 
pressures on habitats, understand species status, vulnerabil-
ity and distribution patterns. Geographic information science 
(GIS) is therefore critical in monitoring external threats, 
planning of conservation actions and response.

The SERVIR Eastern and Southern Africa (E&SA) project3 
is a joint initiative of the National Aeronautics and Space 
Administration (NASA), the United States Agency for Inter-
national Development (USAID), and the Regional Centre for 
Mapping of Resources for Development (RCMRD)4.  SERVIR 
partners with countries and organizations in eastern and 
southern Africa to address critical challenges in climate 
change, food security, water and related disasters, land use, 
and air quality. Using satellite data and geospatial technolo-
gy, SERVIR co-develops innovative solutions through a net-
work of regional hubs to improve resilience and sustainable 
resource management at local, national and regional scales. 
In Kenya, SERVIR is collaborating with KWCA to build a 
GIS portal for managing conservation data, and also train-
ing conservancy managers in the use of GIS and satellite 
imagery derived from NASA and Copernicus hubs to improve 
decisions in conservation. Recently, SERVIR E&SA and 

Figure 1. The location of Maasai Mara and Amboseli eco-
systems in Kenya.
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KWCA brought together 30 conservancy managers from the 
MMWCA and AET for training in the application of geospa-
tial tools in conservation management and monitoring. The 
managers were taken through the use of GPS devices, open-
source GIS and remote sensing software (QGIS), data use 
and manipulation in a GIS environment and map creation 
of key natural resources. The training models were built on 
open-source tools to facilitate access to and manipulation of 
GIS and remote sensing (satellite) data and products within 
the conservation networks.

The collaboration between the RCMRD and KWCA fulfils 
SERVIR’s strategic goal to empower regional and national 
actors in the use of Earth observation information for devel-
opment decision making. KWCA works with landowners and 
communities through 167 conservancies in Kenya to sustain-
ably conserve and manage wildlife and their habitat outside 
formal protected areas for the benefit of the people of Kenya. 
At the same time RCMRD and SERVIR bridge the skills 
gap in use of geospatial tools for better decision making. The 
partnership is built around a Memorandum of Understand-
ing covering collaboration in the areas of data, tools co-de-
velopment and capacity enhancement in the application of 
geospatial tools in conservation management. The SERVIR 
project believes improved capacity in the use of geospatial 
tools and technologies among the conservation practitioners 
will be important in strengthening conservation efforts on 
the ground and enhance citizen science led data collection 
among the conservation community. This would enable the 
various conservation actors like KWCA and communities to 
play key roles in defining future spatial data and products 
which serve local conservation and ecological needs. On the 
gender lens, KWCA did a remarkable job of identifying a 
number of women to participate in the training, making up 
approximately 25% of the participants Figure 2.

Following the successful training, the conservancy managers 
expressed confidence that the skills acquired during the en-
gagement will be vital in their daily conservation monitoring 
activities. According to Daniel Kaaka, the Amboseli Ecosys-
tem Coordinator, “The remote sensing and GIS training was 
a hands-on opportunity for Amboseli Ecosystem conservancy 
managers to interrogate and inform decision making by the 
click of a button.”  Sarah Omusala, of Gamewatchers Safaris 
Conservation and Porini Camps, observed that “the training 
empowered the conservancy managers in collecting data on 
flora and fauna, thus adding to their skills and tools for man-
aging protected areas, and also monitoring habitat health, 
identifying the wild animals and livestock movements, 
illegal activities, and grazing areas based on land use and 
landcover types”.

References
https://www.rcmrd.org/about-us/about-rcmrd

https://kwcakenya.com/

https://www.servirglobal.net/ 
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Figure 2: Ms. Faria shows a map of grazing zones she devel-
oped during the training, for her practical exercises.



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 March 2022	 149

by Clifford J. Mugnier, CP, CMS, FASPRS

Paleolithic remains have been found in 
the region, but the oldest dwelling in 
Kiev is from the 25th century B.C., about 

4,500 years ago. “Ukraine was the center of the 
first Slavic state, Kievan Rus, which during 
the 10th and 11th centuries was the largest and 
most powerful state in Europe. Weakened by 
internecine quarrels and Mongol invasions, 
Kievan Rus was incorporated into the Grand 
Duchy of Lithuania and eventually into the 
Polish-Lithuanian Commonwealth. The cultural 
and religious legacy of Kievan Rus laid the 
foundation for Ukrainian nationalism through 
subsequent centuries. A new Ukrainian state, the 
Cossack Hetmanate, was established during the 
mid-17th century after an uprising against the 
Poles. Despite continuous Muscovite pressure, 
the Hetmanate managed to remain autonomous 
for well over 100 years. During the latter part of 
the 18th century, most Ukrainian ethnographic 
territory was absorbed by the Russian Empire. 
Following the collapse of czarist Russia in 1917, 
Ukraine was able to bring about a short-lived 
period of independence (1917-1920) but was 
reconquered and forced to endure a brutal Soviet 
rule that engineered two artificial famines (1921-
22 and 1932-33) in which over 8 million died. In 
World War II, German and Soviet armies were 
responsible for some 7 to 8 million more deaths.” 
(World Factbook, 2004). The republic achieved 
independence in 1991.

Ukraine is slightly smaller than Texas and borders Belarus 
(891 km), Hungary (103 km), Moldova (939 km), Poland (526 

km), România (169 km), Russia (1,576 km), and Slovakia 
(97 km). The coastline is 2,782 km along the Black Sea and 
the Sea of Azov. The climate is temperate continental, and 
most of Ukraine is steppes and plateaus, with the Carpath-
ian Mountains in the west and the southeastern coast of 
the Crimea from Sevastopol through Yalta and north to 
Feodosiya. The lowest point is the Black Sea (0 m), and the 
highest point is Hora Hoverla (2,061 m). The capital is Kiev, 
and according to legend, the city was founded in 482 A.D. by 
a royal family of three brothers and one sister.

The czarist Russians performed surveys and topographic 
mapping of Ukraine in the 19th and early 20th centuries, but 
these works were for military purposes only. They did noth-
ing with respect to individual land ownership registration, 
and they preferred the sazhen for their unit of measure-
ment. (Paraphrased from Poland, PE&RS, September 2000). 
The existing classical triangulation net is a dense mesh to 
the west along the border with Poland, Hungary, România, 
and Moldova, primarily in the mountainous region and 
extending as far east as Rivne, Ternopil’, and Chernivtsi. A 
southern chain of figures reaches from the western city of 

The Grids & Datums column has completed an exploration of 
every country on the Earth. For those who did not get to enjoy 
this world tour the first time, PE&RS is reprinting prior articles 
from the column. This month’s article on the Ukraine was 
originally printed in 2004 but contains updates to their coordi-
nate system since then.

THE

UKRAINE
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Izmayil, through Odessa and Kherson to the Crimea where 
it includes Feodosiya and Kerch. There are seven other 
meridional arcs that are connected by three more-or-less 
continuous east-west chains. Although some first-order work 
is evident around Kiev, there is a very dense network about 
Yalta in the Crimea. There are a number of high-order local 
surveys evident in Ukraine, and I suspect that some of these 
locations may be coincident with now-empty underground 
silos; a once-favorite area for ICBM sites when the USSR 
had control of Ukraine.

The observations for the Horizontal State Geodetic Net-
work (HSGN) of Ukraine began in 1923-25, but it took over 
30 years to complete both horizontal and vertical leveling 

work. Completed in 1970, the first-order network has been 
maintained while densification has continued for third and 
fourth-order control. The HSGN consists of 19,538 points 
that include 547 first-order and 5,386 second-order points. 
The HSGN is on the “System 42” datum established (in 1942) 
by the USSR where the origin point is at Pulkovo Observa-
tory where: Φo = 59° 46´ 18.55˝ North, Λo = 30° 19´ 42.09˝ 
East of Greenwich. The defining azimuth at the point of 
origin to Signal A is αo = 317° 02´ 50.62˝. System 42 is refer-
enced to the Krassovsky 1940 ellipsoid where a = 6,378,245.0 
meters, and 1/f = 298.3.  The previously mentioned dense and 
continuous western network is entirely first-order in qual-
ity. The remainder of the first-order network of the Ukraine 
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is comprised of polygons: the lengths of each section being 
less than 200-250 km. There are 250 LaPlace (astronomic) 
stations in the HSGN which are located at each end of the 
first-order triangulation polygons and in the middle of each 
section. In continuous first-order chains, the LaPlace sta-
tions are spaced every 10 triangles, and the accuracy of the 
azimuths is ±1.2˝. In second-order chains, LaPlace stations 
are located at baseline terminals. The accuracy of baseline 
distance measurements is not less than 4×10–6. In general, 
a single Ukraine map sheet at a scale of 1:1,000,000 will 
contain about 35-70 LaPlace station points and about 20-30 
baselines. The average density of HSGN points is 1 point in 
30 km2, but this varies in different regions. For instance, in 
the industrial region around Donbass, the density goes up to 
1 point in 5-10 km2, while in the rural region around Polissia 
the density goes down to about 1 point in 40-50 km2. The 
grid system associated with the Ukraine HSGN is the same 
as with all former countries of the Soviet Union – the Russia 
Belts which are identical to the UTM grid except that the 
scale factor at origin (mo) = unity. For large-scale mapping, 
the width of the belts reduces to 3° rather than the standard 
6° belt.

The Vertical State Geodetic Network (VSGN) consists of 
almost 11,000 km of first-order leveling, plus12,600 km of 
second-or-der leveling, 6,000 km of third-order leveling, and 
about 300,000 km of ordinary leveling. The average distance 
from any site in Ukraine to a first- or second-order level line 
does not exceed 40 km. The first-order VSGN is tied to the 
vertical networks of Poland, Slovakia, România, Hungary, 
Russia, and Belarus. The vertical datum is referenced to 
the Kronstadt tide gauge located at the Baltic Sea, near St. 
Petersburg (Russia). Benchmark spacing in Ukraine is not in 
my files. The State Gravimetric Network is comprised of 80 
first-order points and 20 second-order points with the funda-
mental point located in Poltava.

The NGA does not list datum transformation parameters 
from System 42 to WGS84 for Ukraine. My guess is that the 
parameters are pretty close to what they are for Moscow 
since the strategic importance of the country was so enor-
mous to the USSR. Ukraine has now passed legislation that 
denotes WGS84 as the national datum of the republic. 

Years ago, I sat in a hotel room in South America and 
watched “The Wall” being torn down. I was working on a 
U.S. A.I.D. project for land titlelization in which I designed 
the geodetic and photogrammetric aspects of the project for 
a canton in Ecuador. That process is a major project now 
in Ukraine, and GPS technology is an integral component 
of the social transformation. Those that read my columns 
are aware that I often grouse on “La Ley” – “The Law” as 
it exists in much of Latin America in which a branch of the 
federal government is given the exclusive monopoly for geo-
detic surveying and topographic mapping of a country. That 
is a custom derived from the European way of doing things 

back in the 19th century. I don’t care for the concept because 
it frustrates private commercial mapping in favor of some 
federal groups, usually the military. Such an idea seems to 
be the current state of affairs in Ukraine, and their federal 
government appears to have passed a similar 19th-century 
era-type law. This may be a result of sociological/economic 
phenomena more than anything else, but it’s disappointing 
to see such developments in new republics striving for excel-
lence in a worldwide capitalistic environment. I wish them 
success in their endeavors to provide farmers with a title to 
the soil their forefathers have tilled for so many centuries; 
the geodetic and photogrammetric sciences will allow the 
technical aspects to flow smoothly.

I have to thank Dr. Momchil Minchev of Sofia, Bulgaria for 
his generous assistance in locating geodetic publications in 
English on the Ukraine for me. The reports of Dr. Michael 
Cheremshynsky of the Ukraine Main Administration of 
Geodesy, Cartography, and Cadastre of Ukraine in Kiev 
have made the technical details of the geodetic history pos-
sible for this article. Once again, Dr. Minchev has helped me 
unravel an enigma.

Ukraine Update
“2020 can be considered as the year of geospatial data 
in Ukraine with the Ukrainian geospatial   community 
facing a historic moment of digitalization. We have intro-
duced a ‘single window’   for natural resource manage-
ment, which will help to save budget funds and develop 
territories, strengthen public control over the activities 
of state bodies and increase public confidence in the 
government. 

“In April 2020, Ukraine’s law on the National Spatial 
Data Infrastructure (NSDI) was finally adopted by the 
Ukrainian Parliament after more than 10 years and 4 
attempts. Although Ukraine is not an EU Member State, 
the law is fully in line with INSPIRE and also reflects 
the main principles of EU open data policy” (State Ser-
vice of Ukraine for Geodesy, Cartography and Cadastre 
(StateGeoCadastre) 2022). 

The Ukranian government’s geodetic website (https://
dgm.gki.com.ua/pererahunok-po-gelmertu-(po-kljuchu)-
na-ploschini) offers a Helmert-style datum conversion 
tool and appears to have a completely open access portal 
to the nation’s geodetic network, as typical for a free 
republic.  The website pages are in Ukrainian and in 
English. 

The contents of this column reflect the views of the author, who is 
responsible for the facts and accuracy of the data presented herein. 
The contents do not necessarily reflect the official views or policies of 
the American Society for Photogrammetry and Remote Sensing and/or 
the Louisiana State University Center for GeoInformatics (C4G).

This column was previously published in PE&RS.
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DEPUTY COUNCIL CHAIR

CHUKWUMA JOHN OKOLIE
COMMUNICATIONS COUNCIL MEMBER
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EDUCATION & PROFESSIONAL NETWORKING CHAIR

ALI ALRUZUQ
DEPUTY EDUCATION & PROFESSIONAL NETWORKING CHAIR

TESINI PRECIOUS DOMBO 
COMMUNICATIONS COUNCIL MEMBER

RABIA MUNSAF KHAN
COMMUNICATIONS COUNCIL CHAIR
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CHAPTERS COMMITTEE CHAIR

FREDA ELIKEM DORBU
COMMUNICATIONS COUNCIL MEMBER

ASPRS SAC GIS DAY CELEBRATIONS

To celebrate GIS Day, the ASPRS Student Advisory Council (SAC) hosted an online 
Map Cartography Contest! 

Maps were welcomed in any format including hand-drawn. Entries were limited to one map per ASPRS member. The 
submission deadline was November 17, 2021 and online voting was held on November 18th. There were a variety of entries, all 
beautiful in their own form. Submissions can be viewed online at https://sites.google.com/pdx.edu/asprs-sac-map-contest. 

“It is difficult to pick only 5. All of them are amazing!” voiced numerous voters. This was something we were ecstatic to hear. 

Originally 5 prizes were decided but we extended the prizes to six 
participants when voting resulted in a tie. The prizes included a free one 
year “ArcGIS for Personal Use license” and the opportunity to have their 
map displayed in the Poster Gallery at the ASPRS Annual Conference at 
Geo Week this past February. Winners were also offered a position as a 
Student Volunteer at the Annual Conference.

The winners, a short biography, and their corresponding maps are 
mentioned below.

Andy Egogo-Stanley

Street Guide of a Section of Ado-Ekiti, Ekiti State, Nigeria
Andy Egogo-Stanley is a recent graduate in Surveying and 
Geoinformatics with interest in spatial data science and machine 
learning, from the University of Lagos, Nigeria. He served as the 
General Secretary of the Nigerian Institution of Surveying and 
Geoinformatics Students (NISGS), 2019 – 2020.  

Akinnusi Samuel

Deforestation of the Amazon Rainforest in Rondônia, Brazil 
Akinnusi Samuel completed his BSc in Surveying and 
Geoinformatics from the University of Lagos. His BSc research 
was on air pollution and its relationship with land cover change in 
Nigeria. He is also a member of several geospatial organizations 
and through volunteering is working towards achievement of the 
SDGs.

Gbiri Joshua

Dzaleka Refugee Camp Watershed
Gbiri Joshua is an undergraduate student of Surveying and 
Geoinformatics at the University of Lagos, Nigeria with research 
interest in machine learning and GIS. He is a member of several 
geospatial communities and holds a Remote Pilot license 
from AUVSI. In addition, he loves teaching, playing guitar, and 
debating. Marty Marquis

Rocky Mountain Way: Best Markets for Live Music in the 
Rockies
Marty Marquis is a graduate student of GIS at Portland State 
University. He also spent over a decade studying “applied 
geography,” touring and performing in a band. His interests 
include architecture, analog synthesis, and American football. 
Marty lives in Scappoose, Oregon with his wife and children.

Rabia Munsaf Khan

A GIS Based Drastic Model for Assessing Groundwater 
Vulnerability
Rabia Munsaf Khan is a Fulbright PhD scholar at SUNY ESF 
with research interest in water quality monitoring using machine 
learning techniques. She is also serving as Communications 
Councilor at ASPRS SAC. As a quintessential altruist she has 
moderated over 100 students in the past years on multiple 
platforms. 

Peter Samson

Glacial Lake Kalapuya
Peter Samson is a lifelong cartophile, now retired, whose career 
took him through geology; science education; project and event 
management; and consulting to nonprofits on strategic planning, 
finance, grant-writing, and fundraising. He also enjoys outdoor 
activities, pie baking, and volunteering.

If you are interested in participating in SAC activities:
•	Join us every other Thursday from 10-11 am PST!
•	Join us via this zoom link, https://tinyurl.com/SACASPRSMeeting

“It is difficult to pick 
only 5. All of them are 
amazing!”

https://sites.google.com/pdx.edu/asprs-sac-map-contest
https://tinyurl.com/SACASPRSMeeting


PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 March 2022	 153

ASPRSNEWS

Editor-In-Chief
Alper Yilmaz, Ph.D., PERSeditor@asprs.org

Associate Editors
Rongjun Qin, Ph.D., qin.324@osu.edu

Michael Yang, Ph.D., michael.yang@utwente.nl
Petra Helmholz, Ph.D., Petra.Helmholz@curtin.edu.au

Bo Wu, Ph.D., bo.wu@polyu.edu.hk
Clement Mallet, Ph.D., clemallet@gmail.com

Prasad Thenkabail, Ph.D., pthenkabail@usgs.gov
Ruisheng Wang, Ph.D., ruiswang@ucalgary.ca

Desheng Liu, Ph.D., liu.738@osu.edu 
Valérie Gouet-Brunet, Ph.D., valerie.gouet@ign.fr

Dorota Iwaszczuk, Ph.D., dorota.iwaszczuk@tum.de
Qunming Wang, Ph.D., wqm11111@126.com

Filiz Sunar, Ph.D., fsunar@itu.edu.tr
Norbert Pfeifer, np@ipf.tuwien.ac.at

Jan Dirk Wegner, jan.wegner@geod.baug.ethz.ch
Hongyan Zhang, zhanghongyan@whu.edu.cn
Dongdong Wang, P.h.D., ddwang@umd.edu

Zhenfeng Shao, Ph.D., shaozhenfeng@whu.edu.cn
Ribana Roscher, Ph.D., ribana.roscher@uni-bonn.de

Sidike Paheding, Ph.D., spahedin@mtu.edu

Contributing Editors

Highlight Editor
Jie Shan, Ph.D., jshan@ecn.purdue.edu

Feature Articles
Michael Joos, CP, GISP, featureeditor@asprs.org

Grids & Datums Column 
Clifford J. Mugnier, C.P., C.M.S, cjmce@lsu.edu

Book Reviews 
Sagar Deshpande, Ph.D., bookreview@asprs.org

Mapping Matters Column 
Qassim Abdullah, Ph.D., Mapping_Matters@asprs.org

Sector Insight
Lucia Lovison-Golob, Ph.D., lucia.lovison@sat-drones.com
Bob Ryerson, Ph.D., FASPRS, bryerson@kimgeomatics.com 

GIS Tips & Tricks
Alvan Karlin, Ph.D., CMS-L, GISP akarlin@Dewberry.com

ASPRS Staff

Assistant Director — Publications 
Rae Kelley, rkelley@asprs.org

Electronic Publications Manager/Graphic Artist 
Matthew Austin, maustin@asprs.org

Advertising Sales Representative 
Bill Spilman, bill@innovativemediasolutions.com

Journal Staff

NEW ASPRS MEMBERS
ASPRS would like to welcome the following new members!

Trent Adams
Benjamin Ifedeji Ajisafe

Abena Boatemaa Asare-Ansah
Quest Besing

Jon Blickwede, Sr.
Rachael Brady
Benjamin Bush
David Cakalic
Dave J. Cook
Stuart Gibson

Rupert Dujon Green
Tim Haynie
Jon Loder

Alex Martin
Joseph Mcnichols

Katherine Milla, PhD

Adama Mochenwa
David C. Newkirk

James Rego Nicolau, IV
Ismaila Abiola Olaniyi
Constantine Papadakis

Mark Paulson, PLS
Maya Price

Charles Robison
Brian Scott

Johnathan Paul Smeh
Timothy Tallmadge

Ewoud Van Der Cruyssen
Kara Leigh Wayman

Kevin R. Winslow
Tristan Wirkus

Shane Zentner, GISP

FOR MORE INFORMATION ON ASPRS MEMBERSHIP, VISIT 
HTTP://WWW.ASPRS.ORG/JOIN-NOW

CONGRATULATIONS TO ASPRS’S 
NEWLY ELECTED BOARD MEMBERS!
We are extremely fortunate to have such a strong group of dedicated 
professionals express their desire to help lead the future direction of ASPRS. 
I am very excited to see what Jin, Matt, Hank and Bahram will do to craft 
the future of their respective Divisions. As I close out my tenure, I know that 
the future of ASPRS is in good hands with the election of Dr. Kar as well. I 
look forward to watching the Society benefit from her leadership.”

-ASPRS President, Jason Stoker

ASPRS Vice President – Bandana Kar
GIS Assistant Division Director – Jin Lee
Lidar Assistant Division Director – Mat Bethel
PAD Assistant Division Director – Hank Theiss
UAS Assistant Division Director – Bahram Salehi

ASPRS ANNOUNCES THE 2022 GEOBYTE 
SERIES
Visit https://www.asprs.org/geobytes.html for more information and to 
register. 
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Multimodal Remote Sensing Data Processing and Analysis for 
Earth Observation

Earth observation, by providing critical information on natural 
resources, hazardous areas, and climate change, among others, 
is a powerful tool in all aspects of life. The observations come pri-
marily from space-based sensors such as satellites, but they highly 
depend on ground-based remote sensing devices. Multimodal 
remote sensing systems integrate optical and passive microwave 
radiometers to improve the quality of observations. The ver-
satility of multimodal RS offers enormous potential to monitor 
diverse target phenomena in all climate system components 
with high spatial, temporal, or spectral resolution. It provides 
innovative methods for processing multispectral, hyperspectral, 
and polarimetric remote sensing data for different vegetation, 
geophysical, and atmospheric applications to understand the 
earth better. However, there are still challenges to achieving 
maximum exploitation of multimodal data. At the same time, the 
combination of multimodal remote sensing technologies is a pow-
erful approach that can yield significant advantages compared to 
traditional single-modal sensors.

The techniques such as image processing is typically used to ad-
just and refine data derived from remote sensing. Its capabilities 
are also useful for merging data sources. Image processing tech-
niques, such as filtering and feature extraction, are well suited 
for dealing with the high-dimensionality of spatially distributed 
systems. The input data may come from different sensors, each 
with a different spatial resolution and measurement scale (‘mul-
timodal’). It provides approaches for the extraction of relevant 
non-topographic information from remote sensing data, such 
as demographic indicators from satellite images of urban areas, 
which could assist in future spatial modelling of these areas. It 
helps to analyze shape, topography, and texture phenomena for 
soil and vegetation data and various methods for image fusion 
and analysis of the optical, radar, and gravity data. It covers a 
wide range of geospatial applications, including land and water re-
sources management, urban planning, environmental monitoring, 
natural hazards and climate change, oceanography, engineering 
design, and national security and intelligence. It processes multi-
spectral, thematic-mapping, thermal-infrared (TIR), hyperspectral 
data acquired from optical, SAR or lidar platforms with advanced 
techniques in the areas of scene characterization and feature 
extraction. 

This special issue is intended for remote sensing scientists, 
engineers, and researchers involved in its application for earth 
observation. Innovative techniques dealing with climate moni-
toring; environmental monitoring, including pollution monitoring 
and deforestation detection; geographical information system 
(GIS) applications; maps generation, land cover classification and 
change detection; mineral exploration industries; hydrology and 

water resources management; based on multimodal remote sens-
ing data are most invited for submission.

List of Topics (include, but not limited to the following):
	y Deep learning and computer vision for earth observation and 

multimodal remote sensing
	y Semantic and instance segmentation of the multimodal re-

mote sensing data for earth observation and analysis
	y Multimodal remote sensing data fusion, interpretation and 

analysis for earth observation
	y Hyperspectral remote sensing and image processing for earth 

observation
	y Light weight deep neural network algorithms for earth surveil-

lance
	y Earth object classification and recognition using multimodal 

remote sensing approaches
	y Multi-resolution and multi-modal remote sensing for enhanc-

ing the earth observation processes
	y Novel applications of multi-modal remote sensing in earth 

monitoring and surveillance processes
	y Spatio-temporal data analysis for efficient earth observation
	y Multimodal data reconstruction and restoration for efficient 

classification process
	y Benchmarking multimodal datasets for earth observation
	y New algorithms and frameworks for efficient analysis of multi-

modal remote sensing data  

Deadline for Manuscript Submission
August 1, 2022

Submit your Manuscript to
http://asprs-pers.edmgr.com

Guest Editors
Dr. Ahmed A. Abd El-Latif, alatif@science.menofia.edu.eg, 
Associate Professor, Department of Mathematics and Computer 
Science, Faculty of Science, Menoufia University, Egypt.

Dr. Edmond Shu-lim Ho, e.ho@northumbria.ac.uk, Senior 
Lecturer, Department of Computer and Information Sciences, 
Northumbria University, Newcastle upon Tyne, United Kingdom.

Dr. Jialiang Peng, jialiangpeng@hlju.edu.cn, Associate Professor, 
School of Data Science and Technology, Heilongjiang University, 
China.

Call for PE&RS Special Issue Submissions 
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Potential of Open Source Remote Sensing Data 
for Improved Spatiotemporal Monitoring of Inland 

Water Quality in India: Case Study of Gujarat
Neetu Singh, Shivanand Mallikarjun Nalgire, Meeta Gupta, and Pennan Chinnasamy

Abstract
Unison of in situ data with satellite remote sensing data has been 
widely used for water body quality monitoring; however, the developed 
synergized model is unique and thus needs to be recalibrated and 
revalidated before applying to other water bodies. In some Indian lo-
cations, water quality monitoring is conducted only once a year due to 
associated costs and time. To aid such instances, in this study, stepwise 
linear regression models were developed using in situ (annual) and 
Landsat 7 (biweekly) remote sensing data and validated for two inland 
water bodies (Sursagar and Nalsarovar lakes) in Gujarat state for 
dissolved oxygen, biochemical oxygen demand, electrical conductiv-
ity, pH, and nitrate. Results indicated that all models showed good to 
excellent performance metrics based on an r value (p < 0.01) ranging 
from 0.86 to 0.98 and 0.72 to 0.99 for Sursagar and Nalsarovar lakes, 
respectively. All models had root mean square errors less than 0.5, 
and residual predictive deviations greater than 2, which depicted good 
predictability. The models were able to increase the water quality as-
sessment from annual resolution to biweekly resolution and provided 
insights on the dynamics of water quality parameters, improved under-
standing on key drivers for the change, and identified peak pollution 
leading to unfit conditions for domestic or agricultural consumption.

Introduction
Access to clean water has become a critical issue worldwide due to 
growing population, industrialization and increasing pollutant loads 
due to climate and land-use changes into freshwater ecosystems 
(Chinnasamy et al. 2021, Sagan et al. 2020). Over the past ten decades, 
half of the natural wetlands and a significant number of freshwater 
bodies have vanished due to water pollution and growing economic 
activities (UN Water 2020). In India, river and lake pollution has been 
a crucial problem over the past few decades (Kumar et al. 2017). It is 
estimated that around 70% of the surface water bodies in India are pol-
luted by biological, toxic, organic, and inorganic pollutants (Sengupta 
2018). Every day, rivers and other water bodies receive around 40 
million liters of wastewater, with a negligible fraction adequately treated 
(Hirani and Dimble 2019). Traditionally, surface water bodies have been 
a significant source of water supply for drinking and domestic purposes. 
However, with widespread urbanization and industrialization becoming 
predominant, these water sources have been contaminated severely and 
are considered unfit for human consumption and other activities, such as 
irrigation and recreation (Kumar et al. 2017). Also, polluted water sup-
plies increase the cost of water treatment and minimize water oxygen-
ation by limiting sunlight transfer.

The surface water quality (SWQ) is estimated based on different 
physical, chemical, and biological parameters (Sagan et al. 2020). The 
conventional methods adopted to determine the water quality involve 
in situ and in-field measurements or collecting water samples from 
the field and performing analysis in the nearest laboratories. Although 
the in situ measurement delivers accurate results, the entire exercise is 
time consuming, labor intensive, and costly (Al-Shaibah et al. 2021). 
In addition, due to the low spatial and temporal resolution, the exist-
ing sampling methods adopted do not capture either the spatial or the 
temporal extent required for the accurate assessment and management 
of the water bodies (Mushtaq and Nee Lala 2017). Therefore, there is a 
constant need to update and upgrade methods for inland water quality 
assessments and frequent monitoring.

With the advancement and growing role of remote sensing 
(Chinnasamy and Parikh 2021) and geographic information systems 
(GIS), new techniques have emerged for assessing water quality using 
satellite data to reduce time and cost and increase accuracy (Al-Shaibah 
et al. 2021). The widely used approach to estimate SWQ parameter con-
centration using remote sensing data involves fitting a linear regression 
between spectral bands/band combinations and temporally coincident in 
situ SWQ observations, called empirical modeling (González-Márquez 
et al. 2018). This approach has a limitation of nongeneralizability 
across large spatial and temporal scales, though it can be outweighed 
by its capability to provide model transparency, cost-effectiveness, sim-
plicity, and minimal computational requirements (Topp et al. 2020). On 
this note, satellite images have been widely used to develop synergized 
models with in situ data to assess the quality of water bodies globally. 
For example, El Din and Zhang (2017) developed linear regression 
models using Landsat 8 data to estimate optical parameters, such as 
turbidity, total suspended solids (TSS), and concentration of nonopti-
cal parameters, such as chemical oxygen demand (COD), biochemical 
oxygen demand (BOD), and dissolved oxygen (DO), in Saint John River, 
Canada. In another study, González-Márquez et al. (2018) used Landsat 
8 data to assess spatial and temporal variation of phosphates (PO4), 
electrical conductivity (EC), TSS, turbidity, and pH in Playa Colorado 
Bay. The developed water quality models had coefficients of determina-
tion (R2) in the range of 0.637–0.955. Zhang et al. (2017) used Landsat 
images along with the linear stepwise regression method to estimate 
total nitrogen (TN), total phosphorus (TP), permanganate index (CODMn), 
and 5-day biochemical oxygen demand (BOD5) in Danjiangkou 
Reservoir, China, which indicated a water quality deterioration trend 
between May 2006 and May 2014. The application of multitemporal 
Landsat images in the aforementioned studies has established their po-
tential to estimate the spatial and temporal variation of SWQ parameters. 
Such an application is needed for Indian inland waters, as some water 
bodies are monitored only once a year for water quality parameters. 
This low monitoring frequency impedes the understanding of water 
quality changes and the insights on what causes these changes.

Neetu Singh and Meeta Gupta are with IITB-Monash Research 
Academy, India, and Center for Technology Alternatives for Rural 
Areas (CTARA), Indian Institute of Technology, Bombay (IITB), India.

Shivanand Mallikarjun Nalgire and Pennan Chinnasamy are with Center 
for Technology Alternatives for Rural Areas (CTARA), Indian Institute 
of Technology, Bombay (IITB), India (p.chinnasamy@iitb.ac.in).
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Gujarat, located on the western coast of India, is the most industrial-
ized and urbanized state of India. The increasing population pressure and 
development changes have exerted staggering pressure on water resourc-
es concerning quantity and quality. The state ranks fourth in the top five 
states with highly polluted rivers and lakes in India (Langa 2021). Many 
cities in Gujarat have to deal with huge quantity untreated sewage from 
the industries being discharged in rivers and lakes, which has reduced the 
biodiversity and the regenerative capacity of the water bodies, leaving 
them unfit for human consumption (Gujarat Ecology Commission [GEC] 
2017). Especially the lakes located in the Central and South Gujarat 
regions, accounting for 83% of the total surface water resources of the 
state, have been witnessing this phenomenon for a long time (GEC 2017). 
Amongst the many lakes, Nalsarovar and Sursagar lakes have been 
severely impacted. Nalsarovar lake is a site of international and ecologi-
cal importance, and the Sursagar Lake holds historical importance for 
the state; however, access to clean water remains a major challenge for 
the water users, water managers, and the authorities. Thus, to restore the 
health of these water bodies, it is imperative to carry out long-term water 
quality monitoring and assessment. There has been some effort undertak-
en to study the water quality of Nalsarovar and Sursagar lakes using field 
measurements for specific periods and locations. However, the absence of 
long-term SWQ data has restricted the extent of the water quality analysis 
of these lakes, which is the need of the hour for better management.

For Nalsarovar and Sursagar lakes, SWQ monitoring using remote 
sensing images has not been done previously, and long-term monitor-
ing is absent. Thus, the empirical models built in this study to predict 
SWQ parameter concentration using remote sensing images can bring 
a paradigm shift in the SWQ monitoring of these lakes. The trends 
and anomalies in the concentration of SWQ parameters can efficiently 
predict future water quality outbreaks. The proposed methodology can 
be further utilized to derive long-term SWQ data of other lakes with 
similar geologic and environmental settings.

This research aimed to develop empirical water quality models to 
demonstrate the feasibility of satellite remote sensing in the character-
ization of lakes of Gujarat. The developed empirical models were used 
to retrieve DO, pH, EC, BOD, and nitrate concentrations of the lakes. 
Additionally, water quality parameter concentrations of previous years 
were estimated using the established models.

Study Area
Sursagar Lake
Sursagar Lake, formerly known as Chandan Talav, is located at 
22°18′02.96″N latitude and 73°12′14.09″E longitude, in the center of 
Vadodara city (in Gujarat, a northeastern state in India), at an elevation 
of 35 m above mean sea level (AMSL) (Figure 1). Built in the 18th cen-
tury, this perennial lake measures 327 m in length and 213 m in width 
and has an average depth of 3.7 m. The lake has several underwater 
gates that are opened in case of flooding, and the excess water pours 
into the Vishwamitri River. The city experiences a subtropical type 
climate with moderate humidity, with rainfall received mainly from 
the southwest monsoon during June–September. The average annual 
rainfall is 903 mm, and the average annual temperature is 34°C during 
the period 1989–2018 (Guhathakurta et al. 2020).

Before 1990, Sursagar Lake was a major source of drinking water 
in the city; however, due to rapid industrialization with simultaneous 
urbanization in the city, water quantity and quality have been adversely 
impacted (Gujarat Environment Management Institute [GEMI] 2020). 
Currently, the lake is surrounded by commercial complexes, temples, 
and residential buildings. Additionally, many chemicals, pharmaceu-
tical, and textile industries thrive in the city. The untreated sewage 
from these industries and complexes is often released into the storm 
water drains and ends up entering the lake’s inlet channels due to an 
inadequate drainage network, thereby contaminating the lake water 
(Brahmbhatt and Shah 2018). Over the years, the lake has become one 
of the most polluted lakes among the municipal corporations in the 
entire state (The Times of India 2017).

In an attempt to beautify the lake and use it for recreational pur-
poses, construction activities within and around the lake have further 
led to an increase in waste generation (GEMI 2020). Another activity 
leading to pollution in the lake is the immersion of idols during the 10-
day Ganesh Chaturthi festival. A huge quantity of china clay used in 
the idols and decoration materials, such as clothes, paints, and plastic 
garlands, have deteriorated the water quality by blocking the inlet 
channels (Patel and Shah 2016; GEMI 2020).

Figure 1. Location of Nalsarovar Lake and Sursagar Lake in Gujarat State, India.
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Nalsarovar Lake
Nalsarovar Lake is the largest natural freshwater inland wetland 
in the Thar Desert biogeographic region. The lake is located at 
22°46′33.03″N latitude and 72°02′21.00″E longitude along the 
western border of the Ahmedabad district and the southern border of 
the Surendranagar district (Figure 1) at an elevation of 7.92 m AMSL. 
Nalsarovar Lake is spread in an area of 120 km2 and is the largest wet-
land bird sanctuary in India. Because of the rich biodiversity and socio-
economic importance, the lake was declared a Ramsar Site in 2012.

Nalsarovar is a shallow lake with muddy lagoons and has its gene-
sis by the elevation of land between the present-day Gulf of Khambhat 
and Gulf of Kachchh during the late quaternary period (Rathod and 
Parasharya 2018). The lake has over 300 islets or bets, of which 36 are 
relatively large and located mainly on its western boundary (Chauhan 
et al. 2021). The entire area receives an average rainfall of about 
500–600 mm, and the average temperature reaches up to a maximum 
of 35°C during May and falls below 10°C during December (Biswas 
and Pandey 2019).

The lake receives water mainly from two rivers, the Brahmini 
and the Bhogavo, and from the surrounding catchment in the north, 
west, and east in a diffused manner (Vankar et al. 2018). The lake gets 
inundated during the southwest monsoon (June–September), while 
it dries up almost entirely in the summer. This lake has also been a 
principal source of livelihood for the local dependent communities 
of the peripheral 12 villages for many years. They carry out fishing, 
wheat cultivation, and tourism-based activities to generate income 
(Biswas and Pandey 2019). The primary source of pollution in the 
lake is the household sewage and agricultural runoff from the villages 
that are located in at northwestern boundary, while the state devel-
opment authorities ensure that no industrial effluent enters the lake. 
Additionally, land reclamation and new developmental activities, along 
with illegal bird poaching, pose threats to the water quality of the lake 
(Japan International Cooperation Agency  and Nippon Koei India Pvt 
Ltd India 2020).

Data and Methodology
In Situ SWQ Data
The in situ SWQ data for the two lakes have been collected from the 
Gujarat Pollution Control Board (GPCB), which is the nodal agency 
at the state level to implement environmental laws and rules within 
Gujarat for the protection of the environment. Under the National 
Water Quality Programme, GPCB collaborates with the Central 
Pollution Control Board (CPCB) to monitor and assess the water qual-
ity and facilitate the prevention and control of pollution. Lake water 
sampling and parameter monitoring are done as per the Guidelines 
on Water Quality Monitoring 2017, issued by the Ministry of 
Environment, Forest, and Climate Change. Water samples are analyzed 
for 25 physicochemical and biological parameters using the analytical 
techniques as prescribed by the American Public Health Association 
and the Bureau of Indian Standards. The analyzed water quality param-
eters are then compared with the “designated best use” water quality 
criteria recommended by the CPCB.

For this study, the water quality data for both the lakes, Nalsarovar 
and Sursagar, have been collected for a 13-year period from 2006 to 
2019. For the assessment of these two lakes, five major parameters 
(i.e., DO, pH, EC, BOD, and nitrate) have been considered. The signifi-
cance of the selected parameters, along with the factors influencing 
their concentration and affecting the water quality, are discussed next.
The pH, with a range value of 0–14, is a very important parameter that 
defines the acidic (0–6), neutral (7), or basic nature (8–14) of the water. 
A high or low pH can affect the solubility and biological availability of 
the chemicals and heavy metals in the water. Additionally, aquatic life 
can be stressed or die when exposed to extreme pH levels or when pH 
changes rapidly, as the majority prefers a pH range of 6.5–9.0 (CPCB 
2019). The pH of a lake can be affected by photosynthetic and respira-
tion activities, which depend on the carbonate–bicarbonate–carbon 
dioxide equilibrium (Kumari et al. 2019; Pant et al. 2019; Sudarshan 
et al. 2019). Anthropogenic activities like dumping industrial sewage 

in the streams and acidic runoff from mining areas can have immediate 
and intense effects on the pH levels.

An indirect estimate of the amount dissolved salts present in water 
is provided by the EC value. Low values of EC (<1000 µs/cm) indicate 
pristine to normal status of a lake and its surroundings (CPCB 2019). 
The EC of a lake is affected primarily by the catchment geology. For 
example, lakes surrounded by clayey soil tend to show high EC because 
of the presence of minerals that ionize when washed with water 
(Borowiak et al. 2020). Additionally, high EC can arise by various 
other factors, such as wastewater from sewage treatment plants, ag-
ricultural runoff loaded with chloride, nitrate and phosphate from fertil-
izers, high evaporation rates leading to concentration of dissolved salts 
in the remaining water, and a larger catchment surface area relative to 
the lake area, which increases the contact with the soil and washes up 
more ions (Kumari et al. 2019; Borowiak et al. 2020).

The DO is considered one of the most important parameters to assess 
the health of the surface water body. The higher the DO concentration 
in a water body, the better the water quality and the ability to support 
aquatic life. Low levels of DO (<4 mg/L) can occur due to algal blooms, 
driven by high levels of nitrogen and phosphorus found in fertilizers 
(CPCB 2019; Pant et al. 2019). As these algae die and decompose, DO 
in the water is consumed, resulting in insufficient amounts available 
for other aquatic life. DO is inversely related to BOD. BOD measures the 
amount of dissolved oxygen consumed by microorganisms to decom-
pose the organic matter present in the water (Sudarshan et al. 2019). 
Higher values of BOD can arise due to the untreated sewage from indus-
tries and residential areas entering into the lake inlets, leading to more 
consumption of dissolved oxygen (Vasistha and Ganguly 2020).

Nitrates are essential for aquatic plant growth; however, the over-
abundance can cause several adverse health and ecological impacts. 
Nitrates are introduced into the water bodies through the discharge of 
sewage and industrial wastes and runoff from agricultural fields con-
taining nitrogen-rich chemical fertilizers (Pant et al. 2019; Sudarshan 
et al. 2019). Excessive nitrate concentration can lead to algal growth, 
which can degrade the water quality by depleting the oxygen levels 
(Vasistha and Ganguly 2020).

Remote Sensing Satellite Data
Landsat imagery is widely applied for water quality assessments, as it 
features global coverage, free access, high resolution, and multispec-
tral data with an unprecedented 43-year record of observations of the 
global land surface, land conditions, and dynamics (Mushtaq and Nee 
Lala 2017). Using the Google Earth Engine (GEE) cloud computing 
platform, a Landsat 7 data set was obtained and processed ranging 
from the period between 1999 and 2020 for the study lakes in Gujarat. 
The Landsat 7 surface reflectance (SR) data of the pixels coincident 
with the location of the water body were acquired from GEE, which 
were then processed to remove the atmospheric, radiometric, and 
geometric influences.

Methodology
The overall methodology of this study is represented in Figure 2, 
wherein the remote sensing data are used to generate the empirical 
models of SWQ parameter concentrations for water bodies of Gujarat 
state. The processed SR data were used to build the empirical models 
of SWQ parameters through a linear regression algorithm. The models 
were calibrated using 75% of in situ SWQ observations and then vali-
dated using the remaining 25% of in situ SWQ observations.

Remote Sensing Data Preprocessing
The remote sensing data process begins with the acquisition of data hosted 
on the GEE cloud, which is atmospherically corrected using the Landsat 
Ecosystem Disturbance Adaptive Processing System and includes a 
cloud, shadow, water, and snow mask produced using CFMask as well as 
a per-pixel saturation mask. CFMask is a multi-pass algorithm that uses an 
artificial intelligence model (decision trees) to prospectively label pixels in 
the scene; it then validates or discards those labels according to scene-
wide statistics. It also creates a cloud shadow mask by iteratively estimat-
ing cloud heights and projecting them onto the ground (Zhu et al. 2015). 
Cloud filtering and masking were performed using the provided pixel 
quality assurance bands to select only pixels containing cloud-free images.
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Correlation Analysis
Correlation analysis of in situ SWQ parameters and Landsat 7 SR data was 
conducted using Pearson correlation coefficient (r), which can have a 
value between −1 and +1. Coefficient values close to −1 indicate a strong 
inverse relationship among the variables. In contrast, correlation values 
close to +1 indicate a strong positive relationship, and values close to 
zero indicate no relationship among the variables (Pearson 1909).

The correlation analysis of in situ SWQ parameters (DO, pH, EC, BOD, 
and nitrate) with each other was conducted to ascertain their relationship. 
The strong correlation between two or more parameters depicts that one 
parameter can be used as a representative of other correlated parameters 
for water quality analysis. Also, their models may show resemblance and 
thus can improve the model calibration (El Din and Zhang 2017).

The correlation analysis of in situ SWQ parameters and their 
logarithms with addition, subtraction, ratio, exponent, natural log, and 
individual value of Landsat 7 SR data was conducted. The strength of 
correlation between the SWQ parameter and SR or SR combination can 
facilitate the elimination of the weakly correlated variables for the 
calibration of the regression model (González-Márquez et al. 2018)

Model Calibration and Validation
It is noted that logarithms of dependent variables can improve the 
distribution of the data and thus may provide a better correlation with 
the independent variables (Swain and Sahoo 2017). In this study, 
empirical models were built using SR or SR combination values as inde-
pendent variables and temporally coincident in situ SWQ parameters 
and their logarithms as dependent variables. The empirical modeling 
technique provides transparency and lesser computational require-
ments (González-Márquez et al. 2018; Topp et al. 2020). The empirical 
models are built using a linear regression algorithm that assumes that 
the relationship between the independent and dependent variables is 
linear and additive (Sagan et al. 2020).

The dependent variables were divided into two data sets for calibra-
tion (75% of all SWQ observations) and validation of the model (25% 
of all SWQ observations). For calibration, the stepwise linear regression 
(SLR) variable selection method was used to choose the best subset of 
independent variables. The SLR method starts with a null model, then 
the independent variable that produces the maximum rise in the adjust-
ed R2 value is added to the model at each subsequent step. This process 
is repeated until the adjusted R2 stops maximizing (Kabe 1963). The 
OLSRR package of R software was used for calibration in this study, 

as it can perform the SLR algorithm to produce the final optimal set 
of independent variables that contained most of the information and 
build the significant fit model (Hebbali 2017). The performance of the 
developed model was evaluated using scatter plots between in situ SWQ 
observations and modeled data and adjusted coefficient of determina-
tion (R2) (Helland 1987).

For the validation of models, linear correlation, root mean square 
error (RMSE), and residual predictive deviation (RPD) were computed 
using the predicted variables and corresponding in situ SWQ observa-
tions. Linear correlation of predicted variables and associated in situ 
SWQ observations (25% of all SWQ observations) was tested using 
Pearson’s correlation coefficient (r). The ideal prediction model exhib-
its the lowest RMSE, calculated as the square root of the mean of the 
squared difference between predicted and in situ SWQ observed values 
(Equation (1)) (Aptula et al. 2005). The RPD values of the models were 
calculated using Equation (2) to account for the model’s reliability, 
with excellent models having RPD > 2, fair models having 1.4 < RPD < 
2, and nonreliable models having RPD < 1.4 (Ncama et al. 2017):

	
RMSE y y npred obs= ∑ −( )2 / 	
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Here, n is the number of SWQ observations, yobs is the in situ SWQ 
observed values, ypred is the model predicted value of SWQ parameters, 
and SD is the standard deviation of reference data values.

Statistical Analysis of Predicted Data
The developed models were used to predict the SWQ parameter concen-
tration from 1999 to 2020. The trend in the predicted data was estimat-
ed using the nonparametric Mann-Kendall (MK) test and the nonpara-
metric Pettitt change point test (Singh and Chinnasamy 2021). Before 
using the trend test, the autocorrelation test was conducted to detect the 
temporal correlation of SWQ data to avoid false trend detection.

The MK test was employed to detect monotonic trends in SWQ data 
(Mann 1945). The MK test statistic for a time series is expressed by
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where sgn is the signum function, x is the variable, n denotes the num-
ber of data, and i, j, k are indices.

The Pettitt test is a nonparametric change point detection test that 
detects change points based on the abrupt change in the mean of the 
data (Pettitt 1979). The Pettitt test is based on the Mann-Whitney 
two-sample test (Mann and Whitney 1947). The Mann-Whitney test 
statistic is given by
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where xi and xj are random variables of the data set, with xi following xj 
in time, the test statistic is defined as Ut,T, as shown in
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The test statistic Ut,T is calculated for all random variables from 1 
to T, where the largest value of |Ut,T| is taken as the change point. Thus, 
for the condition given by

	 K Ut t t Tmax= ≤ <1 , 	 (6)

The test statistic Kt, if found significantly different from zero, is 
considered as a change point.

Figure 2. Flowchart depicting the methodology of surface water 
quality estimation using the Landsat 7 satellite products.
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Results and Discussion
Descriptive Statistics of SWQ in Study Area
The descriptive statistics for the SWQ of Sursagar and Nalsarovar lakes 
are given in Tables 1 and 2, respectively.

As per CPCB (2019) standards, DO should be above 4 mg/L for 
propagation of wildlife, fisheries, and drinking water with conventional 
treatment, while it should be above 6 mg/l to be used for drinking water 
without conventional treatment, thus indicating that the DO quality in 
both study areas was not directly fit for human consumption and was 
close to support fish and wildlife. The CPCB had set a pH range of 6.5–
8.5 for wildlife, fisheries, and domestic uses, as it is more neutral, and 
both study areas had satisfied this criterion. As per CPCB, the EC should 
not go beyond 2250 μmhos/cm, and Tables 1 and 2 indicate that thresh-
old was breached; however the average was below this limit, so the lake 
water was suitable for irrigation and industrial use. The BOD level is 
recommended by CPCB to be below 3 mg/L for all uses; however, statis-
tics show that both study sites had elevated BOD levels above the limit. It 
was also noted that the nitrate levels in both study areas were well below 
the maximum limit of 20 mg/L as prescribed by CPCB for all uses.

Correlation Analysis
The Pearson correlation analysis (p < 0.01) for Sursagar lake showed 
that only EC and DO have significant correlation (−0.61) with each 
other, while for all other SWQ parameters, the r value was close to 
0. Thus, for the water quality analysis of Sursagar Lake, all the SWQ 
parameters need to be considered.

For Nalsarovar Lake, the Pearson correlation analysis (p < 0.01) 
showed a strong correlation between BOD and pH (0.67) along with 
BOD and DO (−0.73), while for other SWQ parameters, the r value was 
close to 0. Thus, the BOD of Nalsarovar Lake can be expressed using 
the pH and DO of the water body. However, as all other parameters are 
not correlated, all the parameters will be analyzed to comprehend the 
SWQ of Nalsarovar Lake.

The r values of SWQ parameters and their logarithms with individ-
ual SR and SR combinations were found to be weak to moderate (0.4–
0.6). However, they were used as an initial step to create subsets of 
independent variables for the empirical modeling of SWQ parameters.

Calibration and Validation of the SWQ Models
The empirical modeling through the SLR method showed that the 
Landsat 7 SR of bands blue (B1), green (B2), red (B3), near infrared 
(B4), shortwave infrared 1 (B5), thermal (B6), and shortwave infrared 
2 (B7) have significantly contributed to the development of accurate 
models for estimating concentrations of SWQ parameters for Sursagar 
and Nalsarovar lakes. Furthermore, SR ratios effectively estimated SWQ 
parameter concentrations, as SR ratios can augment spectral contrast 
between discrete targets and remove most of the effect of brightness in 
the analysis of spectral differences (El Din and Zhang 2017).

The models developed by the SLR method to estimate DO, pH, EC, 
BOD, and nitrate concentration of Sursagar and Nalsarovar lakes with 
their adjusted R2 values are summarized in Tables 3 and 4, respectively. 
The SLR method resulted in significant models (p < 0.05) to estimate 
SWQ parameters of Sursagar Lake with the adjusted R2 value >0.74 and 
for Nalsarovar Lake with the adjusted R2 value >0.84.

To validate the accuracy of the SLR models, the derived SWQ pa-
rameter concentrations were compared with the in situ SWQ observa-
tions (2016–2019) of Sursagar and Nalsarovar lakes. The derived and 
observed values were compared using the r, RMSE, and RPD values, 
which are sufficient to validate the proposed models (Al-Shaibah et al. 
2021; Ambrose-Igho et al. 2021) as explained in the section “Model 
Calibration and Validation.” The r, RMSE, and RPD values obtained by 
validating the developed models for Sursagar and Nalsarovar lakes are 
summarized in Tables 5 and 6, respectively. All models showed good 
to excellent performance based on the r value (p < 0.01) ranging from 
0.86 to 0.98 for Sursagar Lake and from 0.72 to 0.99 for Nalsarovar 
Lake. It is to be noted that the RMSE values of all models were less 
than 0.5 and that the RPD values were more than 2, which depicts good 
predictability of all the models. The model built to predict the nitrate 
concentration of Nalsarovar Lake has shown the best performance with 
r = 0.93, RMSE = 0.05 mg/L, and RPD = 10.21.

The performance of the models was further verified using the scat-
ter plot between in situ SWQ parameter concentrations and correspond-
ing estimated SWQ parameter concentrations, as shown in Figure 3. The 

Table 1. Descriptive statistics of surface water quality parameters for 
Sursagar Lake for the period 2006–2019 (source: Gujarat Pollution 
Control Board).

Parameters Mean
Standard 
Deviation

Standard 
Error Minimum Maximum

DO (mg/L) 3.45 2.15 0.61 1.2 8.1

pH 7.98 0.39 0.11 7.4 8.5

EC (µmhos/cm) 2017.08 730.97 202.74 775 2970.00

BOD (mg/L) 8.48 4.66 1.29 1.5 18

Nitrate (mg/L) 0.96 1.43 0.4 0.03 5.55

BOD = biochemical oxygen demand; DO = dissolved oxygen; EC = electrical 
conductivity; pH = potential of hydrogen.

Table 2. Descriptive statistics of surface water quality for the 
Nalsarovar Lake for the period 2006–2019 (source: Gujarat Pollution 
Control Board).

Parameters Mean
Standard 
Deviation

Standard 
Error Minimum Maximum

DO (mg/L) 5.27 2.12 0.61 0 8.2

pH 7.63 0.26 0.07 7.3 8.2

EC (µmhos/cm) 1084.08 922 266.16 298 2806

BOD (mg/L) 3.66 3.5 1.01 1.5 14

Nitrate (mg/L) 0.63 1.62 0.47 0 5.71

BOD = biochemical oxygen demand; DO = dissolved oxygen; EC = electrical 
conductivity; pH = potential of hydrogen.

Figure 3. Scatter plots between the observed (in situ) and estimated 
surface water quality parameters of Sursagar Lake (left) and 
Nalsarovar Lake (right).
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linear regression line between the in situ and estimated SWQ parameter 
concentrations of Sursagar and Nalsarovar lakes was found satisfactory 
for all models with R2 value ranging from 0.44 to 0.99.

The r, RMSE, RPD, and R2 of the scatter plot of the models depict 
that the SLR models are capable of retrieving and predicting the SWQ 
parameter concentrations in Sursagar and Nalsarovar lakes for the 
same parameters in different months and years, which is a significant 
contribution of this study. The results of model calibration and valida-
tion suggest that water quality can be successfully derived through re-
mote sensing and GIS data. Moreover, the capability of remote sensing 
to capture direct and indirect measurements provides critical data for 
water resources management and planning (Kamruzzaman et al. 2020; 
Shao et al. 2020).

The SLR analysis showed that for Sursagar Lake, pH, EC, and nitrate 
are dependent on SR of B1, B4, B5, B7, and their combinations, while 
DO is sensitive to SR of B2, B3, B6, and their ratios, and BOD is de-
pendent on SR of B1, B2, B4, B5, B6, and their ratios. For Nalsarovar 

Lake, DO and pH are dependent on SR of B2, B4, B6, B7, and their 
combinations, while EC and nitrate are dependent on SR of B1, B2, B6, 
B7, and their combinations, and BOD is sensitive to SR of B2, B3, B5, 
and their combinations. The seven bands of Landsat 7 contributed to 
the generation of water quality models. However, the models devel-
oped in this study differ from reported models in the literature (El Din 
and Zhang 2017; González-Márquez et al. 2018; Zhang et al. 2017), 
showing the need for exclusive parameterization and calibration for 
individual water bodies.

The application of remote sensing and GIS is a suitable approach for 
monitoring time-varying phenomena, thus providing opportunities to retrieve 
and predict the data to achieve a robust understanding of the ecosystem.

Prediction of Past and Missing SWQ Data for Detailed Analysis
Compared to the conventional SWQ measurement techniques, one of 
the benefits of empirical modeling using remote sensing data is that we 
can use them to generate the SWQ data for any required period (as per 
the availability of the remote sensing data) for detailed water quality 

Table 3. Comparison of model performances for estimating surface water quality parameters of Sursagar Lake.
Linear Regression Model Adjusted R2
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Table 4. Comparison of model performances for estimating surface water quality parameters of Nalsarovar Lake.
Linear Regression Model Adjusted R2
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Table 5. Validation results of linear regression models of surface water 
quality (SWQ) parameters of Sursagar Lake.

SWQ 
Parameter

Pearson Correlation 
Coefficient (r)

Root Mean 
Square Error

Residual Predictive 
Deviation

DO (mg/L) 0.98 0.29 2.1

pH 0.88 0.14 2.43

EC (µmhos/cm) 0.94 0.18 3.37

BOD (mg/L) 0.86 0.47 2

Nitrate (mg/L) 0.97 0.23 3.47

BOD = biochemical oxygen demand; DO = dissolved oxygen; EC = electrical 
conductivity; pH = potential of hydrogen.

Table 6. Validation results of linear regression models of surface water 
quality (SWQ) parameters of Nalsarovar Lake.

SWQ 
Parameter

Pearson Correlation 
Coefficient (r)

Root Mean  
Square Error

Residual Predictive 
Deviation

DO (mg/L) 0.99 0.11 2

pH 0.72 0.14 2.65

EC (µmhos/cm) 0.93 0.44 2.56

BOD (mg/L) 0.94 0.26 2.42

Nitrate (mg/L) 0.93 0.05 10.21

BOD = biochemical oxygen demand; DO = dissolved oxygen; EC = electrical 
conductivity; pH = potential of hydrogen.
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analysis. Accordingly, the Landsat 7 SR from 1999 to 2020 were used 
to obtain the corresponding SWQ parameter concentrations of Sursagar 
and Nalsarovar lakes (Figure 4) using the developed and validated 
models (Tables 3 and 4).

The DO of Sursagar Lake from 1999 to 2020 was found to be 
varying from 1.01 mg/L to 19.24 mg/L. The minimum DO level was 
observed during the winter season with an average value of 2.65 mg/L, 
and the maximum level was observed during the monsoon season 
with an average value of 8.85 mg/L. As the main cause of pollution in 
Sursagar Lake is industrial effluent and sewage, it is plausible that dilu-
tion of pollutants during the monsoon season led to a rise in DO level, 
while the BOD level was found to be low during the monsoon season 
with an average value of 0.44 mg/L. The high DO level during the mon-
soon season explains the corresponding low BOD levels in Sursagar 
Lake (Kumari and Sharma 2019). The nitrate level of Sursagar Lake 
was found to vary from 6 × 10−4 mg/L to 7.39 mg/L, and the minimum 
nitrate level was observed during the monsoon season with an average 
value of 0.31 mg/L, which can be explained by the dilution of pol-
lutants due to heavy rainfall (Roy and Majumder 2019). The dilution 
during the monsoon season also explains the low EC level of Sursagar 
Lake. The pH of Sursagar Lake was found to be at a minimum during 
the monsoon season with an average value of 4.4 and maximum during 
the winter season with an average value of 11.23.

For Nalsarovar Lake, the DO (1999–2020) was found to vary from 
6 × 10−4 mg/L to 14.87 mg/L, and the minimum DO level was observed 
during the monsoon season with an average value of 0.01 mg/L from 
1999 to 2020, and the maximum DO level was observed during the 
winter season with an average value of 6.61 mg/L. As per Atulkumar 
(2020), the agricultural runoff received by the lake during the monsoon 
season will increase the nutrient loading and subsequently reduce the DO 
level, which was also noted in this study. The BOD level was found to be 
maximum during the monsoon season with an average value of 46.50 
mg/L. The high BOD level is usually associated with low DO levels 
(Kumari and Sharma 2019), which justifies the high BOD level during 
the monsoon season in Nalsarovar Lake. The nitrate level of Nalsarovar 
Lake was found to vary from 3 × 10−3 mg/L to 7.61 mg/L, and the maxi-
mum level was observed during the monsoon season with an average 
value of 3.75 mg/L. Low DO, high BOD, and high nitrate concentration 

indicate the eutrophic status of the lake (Kumari and Sharma 2019). 
The rise in agricultural runoff associated with sediment load during the 
monsoon season indicates the rise in the EC level of Nalsarovar Lake 
during the monsoon season (Vankar et al. 2018). The pH of the lake 
was found to vary from 2.2 to 8.8. The average pH during the summer 
season was 5.90, and during the winter season, it was 7.30, which is in 
close proximity of the observations of Vankar et al. (2018).

The coherence between the predicted SWQ parameter concentra-
tions from 1999 to 2020 (Figure 4) and lake characteristics depicts the 
efficacy of the proposed models in this study to capture the lake water 
quality and its seasonal variations. The peaks and troughs observed in 
Figure 4 depict the SWQ parameter changes with seasons and climate 
variability, which can aid in better management.

Results indicated that the SWQ parameters of Sursagar and 
Nalsarovar lakes have diverse seasonal patterns. SLR models built 
using Landsat 7 images could include these variations and effectively 
predict the parameter concentrations (Figure 4). Thus, remote sensing 
and GIS capabilities can provide time-stamped and geo-tagged data that 
can depict trends and anomalies in the concentration of key indicators 
of SWQ to predict future water quality outbreaks efficiently when in situ 
data are limited.

Change points and trends of predicted SWQ parameters were 
estimated to analyze the annual variations. The MK test and the Pettitt 
change point test were used to determine the trends of the SWQ dis-
tribution and the possible locations of the change points. The MK test 
results (p < 0.05) and the Pettitt change point test results (p < 0.05) of 
SWQ distribution (1999–2020) are summarized in Table 7 for Sursagar 
and Nalsarovar lakes.

Table 7. Trends and change points of annual surface water quality 
(SWQ) distribution of Sursagar Lake and Nalsarovar Lake.

SWQ 
Parameter

Sursagar Lake Nalsarovar Lake

Trend 
(Mann-Kendall 

Test)

Change 
Point 

(Pettit Test)

Trend 
(Mann-Kendall 

Test)

Change 
Point 

(Pettit Test)

DO Upward 2001 Upward 2015

pH Downward 2002 Upward 2000

EC Downward 2001 Downward 2011

BOD Downward 2014 Upward 2016

Nitrate Upward 2006 Upward 2008

BOD = biochemical oxygen demand; DO = dissolved oxygen; EC = electrical 
conductivity; pH = potential of hydrogen.

The MK test showed that the DO and nitrate concentrations of 
Sursagar Lake rose from 1999 to 2020, while pH, EC, and BOD concen-
tration presented a falling trend. For Nalsarovar Lake, except for EC, 
all other parameters showed a rising trend. The Pettitt test for Sursagar 
Lake showed that DO and EC have a common change point (2001), close 
to that of pH (2002). The change point of BOD was 2014, and for nitrate, 
it was 2006. For Nalsarovar Lake, the change points of DO and BOD 
were located close to each other, at 2015 and 2016, respectively, while 
the change points for pH, EC, and nitrate were 2000, 2011, and 2008.

The derived change points (Table 7) have divided the SWQ param-
eter concentrations time series into two sections. The linear regression 
was employed to analyze two sections (before change point and after 
change point) of the time series, as shown in Figure 4. For Sursagar 
Lake, the overall trend of DO is upward, but the regression line of the 
section after the change point (2001) has a downward trend with a 
slope of 0.144 mg/L/yr; thus, after 2001, the DO level has been reduced 
in the Sursagar Lake. The overall trend of pH level in Sursagar Lake 
was downward, and a similar trend was found in the two sections; 
also, the slope of the regression line in the second section (after change 
point) is higher than in the first section (before change point). The 
overall trend of EC level in Sursagar Lake is downward; however, the 
two sections show an upward trend, so we can say that the EC level has 
increased from 2002 to 2020, but the extent is lesser than that of the 

Figure 4. Observed (in situ) and estimated surface water quality 
parameters of Sursagar Lake (left) and Nalsarovar Lake (right) from 
1999 to 2020.
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first section (1999–2001). The overall trend of BOD is downward, and a 
similar trend was observed in the first section of distribution, but in the 
second section, a slight rise (0.013 mg/L/yr) has been observed. The 
overall trend of nitrate in Sursagar Lake is upward. However, both sec-
tions depict a downward trend. Thus, we can say that the nitrate level 
has increased from 1999 to 2020, but from 2006 to 2020, it is decreas-
ing. Thus, we can say that the quality of Sursagar Lake is recovering, 
except that DO all other parameters depict improvement in the water 
quality of the lake.

For Nalsarovar Lake, the overall DO trend was upward, but the two 
sections show a downward trend. Thus, the DO level has increased 
from 1999 to 2020; however, it is decreasing from 2016 to 2020 with 
a slight amount of 0.04 mg/L/yr. Likewise, the overall trend of pH 
and BOD level in Nalsarovar Lake was upward, and the two sections 
show a downward trend, which depicts that the pH and BOD levels 
are dropping in the second section. The overall trend of EC level in 
Nalsarovar Lake is downward, but the two sections show an upward 
trend, so the EC level has increased from 2013 to 2020, but the extent 
is lesser than that of the first section (1999–2012). The overall trend 
of nitrate in Nalsarovar Lake is upward, and a similar trend was 
found after the change point (2008), and the nitrate level is rising in 
Nalsarovar Lake. Thus, we can say that the quality of Nalsarovar Lake 
is recovering; however, nitrate concentration needs to be managed. The 
higher concentration of nitrate observed in Nalsarovar Lake is due to 
the agricultural runoff from surrounding villages (Vankar et al. 2018). 
Sursagar and Nalsarovar lakes hold ecological and agricultural signifi-
cance, and long-term water quality analysis of these lakes is needed 
for their conservation. Thus, this study has put forward a methodology 
to estimate the past and real-time SWQ parameter concentration values 
using the site-specific empirical models.

Conclusions
Inland water quality is an important factor and needs to be monitored 
periodically for better management and to support domestic and 
agricultural consumption. Since depending only on in situ measure-
ments can be costly and time consuming, this study used in situ data 
and remote sensing data–driven SLR models to predict water quality 
parameters (DO, pH, EC, BOD and nitrate) for two lakes in Gujarat—
Sursagar and Nalsarovar—from 1999 to 2020. The models developed 
using the SLR method have shown good to excellent performance in 
predicting SWQ parameter concentrations based on the r value (p < 
0.01) ranging from 0.86 to 0.98 for Sursagar Lake and from 0.72 to 
0.99 for Nalsarovar Lake. The RMSE values of all models were less 
than 0.5, and the RPD values were more than 2, which depicts good 
predictability of all the models. Results indicated that the SLR models 
had good potential for predicting the water quality parameters and im-
prove the temporal resolution from annual (in situ based) to biweekly. 
The availability of such an improved spatiotemporal resolution will aid 
in a better understanding of inter- and intraseasonal variability and in 
documenting potential drivers for such variability. Policymakers and 
stakeholders should incorporate such synergized models with ongoing 
field monitoring activities to better protect and manage the precious 
inland waters of India.
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s Modelling, Representation, and Visualization of the 
Remote Sensing Data for Forestry Management

Remote sensing data includes aerial photography, videography data, multispectral scanner (MSS), Radar, and laser to map 
and understand various forest cover types and features. An accurate digital model of a selected forest type is developed 
using forest inventory data in educational and experimental forestry and extensive databases. It includes the formalization 
and compilation of methods for integrating forest inventory databases and remote sensing data with three-dimensional 
models for a dynamic display of forest changes. 

Big data technology employs vast amounts of forestry data for forestry applications that require real-time inquiry and 
calculation. The techniques and strategies of forestry data analysis are integrated into the big data forestry framework, 
enabling interfaces that other Programmes may call. Virtual Reality addresses constraints in forest management such as 
temporal dependence, irreversibility of decisions, spatial-quantitative change of characteristics, and numerous objectives. 
Virtual representations integrate various computer graphics systems with display and interface devices to create a spatial 
presence in an interactive 3 D environment. Visualization of plant species’ growth patterns, changes in species and their 
composition, and other morphological properties of forests are enhanced using machine learning and regression analysis 
methods as part of a digital model. In modelling, deep learning (DL) replicates expert observations on hundreds or thou-
sands of hectares of trees.

Remote sensing is being used to map the distribution of forest resources, global changes in flora with the seasonal vari-
ations, and the 3D structure of forests. Graphic Information System (GIS) based visualizations depict dynamics through 
animations and 3D geo model visualizations and allow advanced spatial analytics and modelling in geographical phenom-
ena for forest management.  Digital forest modelling includes integrating forest inventory data, forest inventory database 
formation, graphics objects of forest inventory allocations with a digital forest model, and technology for visualizing forest 
inventory data. It helps forecast changes and visualizes situational phenomena occurring in forests using data and models 
involving spatial-temporal linkages.

Standard aerial shots capture images that view unseen components to the naked eye, such as the Earth’s surface’s physical 
structure and chemical composition. The challenges in remote sensing models include insufficient Remote Sensing (RS), 
spatial, spectral, and temporal resolution to detect degradation accurately. High costs of RS, the gap between operational 
and scientific uses, and lack of information sharing are some of the challenges of RS for forest management. The list of 
topics of interest include but are not limited to the following:
	y Advancement of forest surveillance through Geographical Information Systems
	y State of the art and perspectives of modelling and visualization framework  for Forest type mapping and assessment of 

distribution 
	y Futuristic Satellite data analysis for stock maps and forest inventory analysis 
	y Big data-enabled GIS framework for forest management information 
	y AI-based Space Remote Sensing For Forest Ecosystem Assessment 
	y Enhanced visualization through deep learning for forest management solutions
	y Novel approaches of multi-temporal satellite data using digital image analysis for forest management
	y Advance representation of discrete objects and continuous fields in virtual environments through VR framework
	y Database framework for regional and plot-based forest allotment data for model representation  and visualization
	y Development of scalable models for area-based metrics from Light Detection and Ranging (lidar) devices and photo-

graphic structure-for-motion (SFM)
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Automated 3D Reconstruction of LoD2  
and LoD1 Models for All 10 Million  

Buildings of the Netherlands
Ravi Peters, Balázs Dukai, Stelios Vitalis, Jordi van Liempt, and Jantien Stoter

Abstract
In this paper, we present our workflow to automatically reconstruct 
three-dimensional (3D) building models based on two-dimensional 
building polygons and a lidar point cloud. The workflow generates 
models at different levels of detail (LoDs) to support data require-
ments of different applications from one consistent source. Specific 
attention has been paid to make the workflow robust to quickly 
run a new iteration in case of improvements in an algorithm or in 
case new input data become available. The quality of the recon-
structed data highly depends on the quality of the input data and 
is monitored in several steps of the process. A 3D viewer has been 
developed to view and download the openly available 3D data at 
different LoDs in different formats. The workflow has been ap-
plied to all 10 million buildings of the Netherlands. The 3D ser-
vice will be updated after new input data becomes available.

Introduction
Three-dimensional (3D) city models are widely used in urban applica-
tions. The outcomes of such applications serve as input for planning 
and decision-making processes that aim at making cities cooler, 
sustainable, more accessible, greener, carbon dioxide-neutral, etc. 
(Biljecki et al. 2016; Deren et al. 2021). Models of buildings are prom-
inent objects in these models. The building models can be generated at 
different levels of detail (LoDs). Taking the terminology of CityGML, 
a building can be modeled at four main levels of detail for the outer 
shell of the building, i.e., LoD0, LoD1, LoD2, and LoD3, and at LoD4 
for the interior of the building (OGC 2012; Kutzner et al 2020). Each 
of these four CityGML LoDs can be further refined (Biljecki et al. 
2016; Sun et al. 2019).

A higher level of detail is often preferred over a lower one, since 
building models at higher LoDs look closer to reality. However, higher 
levels of detail are more complicated (and therefore more expensive) 
to acquire because it is harder to reconstruct them in an automated 
manner from available source data. In addition, using models at higher 
levels of detail in spatial analysis does not automatically lead to better 
results (Biljecki et al. 2018), while at the same time too much detail 
may have a negative impact on performance. Therefore, for some ap-
plications it is better to avoid too much irrelevant detail.

The LoD of a 3D city model is therefore driven by the specific data 
requirements of the urban application for which it is built (see also the 
section “LoD in Relation to Urban Applications”). However, the high-
est achievable LoD is also restricted by the available source data and 
the reconstruction method used (see also the section “LoD in Relation 
to Reconstruction Method”).

While many 3D city models exist for various parts of the 
Netherlands, they are often generated for relatively small areas, are us-
ing different reconstruction methods, and are based on different source 

data. Furthermore, the update cycles are different, and the level of 
detail is also different because it is collected for different applications.

This can result in inconsistencies between 3D city models of the 
same area. There may be discrepancies between the geometries of 
building models like the geometry or height of the footprint. Also, 
the reference heights for the same building might differ over data sets 
since the heights may represent different references (e.g., gutter, ridge, 
maximum) or the reference heights are based on different statistical 
calculations. In addition, buildings (or building parts) available in 
one data set might be missing in another data set. There may also be 
temporal differences because the input data sets that were used for the 
reconstruction come from another date. Typically, there is no plan to 
maintain and update the once generated 3D data. This may be another 
source for indiscrepancies.

All these differences have profound influences in practice, such as 
affecting the applications for which an existing 3D model can be used, 
the processing that is necessary to use it, and the likely errors that will 
be present in the end result.

In this research, we demonstrate how to create a consistent country-
wide 3D city model in LoD1.2, LoD1.3, and LoD2.2. In order to 
achieve this, we look at three main aspects.

First, to ensure consistency between 3D city models of the same 
area and different LoDs, to improve efficiency, and serve the 3D data 
needs of different urban applications, we investigate how to reconstruct 
building models for large areas at different LoDs in one reconstruc-
tion process, based on the same reconstruction principles and based on 
the same source data. For the block models, we provide the user with 
several reference heights, so that the user can select the appropriate 
reference height to extrude building blocks for the specific application.

Second, our objective is to develop a fully automated reconstruction 
method. Our focus is on 3D city models covering large areas to support 
countrywide urban applications. This requires a fully automated recon-
struction method. Automated reconstruction also enables standardiza-
tion of the output data resulting in consistent geometries, semantics, 
and temporal aspects of the data. This consistency is also ensured when 
new models are reconstructed in the future with the same automated 
procedure based on updated source data.

Third, we investigate how to monitor and assess the quality of the 
building models that are automatically generated on such a large scale. 
This is essential for users to assess if models are fit for a specific use.

Finally, we also investigate the visualization and dissemination of 
such a big data set so that the city model is accessible and usable in an 
efficient manner.

Structure of this Paper
In this paper, we present our methodology to reconstruct LoD1.2, 
LoD1.3, and LoD2.2 models of all buildings in the Netherlands 
in one process. The section “Scope of the Research and Previous 
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Work” further outlines the scope of this research by elaborating on 
the different LoDs of 3D city models and related work. We present 
our reconstruction methodology in the section “Methodology for 
Automated 3D Reconstruction” and the implementation in the section 
“Implementation”. We close with conclusions in the last section.

Scope of the Research and Previous Work
In this section, we first explain how the reconstructed level of detail of 
3D building models depends on the one hand on the data requirements 
for which the data is collected (section “LoD in Relation to Urban 
Applications”) and on the other hand on the reconstruction method 
(section “LoD in Relation to Reconstruction Method”). We then de-
scribe the motivation for the LoDs that we reconstruct in our research 
in the section “The LoDs in Our Research”. Finally, the section “3D 
City Models of Large Areas” presents other work on the reconstruction 
of 3D data for large areas.

LoD in Relation to Urban Applications
As in two dimensions (2D), a one-fits-all approach does not exist for a 
3D city model. Instead, specific applications require specific 3D data 
as is analyzed in Biljecki et al. (2015). For example, block models 
(LoD1) are sufficient for shadow-, wind-, and noise-simulations. Roof 
structures (LoD2) with information on the roof materials are needed 
for solar potential estimation or in accurate energy demand estimation. 
Although LoD2 models are often also preferred in visualizations since 
they provide a realistic experience, realistic looking LoD2 models 
could still be ambiguous (Biljecki et al. 2018).

LoD in Relation to Reconstruction Method
LoD1 models for every building can be automatically generated rather 
easily from point clouds and 2D building polygons, i.e., footprints 
(Ledoux et al. 2021). Therefore, LoD1 models are frequently generated 
by various organizations, as such source data are increasingly available 
as open data. However, automatically generated LoD1 models for the 
same area can still differ in, for example, their reference heights (e.g., 
the rooftop, the gutter height, one third of the roof-height) and the 
underlying statistical calculations. Many users are not aware of those 
multiple options to reconstruct a 3D block model, while these options 
do influence the outcome of analyses for which the LoD1 models are 
used (Biljecki et al. 2018).

With respect to LoD2 models, many roof shapes can be generated 
fully automatically, although LoD2 reconstruction is still a current 
topic of research, as both the quality of available surveyed data and 
new 3D reconstruction algorithms still steadily improve (Rottensteiner 
et al. 2014; Lafarge 2015; Pârvu et al. 2018).

The additional elements for LoD3 models are hard to reconstruct in 
an automated manner. Therefore, they are generated manually or are 
the result of converted Industry Foundation Classes (IFC) models from 
the BIM domain (Donkers et al. 2016; Colucci et al. 2020).

The LoDs in Our Research
In our research, we focus on the reconstruction of LoD1.2, LoD1.3, 
and LoD2.2 building models using the terminology of the refined LoD 
framework of Biljecki et al. (2016). We distinguish between two types 
of LoD1 models: LoD1 models that are a result of extruding a com-
plete building footprint to one height, i.e., LoD1.2 models in Biljecki et 
al. (2016) and models that are extruded to one or more heights in case 
significant height jumps occur within the footprint, like a church with a 
tower or a house with a shed attached, i.e., LoD1.3 models. Both mod-
els are relatively simple and are therefore appropriate for applications 
that need simplified models. But LoD1.3 models enable more realistic 
visualizations. In addition, LoD1.3 models are also more accurate data 
for simulations that take block-shaped models of buildings as input, 
such as noise simulation where buildings act as noise barriers. This is 
why the automated reconstruction of LoD1.3 models is included in our 
research. LoD1.3 models are more difficult to automatically generate 
than LoD1.2 because it requires the detection of height discontinuities 
within the building footprint.

The LoD1.0/LoD2.0 and LoD1.1/LoD2.1 models are based on 
generalized footprints and therefore outside the scope of our research. 
The LoD3 representations are outside our scope since they require 
manual work.

3D City Models of Large Areas
There are many other examples of data sets containing building 
models of large cities or even nations as shown by an inventory by 
Santhanavanich (2020). Examples are the whole United States, con-
taining 125 million building models at LoD1, the city of New York 
(with 100 LoD2 models of iconic buildings), as well as the LoD2 mod-
els of Montreal, Helsinki, Singapore, cities in North Rhine-Westphalia 
State (in LoD 1 and LoD2), and many other cities in Germany. An 
example of an LoD2 building data set covering a whole nation is the 
swissBUILDINGS3D 2.0 data set (Swisstopo, 2021). It is a vector-
based data set which describes (among other topographic objects) 
buildings as 3D models with roof geometries and roof overhangs. The 
building models were extracted in a semi-automated manner from aer-
ial images using a photogrammetric method of digital image (stereo) 
correlation, enhanced with additional information as attributes. Other 
building elements (footprint, facades, roof overhangs) are created with 
automated procedures.

Several of these initiatives highlight a problem of existing 3D 
models: often they are the result of a one-time capture, with a few 
mostly manual updating exceptions. Updates and extensions may be 
considered in the future but were not foreseen at the moment they 
were captured. In addition, existing models resulting from the same 
workflow (and thus consistent) are limited to one or at the most to two 
different levels of detail for the same area and therefore the 3D data are 
limited to specific applications. More often, different LoDs of the same 
area are a result of different workflows and are therefore nonconsistent 
with respect to geometry, temporal aspects, and semantics. Finally, de-
tailed metadata about how the buildings were reconstructed, including 
quality information, are often not generated and thus missing.

Methodology for Automated 3D Reconstruction
In this section, we describe the reconstruction methodology of LoD1.2, 
LoD1.3, and LoD2.2 that we have developed and implemented for 
large areas, which we deliver as both 3D models and 2D+heights data 
(see Figure 1).

Figure 1. Overview of the six representations that we reconstruct 
in our process. (BAG stands for “Basisregistraties Adressen en 
Gebouwen”, or the Building and Address register of the Netherlands; 
LoD is level of detail.)

First, we describe the input data that we use in the reconstruction. 
Then, we describe the process itself. Since the LoD2.2 reconstruction 
generates information that is used in the reconstructions of the other 
LoDs (e.g., distinguishing between points that fall on walls and on 
roofs; generating a planar partition of the original footprint based on 
the identified roof planes), we start with the LoD2.2 reconstruction.
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Input Data
For our reconstruction process we use building polygons 
(“Basisregistraties Adressen en Gebouwen”, or the Building and 
Address register of the Netherlands (BAG)) and lidar point data 
(“Actueel Hoogtebestand Nederland”, the national height model of the 
Netherlands (AHN)) as input.

BAG: The polygons come from the Building and Address register 
of the Netherlands (BAG). This data set contains all buildings and ad-
dresses in the Netherlands. The geometry of addresses is collected as 
points and those of buildings as polygons (i.e., outline as seen from 
above). Municipalities are responsible for collecting the BAG data and 
keeping the data up-to-date.

The geometry for BAG buildings is acquired from aerial photos and 
terrestrial measurements and the data positional data accuracy is 30 
cm. The data is provided via the national geo-portal PDOK (2021) both 
in a viewer and as download service. BAG also contains the history 
of buildings, i.e., buildings that are planned and buildings that have 
existed in the past but now have been removed.

For our reconstruction, we make a selection of the BAG buildings 
that have been realized and have not (yet) been demolished, i.e., the 
input building polygon data set represents the current situation.

AHN: The national height model of the Netherlands (AHN, 2019) is 
a point cloud acquired by airborne lidar. The first version of AHN (with 
a density of at least one point per 16 square meters, and in forests one 
point per 36 square meters) was completed in 2003. In the period of 
2009 to 2012, the second version of the data set was acquired with an av-
erage point density of 10 points per square meter. The third version was 
collected between 2014 and 2019. The resolution of AHN3 that we use 
for our reconstruction process is similar to the one of AHN2. In addition, 
it contains a classification of the point cloud. For the AHN2 and AHN3 
point clouds, it is specified that an object of 2 × 2 m can be mapped with 
an accuracy of at least 50 cm. The height accuracy is 10 cm. We use the 
classes “building” and “ground points” to determine building heights 
respectively heights at ground level. The fourth version of AHN will be-
come available in the next two years. AHN4 will have a point density of 
about 10–14 points per square meter, and in some locations even higher.

LoD2.2
Our reconstruction method improves upon our earlier research as 
described in Dukai, Ledoux, and Stoter (2019) Dukai et al. (2020), and 
Stoter et al. (2020). The main improvement in this work is the addition 
of LoD2.2 output.

Our method uses footprints and height points that are well aligned 
as input and consists of two steps. In the first part the input footprint is 
partitioned into roof parts. And in the second part this 2D roof partition 
is extruded into a 3D model.

Footprint Partitioning
In this first step, the input footprint is partitioned by breaklines de-
tected in roof planes (see Figure 2).

 These roof planes are detected if sufficient points can be found 
for that plane using a region-growing algorithm (see Figure 2.2). For 
the AHN that we use, with a point density of ~8 points/m2, we set the 
minimum number of points to 15, which is equal to a roof element of 
about 2 square meters. Points that are on a wall plane (facade), or not 
part of any plane are removed.

We derive two types of lines from the planes: boundary lines 
and intersection lines (see Figure 2.3). The boundary lines of roof 
planes are detected using the α-shape of each detected roof plane. The 
intersection lines are generated at the location where adjacent planes 
intersect, e.g., on top of a gable roof.

Before the boundary and intersection lines are used to subdivide 
the footprint, they are regularized and duplicate lines are removed. 
For example, the line on top of the gable roof in Figure 2.3 is detected 
three times: once as an intersection line and twice as a boundary line, 
i.e., once for each incident roof plane.

The remaining lines are used to subdivide the footprint into an 
initial planar partition (Figure 2.4). This is referred to as the initial roof 
partition. The initial roof partition may still have a high complexity, 
i.e., it may contain many small faces. To further reduce the complex-
ity of the roof-partition, an optimization step is performed using a 

graph-cut optimization (Zebedin, 2008). In this step, a roof plane is 
assigned to each face in the roof-partition (see Figure 2.5). This is 
done in such a way that the total error with the input point cloud is 
minimized and the total length of the edges between faces of a differ-
ent roof plane is minimized. The latter assures a minimum number of 
edges and vertices, i.e., a low model complexity. After this step, the 
edges for which the two incident faces are assigned to the same roof 
plane are removed from the partition. The faces in the resulting final 
roof partition are referred to as roof parts.

Extrusion
In the LoD2.2 reconstruction, the identified roof parts are extruded from 
ground level to a 3D mesh (Figure 2.6). The mesh consists of three types 
of surfaces: the ground plane, the roof surfaces, and the wall surfaces. 
The height of the ground plane is based on the lowest point around the 
building and is calculated as the fifth percentile of all ground points that 
are within a 4 m buffer of the building. An intersection curve of the ter-
rain could also be used for this. The construction is done in such a way 
that no internal walls are created and the mesh is topologically correct.

LoD1.3
The LoD1.3 reconstruction uses the same footprint partitioning as is 
generated for the LoD2.2 reconstruction. But for LoD1.3, the footprint 
partitions are further simplified by merging neighboring parts that have 
no significant height difference. We use 3 m as a threshold in this pro-
cess, which is more or less equal to a floor-height, no matter the area. 
As the height reference we use the 70th percentile height for each roof 
part. The merging starts with merging from small to large height gaps 
and is an iterative process, i.e., if merging two roof parts leads to an 
elevation difference of <3 m with another part, they are merged again. 
The iteration stops when there are no more height differences smaller 
than 3 m between adjacent roof parts.

In the next step, reference heights are calculated for each remaining 
part and used to extrude the part.

As explained in the section “LoD in Relation to Reconstruction 
Method”, these reference heights can represent different extrusion 
heights for one building, i.e., the roof edge, the ridge height, or the 
maximum height (like a chimney). Furthermore, the underlying statis-
tical calculations used to calculate the extrusion height can differ, e.g., 
average, median, or maximum.

To standardize possible extrusion variations and to let the user 
choose which one to use, our method calculates four different reference 
heights from the points that fall on a roof part (excluding the points on 
walls) and assigns these to the 2D roof parts, i.e., minimum, maximum, 
50th percentile, and 70th percentile.

The LoD1.3 models are provided in two representations: as 2D 
roof-parts with the different reference heights as attributes, and as 
reconstructed (i.e., extruded) 3D models based on the 70th percentile 
of the roof points the specific part contains. The 2D roof parts also 

Figure 2. The main steps in the reconstruction process: (1) Building-
polygon + AHN surface points. (2) Roof plane detection. (3) Line 
detection. (4) Lines are projected into initial partition. (5) Final 
partition after assigning roof planes to polygon (compare with (2)). 
(6) LoD2.2 3D mesh.
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contain the identification of the original building to link the individual 
roof parts to the original building. The 3D models are reconstructed in 
such a way that there are no inner walls.

The reconstructed 3D models are represented as solids since rules 
for solids are stricter than for MultiSurfaces, e.g., using the solid ge-
ometry enforces a 2-manifold (i.e., watertight) 3D object.

For the ground surface, the same height is used as for the LoD2.2 
models, i.e., fifth percentile of all surface points that fall within 4 m 
radius of footprint.

LoD1.2
For the LoD1.2 models, we calculate the same four reference heights 
for the extrusion as we do for LoD1.3 and assign these to the original 
footprints. Also for LoD1.2, our method both reconstructs the 3D block 
models (based on the 70th percentile of height points that fall on all roof 
parts of the building) and assigns the four reference heights to the origi-
nal 2D footprints. The same surface height is used as for the other LoDs.

Implementation
Implementation of the Reconstruction Process
The implementation of the whole process as described above is visual-
ized in Figure 3. The input data is tiled to make the reconstruction and 
dissemination of the data more manageable. After reconstruction, the 
building models are stored in a PostgreSQL database from which the 
data is exported or directly consumed in various formats.

There are two considerations for optimally tiling the building 
footprints. First, the objective is to limit the number of buildings in 
each tile so that the workload is as balanced as possible between the 
processes. Second, the buildings should be spatially clustered so that 
the corresponding point cloud can be read efficiently. To meet both 
conditions, we use a quadtree with a maximum cell size of 3500 for 
subdividing the buildings (see Figure 4).

Thus, the building tiles are the leaves of the quadtree, where each 
tile contains a maximum of 3500 buildings. This assures that the 
reconstruction-time per tile is more or less the same and that the tiles 
available for download are similar in file size. The reconstruction of all 
ten million buildings in the Netherlands takes about 40 hours, with 30 
concurrent processes on a single machine (two Xeon E5-2650 Central 
Processing Units, 128 GB RAM). The computation cost scales linearly 
with the number of buildings, since each building is processed indepen-
dently. The reconstruction process is highly automated, which allows 
us to quickly run a new iteration in case of improvements in an algo-
rithm or in case new input data becomes available. Figure 5 shows an 
example of reconstructed 3D models at different LoDs for one building.

 

Visualization and Dissemination
To view and query as well as to download the reconstructed build-
ing models, we built a website with a 3D viewer (Figure 6). The 3D 
viewer was developed with two main goals: network performance (i.e., 
fast fetching of the data) and client performance, i.e., to minimize the 
resource needed on the device being used (including mobile devices). 
We developed our own solution since we could not find a suitable off-
the-shelf solution.

 To satisfy the network and client performance, we use a web 
graphics-friendly format with minimal size requirements, i.e., 3D 
Tiles1.  This is based on the glTF format2.  We export the data set to 
3D Tiles using the same tiling scheme as for the reconstruction of the 
buildings, which ensures that tiles have a relatively equal distribu-
tion of objects. We use 3DTilesRendererJS3 to render these tiles in 
the viewer. Our solution to make the user interface easy for users and 
mobile friendly uses VueJS4 for the website’s logic and Bulma5 for the 
styling of the user interface elements.

The viewer provides several functionalities that enable users to 
investigate the whole data set, as well as share it with others. A user 
lands at an initial point and can move around the country. A simple flat 
terrain using Web Map Tile Service (WMTS)6 is used to provide proper 
orientation context to the user. Each location in the viewer corresponds 
to a unique address so that the user can bookmark or share the current 

1. https://github.com/CesiumGS/3d-tiles
2. https://www.khronos.org/gltf/
3. https://github.com/NASA-AMMOS/3DTilesRendererJS/
4. https://vuejs.org/
5. https://bulma.io/
6. http://opengeospatial.github.io/e-learning/wmts/text/index.html

Figure 3. Overview of the multiple levels of detail (LoDs) 
reconstruction process. (BAG is Building and Address register of the 
Netherlands; AHN is the national height model of the Netherlands; 
GPKG is GeoPackage; CityJSON is a JSON-based encoding for a 
subset of the CityGML data model; OBJ is the Wavefront object file; 
WFS is Web Feature Service.)

Figure 4. Quadtree-based tiling scheme for data processing and 
dissemination.

Figure 5. Faculty building of Electrical Engineering, Mathematics 
and Computer Science at Delft University of Technology (TU Delft) 
campus. AHN3 point cloud and reconstructions at LoD1.2, LoD1.3, 
and LoD2.2. At LoD1.3, only height jumps >3 m are kept, and 
therefore it contains fewer roof structures than LoD2.2.
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view with others. Finally, the user can click on a building and get 
its information, as well as some derived properties: the height of the 
building at the specified point, and the slope of the surface that the user 
clicked on.

Through the website www.3DBAG.nl, the data is downloadable in 
different formats: GeoPackage, PostGIS backup, Wavefront OBJ, and 
CityJSON. The viewer also contains a function to report errors by us-
ers to help us improve our process, which can concern any part of the 
process, i.e., from preprocessing input data to reconstruction, viewing, 
and use.

Quality Information
Quality information regarding the resulting models is needed to iden-
tify a badly reconstructed model or an exceptional situation for which 
the 3D reconstruction process had not yet accounted for. With this 
information, the reconstruction process can be improved. In addition, it 
provides the user with information on how good a specific model is so 
that the user can act upon this.

We calculate two types of quality parameters and assign these as 
attributes to the individual models. First, we calculate parameters that 
assess the quality of the source data for the specific building. For ex-
ample, the number of points that were available for the 3D reconstruc-
tion, the no-data area, and the timeliness of the source data. Second, 
we calculate parameters that measure the success of the automatic 
reconstruction, e.g., the root-mean-square error (RMSE) between the 
reconstructed model and the input points, the maximum error between 
reconstructed mesh and the point clouds and eventual invalidity codes 
both in 2D (which means the input data contained an error) and in 3D 
(which means that the reconstruction failed). For the LoD2.2 building 
models of the Netherlands, the RMSE is less than 31 cm for 95% of the 
models and less than 9 cm for 75% of the models (see Figure 7). A 
more extensive evaluation is in progress. This evaluation is based on 
the quality parameters that we calculate in order to identify opportuni-
ties to further improve our workflow (Dukai et al. 2021).

Conclusions
In this paper, we describe the process that we have developed to auto-
matically reconstruct LoD1.2, LoD1.3, and LoD2.2 building models 
(supporting different reference heights for the block models) for large 
areas in one reconstruction process and based on the same source data. 
This provides the user with consistent 3D data of the same area meet-
ing the data-needs of different applications. We monitor quality infor-
mation throughout the entire process in order to continuously improve 
the process from input data, preprocessing, and 3D reconstruction to 
download and use the data in urban applications. In addition, the user 
can use the quality information to decide on the fit-for-purpose of the 
data for their own application.

The 3D data that we generate has been a good source to experiment 
and test all kinds of urban applications that need 3D data, and it is 
being used in, for example, noise simulations (Stoter et al. 2020), wind 
flow simulations (García-Sánchez et al. 2021), and energy consump-
tion calculations (Wang et al. 2020; León-Sánchez et al. 2021).

Based on experiences and users’ feedback, we will improve the pro-
cess and optimize for different users and applications. These improve-
ments may be generic such as filling the no_data areas in the point 
cloud with artificial intelligence; better alignment to specific data needs 
of urban applications, like optimizing the level of detail for specific 
applications (in relation to processing time); and enriching the data 
with relevant information, for example distinguish between external 
and internal walls and their areas for energy-related applications or 
the estimation of the number of floors per building. In addition, the 
availability of the next version of AHN (to be expected next year) will 
provide more reconstruction possibilities, as can be seen in Figure 8. In 
future research, we will also study more fundamental issues, i.e., how 
to maintain and manage different temporal and geometric versions of 
the 3D data and how to better align the different parts in the process to 
obtain even better results.
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Figure 6. Screenshot of the developed 3D viewer available at 
www.3dbag.nl.

Figure 7. The root-mean-square error (RMSE) between the input point 
cloud and the LoD2 reconstruction result (Dukai et al. 2021).

Figure 8. The palace in Amsterdam. AHN3 and AHN4 point 
clouds and the resulting LoD2.2 reconstruction. More details are 
reconstructed from the AHN4 point cloud because it has a higher 
resolution.
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Dynamic Linkage Between Urbanization, 
Electrical Power Consumption, and  
Suitability Analysis Using Remote  

Sensing and GIS Techniques
Muhammad Nasar Ahmad, Qimin Cheng, and Fang Luo

Abstract
This article proposes an estimation method for assessing urban 
sprawl using multispectral remote sensing data: SNPP-VIIRS, DMSP/
OLS, Landsat 5-TM, and Landsat 8-OLI. This study focuses on the 
impacts of human activities, in terms of increased electrical-power 
consumption (EPC) due to urbanization. For this purpose, night-
time light data are used to measure the EPC growth from 2000 to 
2020. We also perform a suitability analysis using geographic 
information-systems techniques to propose a new urban town in 
Lahore to mitigate urbanization and EPC increase. We found an 
overall increase of 33% in urban area and an EPC increase of 
21.6% in the last two decades. We also find that the best proposed 
site for the new urban town is in the northwest of Lahore..

Introduction
Urbanization is an emerging problem worldwide. It mainly affects 
socioeconomic factors and the demographic composition of locations, 
leading to many environmental and ecological problems such as urban 
heat islands and waterlogging. These complications are increasing as 
time goes on, due to rapid urbanization all over the world.

According to Q. Zhang and Seto (2011), a United States survey 
stated that by 2050 the global population will increase by 2.7 billion. 
For the most part, people readily move from rural to urban zones to 
seek better living and work opportunities and to enhance their earn-
ings, which leads to an increase in population density and urbanization. 
Ding et al. (2016) concluded that most agricultural farmland is con-
verted into urban areas, which will have negative effects on regional 
climate change. Imhoff et al. (1997) note that when analyzing urban 
sprawl and its dynamics, it is necessary to identify factors and the ef-
fects of urbanization on society and the environment.

Urban expansion is a reflection of urban growth patterns, which can 
be either scattered or fragmented. An abrupt increase in urbanization 
also results in the loss of vegetation, biological diversity, freshwater 
resources, and energy production sources. Dowall and Ellis (2009) ex-
plain that most of the growth in urban sprawl occurred in Asia over the 
past few decades. According to Sutton (1997), urbanization has nega-
tive impacts that are typically observed in underdeveloped countries. 
There is a need to control the outcomes of urbanization. The health of 

the environment and food security in densely populated regions are 
the main reasons for monitoring urban settings, because they address 
public health issues as well as fiscal concerns.

Globally, the main factor is people who migrate to enhance their 
livelihoods and earnings and secure their future. In the past, statistical 
data and conventional methods were used to analyze changes in urban-
ization. But these methods are slightly complicated and require consid-
erable time for data collection and surveying. Taubenböck et al. (2012) 
described limitations of these conventional methods. Researchers are 
now using remote sensing technology to speed up analysis and identify 
changes in land cover/land use.

Remote sensing is a dynamic tool that is used to acquire accurate, 
prompt, and up-to-date spatial information on urban growth patterns 
across the globe. However, mapping of urban clusters is quite difficult, 
because of mixed land use, which includes buildup, rivers, vegetation, 
and barren land. Many satellite products are available which incorpo-
rate different sensors and image characteristics, for mapping built-up 
areas and urban clusters. However, this also depends on the available 
spectral and spatial resolution of the satellite imagery.

In past, multiple satellite images were used, such as MODIS, Spot, 
and Ikonos, but these satellite products were acquired only during 
daytime (Zhao et al. 2018). But nighttime light (NTL) data have a par-
ticular characteristic that allows a sensor to acquire data in the absence 
of sunlight. Because light-source detection is strongly correlated with 
urban activities at any given location at night, researchers in the past 
considered emission of light as an indicator of electrical-power con-
sumption, human activities, population expansion, and urban sprawl 
(Yi et al. 2014; Zhou et al. 2014).

Thus, the use of NTL data is quite practical for analyzing the 
distribution of urban expansion using image-processing techniques 
combined with multi-source data. Small et al. (2005) determined that 
electrical-power consumption is a major factor for countries in terms of 
energy production. As discussed by Letu et al. (2010) and Mellander et 
al. (2015), NTL data can also be used to predict future economic growth 
and reliability, with respect to available energy resources. According to 
Kiran Chand et al. (2009), mostly solar power, wind power, and coal 
are used to produce electricity on a global scale.

Nighttime light data typically capture artificial light emitted from 
the earth’s surface at night. NTL products including DMSP/OLS and 
NPP-Visible Infrared Imaging Radiometer Suite (VIIRS) data can be 
used to assess large areas, because they have a resolution of 750 m to 
1 km. Nighttime light data (NTLD) are also convenient for determining 
time-series change over the globe, because there are many freely avail-
able products. According to Huang et al. (2014), NTLD have been used 
more since the launch of version 4 and VIIRS products.
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Lahore, Pakistan, is facing the worst electricity shortfall in the past 
two decades, and lots of research work is required in this domain. This 
shortfall is basically due to rapid urbanization, because the available 
supply is lower than the demand for electricity. As population has 
increased by 2.28 million, from 10.36 million in 2015 to 12.64 million 
in 2020, electrical-power consumption (EPC) per capita in Lahore has 
increased by an estimate of 12.10 kW h due to the increase in popula-
tion and urbanization.

This article aimed to identify overall growth in EPC from 2000 to 
2020 using NTL and Landsat data. Therefore, population increase and 
EPC were also correlated with urban area extracted from NTL data. 
Historically, in Lahore most of the urbanization has been observed in a 
horizontal direction. The selected study area is the second-largest city 
of Pakistan, and the tendency of people to migrate to this city has been 
very high in the last 30 years. Now there is no more space for the city to 
grow in a horizontal direction. Thus, in response to this uncontrollable 
urbanization there must be a new urban town, which would consist of 
vertical infrastructure development. For this purpose, the CommunityViz 
Scenario 360 module was used to identify the best site for a new urban 
town that would consist of skyscrapers and vertical development.

This research work is significant as it contributes to the identifica-
tion of increased electrical-power consumption, urban population, and 
urbanization in Lahore over the past two decades. It also provides a 
solution in the form of a proposed location of a new urban town to 
control rapid urbanization and reduce electricity consumption. The 
originality of our work is that no previous research work has been done 
on increased electrical-power consumption in this study area using NTL 
data products and remote sensing, and no one has used CommunityViz 
Scenario 360 to identify the location of a new urban core in Lahore.

Study Area and Data
Study Area
Lahore is the capital city of Punjab Province, in Pakistan, and is locat-
ed in the northeastern part of the province. According to a recent cen-
sus, it has a population of 12 642 000, making it is the second-largest 

city by population in Pakistan. It has an area of 1772 km2 and a 
geographical position of 31°34′55.3620″ N and 74°19′45.7536″ E. The 
location of the study area is shown in Figure 1.

Data-Set Overview
DMSP/OLS Nighttime Light Data
In terms of technical specifications, NTL has two spectral bands: vis-
ible and thermal infrared. Cloud-free composite images for the years 
2000 and 2010 were downloaded from the National Oceanic and 
Atmospheric Administration (NOAA) website and further preprocessed. 
Defense Meteorological Satellite Program (DMSP) OLS data were only 
available until 2013, so another composite of NTL data was used for 
the year 2020. Pandey et al. (2013) and Shi et al. (2014) believe that 
0.56 km is comparatively high spatial resolution for NTL data prod-
ucts. However, spatial resolution can fluctuate with respect to different 
locations and distance from the Equator (Amaral et al. 2005; Yin et al. 
2020). The acquisition time and sensor information can be found in 
Table 1, which has an overall spatial resolution of 1 km.

SNPP-VIIRS
The Suomi National Polar-Orbiting Partnership (SNPP) satellite 
launched in October 2011 and was designed to acquire high-resolution 
radiometric data on a daily basis for both daytime and nighttime. It is 
operated in collaboration with NASA and NOAA. The primary sensor 
on SNPP is a VIIRS. The source data are produced in Hierarchical Data 
Format-5, and are available through NOAA’s Comprehensive Large 
Array-data Stewardship System archive. The National Geophysical 
Data Center developed a service to geo-locate VIIRS images to improve 
usability, meet data needs, and reduce data volume. For research pur-
poses, a daily mosaic of daytime VIIRS with I-bands and nighttime day/
night band data is available worldwide. Table 1 provides the overall 
details of the data set used in this study.

Landsat Data Set
Landsat imagery is acquired under the NASA/USGS program, which 
provides the longest and most continuous space-based satellite imagery 
worldwide (Deng and Wu 2013). Landsat images have been available 

Figure 1. Location of the study area.

 Table 1. Satellite imagery used in this study.
Satellite Sensor Type Acquisition Date Spatial Resolution Source

DMSP/OLS OLS March 2000–2010 1 km https://ngdc.noaa.gov/eog/dmsp

NPP-VIIRS SNNP March 2020 750 m https://ngdc.noaa.gov/eog/viirs.html

Landsat 5 TM March 2000/2010 30 m https://earthexplorer.usgs.gov

Landsat 8 OLI March 2020 30 m https://earthexplorer.usgs.gov
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since 1972. This study was carried out using two Landsat products—
Thematic Mapper (TM) and Operational Land Imager (OLI)/Thermal 
Infrared Sensor (TIRS) sensors—and the data were downloaded from 
the USGS website. Satellite imagery was acquired at 10-y intervals, 
within the first quarter of each year to avoid variations due to climate. 
The Landsat data used to carry out this study are listed in Table 2.

Punjab Population Data
The government of Pakistan updated census data records in 2017, with 
the collaboration of the military, and changes were made in national 
databases of sectors involved. For this study, Lahore population data 
were collected from the Pakistan Bureau of Statistics and cross-
checked with the United Nations Population Prospects 2019 (Table 3). 
Population data are available through 2035, but they are projected on 
the basis of 2015–2020 data values by the relevant department.

Electrical-Power Consumption (EPC) data
EPC data were acquired from the Lahore Electric Supply Company, a 
department of the local government, which maintained these data with 
the collaboration of the National Transmission and Despatch Company. 
The data were acquired in kilowatt-hours per capita and used to gener-
ate further computations and comparisons of EPC with total night light 
area. Details of electricity consumed per capita from 2000 to 2020 are 
presented in Table 4.

Lahore Vector Shape-File Data
The shape file of union council boundaries was acquired from the 
Lahore Development Authority’s website. The rest of the spatial data 
were digitized and projected using Google Earth satellite imagery for 
suitability analysis: union Council boundaries, airports, walled city 
boundaries, railway stations, highways, and the Ravi River.

Methods and Processing
Multi-source satellite data can be combined to provide temporal 
observations or more information for environmental applications, 
such as monitoring land cover/land use management and conditions. 
This study hypothesizes that a methodology can be developed to as-
sess urban expansion in the Lahore jurisdiction by using multi-source 
satellite data. These observations can be used to highlight changes in 
EPC, specifically increases due to the impacts of human socioeconomic 
activity, using NTLD.

For this purpose, NTLD, population density, and EPC can be cor-
related to determine the impacts of urban-area expansion on population 
and EPC. A flowchart depicting the general methodology of data flow, 
integration, and analysis is shown in Figure 2.

Numerous methods have previously been used by researchers to 
carry out the EPC calculations and to compare population densities 
with nighttime light data, including linear correlation, log-to-log, and 
second-order regression models. However, according to Y. Liu et al. 
(2015), more accurate results were attained in most studies by using 
simple linear regression and correlation models. Shi et al. (2014) also 
explained that linear correlation is a resilient technique to compare NTL 
area with economic indicators. Therefore, we constructed a linear cor-
relation model in this study,

	 G = wL + c	 (1)

where G denotes the statistical data (such as population density or 
EPC for a specified location) and L is the total amount of light at night 
(Ma et al. 2015; Xu et al. 2020). The buildup area was extracted from 
DMSP/OLS and SNPP-VIIRS imagery through the summation of all the 
pixels depicting an urban area in the study area, where w is the coeffi-
cient and c denotes the intercept. Lo (2002) determined that population 
density can be calculated by simple division of total population by the 
total area for a specific location. So the number of people per unit of 
area (square kilometer) was determined by

	 PD = TP /TA	 (2)

where PD = population density, TP = total population, and TA = total area.

The area was also calculated for each type of land use, such as 
areas that were built up, from a classified image, which was then used 
to analyze the changes in urban area. J. Zhang et al. (2014) described 
how area can be calculated by multiplying the number of pixels and 
total pixel area. These calculations (yielding values in square kilome-
ters per square meter) have been done using

	 Area = NP×PA×10–5	 (3)

where NP designates the number of pixels for each class and PA is the 
pixel area, which is always 900 m2 for Landsat because it has a resolu-
tion of 30 m.

Furthermore, Figure 3 shows the data flow for the suitability analy-
sis for the proposed site of a new urban town in Lahore.

CommunityViz Scenario 360 is a spatial decision support system—
that is, an interactive, computer-based system designed to support us-
ers in achieving higher effectiveness in decision making while solving 
a spatial problem (Tao 2013). It is designed to assist spatial planners in 

Table 2. Details of Landsat imagery.

Sensor ID
Sensor 
Type

Acquisition 
Date

Row/
Path

Spatial 
Resolution

LT051490382000031101T1 TM 11 March 2000 149/038 30 m

LT051490382010030601T1 TM 07 March 2010 149/038 30 m

LC081490382020021501RT OLI_TIRS 15 February 
2020 149/038 30 m

Source: NASA/USGS-Earth Explorer.

Table 3. Population statistics for Lahore from 2000 through 2035.
Year Population Growth Rate

2000 5 576 372 3.69

2005 6 856 969 4.31

2010 8 432 132 4.22

2015 10 369 137 4.22

2020 12 642 423 4.04

2025 14 825 828 3.24

2030 16 883 085 2.63

2035 19 116 605 2.52

Source: Bureau of Statistics, Pakistan

Table 4. EPC data per capita (kW h) for Pakistan and Lahore.
Year Pakistan Lahore

2000 362.4048 12.456 958

2010 442.1800 20.160 709 1

2020 532.5123 32.265 440 4

Source: Lahore Electric Supply Company

Figure 2. Data flow for urban-sprawl assessment.
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making land use plans and decisions. It helps analysts view, analyze, 
and understand land use alternatives and their impacts. CommunityViz 
Scenario 360 is a spatial decision support system processed on 
ArcMap using CommunityViz. A proposed site for a new urban town 
is constructed on the basis of the criteria shown in Table 5, which also 
provides details of the targeted layer and score result.

Table 5. Defining criteria and spatial layers.
Criterion Target Layer Formula Type Score Result

Far from airport Airport Proximity Lower

Near Lahore walled city Existing plazas Proximity Higher

Near railway station/network Railway station Proximity Higher

Near highways Roads Proximity Higher

Easy access to nearby cities Cities Proximity Higher

Near freshwater resource River Proximity Higher

Moreover, all the alternatives were projected on the basis of avail-
ability of land, entry/exit from/to Lahore city, and the criteria defined 
for the identification of a suitable location for the new urban town. 
The available alternatives were Kot Begum, Ravi Town, to the north; 
Shahpur, Iqbal Town, to the south; Bhangali, Aziz Bhatti Town, to the 
east; and Gajju Matta, Nishtar Town, to the west.

Imagery Resampling and Reprojection
The data set used in this study came with a geographical reference 
system, which had a resolution of 1 km for DMSP/OLS and 750 m (Cao 
et al. 2009) for the SNPP-VIIRS data. To rationalize, make the analysis 
smooth, and obtain more consistent results, we resampled the data to a 
500-m spatial resolution. For this reason, both data sets were repro-
jected to the WGS 1984 UTM Zone 43N, where Lahore lies. After that, 
both satellite images were resampled with a spatial resolution of 500 m 
using the available data-management and raster-processing resampling 
tool in ArcMap.

Furthermore, all three images—DMSP/OLS, SNPP-VIIRS, and Landsat 
5-TM/8-OLI—were clipped using the vector boundary of the study 
area. To calculate the area, the NTL data were also reprojected to WGS 
1984 UTM Zone 43N, and the projected coordinate system was con-
verted into ENVI HDF format for further processing. For this purpose, 

the software used to conduct image processing included ERDAS 
Imagine, ENVI, and ArcGIS. Similarly, statistical software was used to 
analyze and to compute the linear correlation between NTL area, popu-
lation density, and electrical-power consumption.

Classification Methods and Details
For all three satellites images from 2000 to 2020, NTL data were 
classified using a maximum hood classifier in ERDAS Imagine. NTL 
is already a classified form provided by the Defense Meteorological 
Satellite Program, but we converted it to a projected coordinate system 
and classified it so that we could compute the overall change in EPC for 
each year.

A support vector machine classifier was used to classify the Landsat 
imagery into three classes for all three successive years. For nighttime 
light data, no specific classifier was required, because it only con-
tained two day/night values; it can be classified according to analysis 
requirements. But in this study, the purpose of classification was only 
to extract urban areas from satellite imagery. However, for Landsat 
classification there are distinct land use types with discrete reflectanc-
es, and therefore the support vector machine was used to classify data. 
Because the support vector machine is very supportive for spectral 
detection and dynamic supervised classification (Amaral et al. 2006; Z. 
Liu et al. 2012). The description of the classes is as follows: urban area 
(built-up areas and any infrastructure), nonurban area (barren land, 
open land), vegetation (both farmland and vegetation), and water (all 
waterbodies, rivers, lakes, and canals). Moreover, for NTLD the nonur-
ban area class includes all land uses excluding built-up area, because it 
focuses on urban area emitting light during nighttime.

For instance, there are only two classes for DMSP/OLS and SNPP/
VIIRS: urban and nonurban, where nonurban refers to all other land use 
types, including farmland, barren land, waterbodies, and open land. 
But for Landsat data there are three classes: urban area, vegetation, and 
waterbodies. Table 6 provides details on the classification methods, 
names of classes, and number of signatures made for each category.

Calculating Population Density for Each Year
Population data for Lahore were acquired from the Pakistan Bureau 
of Statistics, which was responsible for acquiring and updating the 
relevant population data on a yearly basis. City population data records 
were available, and so we filtered Lahore from the overall database. 
Population data are shown in Table 3, and the formula used to process 
the population data further and calculate population density (Equation 
2) has already been discussed.

Results
We found that during the past two decades, urban sprawl and EPC have 
increased unevenly. Dynamic changes in urban sprawl, and its impacts 
on EPC, were found increase each year. Most of the urban develop-
ments were observed in the southeastern and western parts of the city. 
The results are further explained for each data set.

DMSP/OLS and SNPP-VIIRS
Images were processed and classified using ERDAS Imagine software. 
In addition, we constructed a confusion matrix to assess the overall 
accuracy of classification. The average accuracy from 2000 to 2020 
was determined to be 90.65%, with a κ coefficient of 83.24% (Table 
7). The maps in Figure 4a show the overall increase in urban sprawl. 
These results were obtained using NTLD for Lahore from 2000 to 2020. 
Notice the significant growth in urban area for 2020 as compared to 
2000. Moreover, Figure 4b compares three zones in 2000 and 2020 
using NTLD results. It shows rapid change in urban area within two 
decades in all three zones.

Figure 3. Flowchart for suitability wizard.

Table 6. Defining classification methods and satellite data used.
Satellite Data Classifier Number of classes Names of Classes Training Samples per Class

DMSP/OLS Maximum likelihood 2 Urban area, nonurban area >1000

SNPP/VIIRS Maximum likelihood 2 Urban area, nonurban area >1000

Landsat 5-TM, 8-OLI SVM 3 Urban area, vegetation, waterbodies >6000

174	 March 2022	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



To validate the classification results, we performed accuracy as-
sessments using a postclassification tool on ENVI software, as shown in 
Table 7.

Basically, a confusion matrix cross-validates classification results 
and determines whether or not a classifier has been applied correctly. 
It is available in all image-classification software to determine clas-
sification accuracy. The back-end algorithm gives an estimation of the 
values assigned to a class, and if they were accurately classified uses a 
comparison signature that was made on the same image by the user.

Table 7. Overall accuracy and κ coefficients using DMSP-VIIRS 
nighttime light data.

Year

2000 2010 2020

Overall Accuracy 86.05 89.2 91.71

κ Coefficient 78.8 81.53 85.4

(a)

(b)

Figure 4. (a) Classification map obtained using nighttime light data. (b) Comparison map obtained using nighttime light data.
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Landsat 5-TM and 8-OLI
We also found an abrupt change in the urban area observable in Figure 
5a, which depicts the Landsat classification results from the support 
vector machine classifier from 2000 to 2020. On the other hand, overall 
degradation can also be observed for total vegetation cover. Most of the 
urban area was converted from farmland to built-up area during the last 
20 years. Furthermore, Figure 5b shows the comparison of three zones 
for both 2000 and 2020 using Landsat classification results. It can be 
seen there is an enormous change in urban area in all three zones.

Table 8 shows the accuracy assessment calculations for Landsat 
imagery from 2000 to 2020.

Table 8. Overall accuracy and κ coefficients obtained using Landsat 
data sets.

Year
2000 2010 2020

Overall Accuracy 87.2 89.5 91.7
κ Coefficient 71.5 80.3 83.03

EPC and Population-Density Increase
We have further sorted out World Bank data to determine the overall 
growth in EPC and population density. Figures 6 and 7 show an overall 
increase in both indicators, and Table 9 shows overall population increase.

(a)

(b)
Figure 5. (a) Land use classification map using Landsat data. (b) Comparison map using Landsat data.
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Figure 6. Increase in electrical-power consumption (kW h per capita) 
in Lahore from 2000 to 2030.

Figure 7. Increase in population density (people/m2) in Lahore from 
2000 to 2030.

Table 9. Population-density increases.
Year % Increase
2000 12.80
2010 19.36
2020 29.04
2030 38.78

Vegetation Loss
Classification results were also used to identify the extent of vegetation 
loss from conversion of vegetation to urban area. The raster-analyst 
tool in ArcMap was used to subtract classified images for each year to 
find out the vegetation loss (Figure 8).

An overall loss of 28.43% in vegetation was observed from 2000 to 
2020, as shown in Table 10.

EPC and Population Density Correlated With NTL Data
To measure changes in the urban population, the DMSP nighttime 
light area data were correlated with EPC data. An increase in EPC was 
estimated by linear correlation between the total night light area, which 
was extracted from the nighttime light data set, and the EPC obtained 
from statistical data. Calculations were performed as previously stated, 
and we found high positive correlations for both indicators and NTLD 
(Figures 9 and 10), with gradual increases from 2000 to 2020.

Proposed Location for a New Urban Town in Lahore
We constructed a spatial decision support system on ArcMap using 
the CommunityViz Scenario 360 tool. Figure 11 shows the weight-
ing assumptions used for suitability analysis for each spatial layer and 
criterion automatically generated in CommunityViz.

Figure 9. Correlated population density and nighttime light data changes.

Figure 10. Correlation between electrical-power consumption and 
nighttime light data.

Figure 11. Weighting assumptions in each criterion.

Figure 8. Overall vegetation degradation (km2) from 2000 to 2020.

Table 10. Urban-area increase and vegetation loss.
Time Span Urban Sprawl (%) Vegetation Loss (%)
2000–2010 61.07 31.50
2010–2020 69.38 26.47

Overall 28.43
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Figure 12 shows that Kot Begum in Ravi Town, in the northwest of 
the study area, is the best proposed location for the new urban town. 
This allows for social and environmental problems to be solved with 
geospatial techniques like remote sensing and encourages policy mak-
ers to pay more attention to and invest more in geospatial infrastructure 
as a means of solving most environmental problems.

Discussion
We found that useful results can be obtained by using statistical data 
and DMSP/OLS and SNPP-VIIRS nighttime light data in terms of correlat-
ing economic indicators with urban populations and EPC. DMSP/OLS data 
and NPP-VIIRS data are the most common sources for mapping urban 
sprawl and determining economic indicators (Xia et al. 2019). During 
the rapid urban expansion of the past two decades, considerable agricul-
tural land (farmland) has been lost, especially vegetation. It can also be 
seen that a linear correlation is a good estimator for population and EPC, 
and can be used to compare nighttime light data with other indicators.

However, recent research also recommends that the relationship 
between urban sprawl and socioeconomic indicators be used to help 
planners consider available energy resources for each city, according 
to population density and social needs. Unplanned and unmanaged 
urban expansion always creates problems that increase shantytowns, 
environmental pollution, deprivation, and discrimination of resources 
and budget misallocations in major cities. Uncontrollable urbanization 
is also effecting temperature changes in Lahore. It is possible that in 
the future, Lahore will become an urban heat island.

Another factor is that urban area expanded in the horizontal direc-
tion in Lahore over the past 40 years. If this had happened in the verti-
cal direction instead, there would be more opportunity to accommodate 
a greater population and develop a more sustainable city. In the future, 
Lahore will face more challenges due to continuous urban expansion if 
there are no new urban towns or vertical development plans, in terms 
of both EPC and urban population. The annual GDP of Lahore will also 
be affected, because of high demand of EPC.

Conclusions
This study found that there was a significant increase in the urban area 
of Lahore, Pakistan, from 2000 to 2020, which can be seen using both 
satellite data sets. The results showed a 33% in urban area, using night-
time light data. Data from DMSP/OLS, SNPP-VIIRS, and Landsat were 
compared for the years 2000 and 2020, and the urban centers were 
found to increase with the same patterns and tendencies. The urban 
area extended toward the southeastern parts of the city because of the 
river on the north side and the Indian border to the east.

NTLD is a good estimator of economic activities—i.e., EPC and 
population—as analysis shows an overall EPC increase of 21.6% over 
the past 20 years. Similarly, we also found an overall decrease, of 
approximately 28.43%, in vegetation land use, which showed a strong 
positive correlation with EPC (R2 = 0.94) and population density (R2 = 
0.97) using total night light area. This study also provided a proposed 
location for a new urban town which is near to fresh water, highways, 
and other main cities. This new urban town can be developed in the 
vertical direction so that it can accommodate more people. As this 
location is on the Ravi River, it can also provide facilities for hydro-
power projects that can be a strong initiative to produce more electric-
ity to support a greater population.
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Monitoring Earth Hazard with Remote Sensing Techniques

Natural and human disasters are increasingly affecting 
global communities worldwide in recent decades. With 
the increasing human population and urbanization, the 
earth is inevitably more susceptible to manmade hazards. 
Global warming and its associated environmental instability 
increase the frequency and severity of the disaster. Rapid 
Climate change is linked with meteorological events with 
a high degree of risk probability causing flood disasters. 
Implementation of proper hazard management such as 
disaster prevention, disaster preparedness, and adequate 
disaster relief would reduce the impact of natural disasters. 
Usage of the convectional earth observation model helps 
hazard management with a reliable solution but cannot 
provide early prediction of disaster occurrence, saving peo-
ple’s lives. However, using remote sensing techniques would 
enable warning systems by building futuristic codes that 
predict the hazards and warn people on time with greater 
accuracy. Remote sensing imagery provides a quick method 
for assessing the variation of hazard impacts, coastal inun-
dation, erosion, and majority affected flood plains using 
intelligent, visionary technology. The data gathered from 
sensors provide valuable insights about the spatial phenom-
ena that aid scientists in making accurate decisions about 
the forecast patterns. Above all satellites, remote sensing 
is used to detect global environmental problems, explore 
resources, and monitor disasters by capturing the earth’s 
surface during altered weather conditions. This helps in the 
early detection of disaster patterns with futuristic mitigation 
procedures. 

The sensors technology captures images of fires, flooding, 
and volcanic eruption can create a visual impact during the 
response phase that aids in readiness actions when people 
are viable to disaster risk. Earth observation systems and 
GIS helps professionals to make effective project planning 
with a more accurate analysis. The utilization of various 
spectral bands such as Visible, infrared, thermal infrared, 
and synthetic aperture radar provides adequate coverage 
of environmental patterns and allows technology en-
hancement to analyze data. Meteorological satellites use 
High-resolution transmission sensors for cyclone monitor-
ing, intensity assessment, and storm surges. Geo-stationary 
satellites use global coverage sensors for flood and drought 
management by collections of multi-date imaginary data for 
rainfall and river stages. Using its unique spectral signature, 
it identifies the water standing areas, the sand casting of 
agricultural lands, and marooned villages to enable hazard 
recovery plans. SAR sensing system is used to detect forest 
fires and forest monitoring using microwave techniques to 
acquire sensory images. There are some challenges about 
using sensors for hazard prediction where research pros-
pects are needed. As smart sensors use advanced technolo-
gies and complex data for prediction, data breaches would 
lead to misinterpretation of results, increasing the risk to 

human lives. An adequate skilled workforce is required to 
analyze the collected sensor data. In the future, integrating 
IoT and artificial intelligence would create autonomous 
drones that aid in inspecting the geographical patterns 
in multi-dimensional views to accelerate high definitions 
imagery for efficient prediction of results. This special 
issue enumerates the role of remote sensors for earth 
hazard predictions and future advancements. We welcome 
scholars and practitioners of this platform to emphasize this 
topic and present submissions that fall within the scope of 
remote sensing techniques for the accurate prediction of 
environmental hazards.

The topics of interest include:
	y Role of Artificial intelligence in generating patterns in 

sensor data
	y Disaster management cycle and it’s important in hazard 

mitigation
	y Advantages of geometrics in disaster risk management
	y Usage and applications o GIS in flood forecasting
	y Advanced Earth observation system tools for project 

planning
	y RadarSat and use cases in detecting oil seeps
	y Big data and its uses for accurate data collection in 

sensors
	y Role of climate change in creating environmental risk
	y Advancement in satellite sensors for earth’s behavioral 

prediction
	y Role of autonomous drones in capturing multispectral 

images  
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An Optimal GeoAI Workflow for Pan-Arctic 
Permafrost Feature Detection from  
High-Resolution Satellite Imagery

Mahendra R. Udawalpola, Amit Hasan, Anna Liljedahl, Aiman Soliman, Jeffrey Terstriep, and Chandi Witharana

Abstract
High-spatial-resolution satellite imagery enables transformational 
opportunities to observe, map, and document the micro-topographic 
transitions occurring in Arctic polygonal tundra at multiple spatial 
and temporal frequencies. Knowledge discovery through artificial 
intelligence, big imagery, and high-performance computing (HPC) 
resources is just starting to be realized in Arctic permafrost science. 
We have developed a novel high-performance image-analysis frame-
work—Mapping Application for Arctic Permafrost Land Environment 
(MAPLE)—that enables the integration of operational-scale GeoAI 
capabilities into Arctic permafrost modeling. Interoperability across 
heterogeneous HPC systems and optimal usage of computational 
resources are key design goals of MAPLE. We systematically compared 
the performances of four different MAPLE workflow designs on two 
HPC systems. Our experimental results on resource utilization, total 
time to completion, and overhead of the candidate designs suggest 
that the design of an optimal workflow largely depends on the HPC 
system architecture and underlying service-unit accounting model.

Introduction
Big image-data analysis has become essential in an array of scientific 
applications, such as computer vision (Kucuk et al. 2017), medical im-
aging (El-Baz and Suri 2020), materials science (Okunev et al. 2020), 
and astronomy (Kremer et al. 2017). The advancements of satellite 
sensor technology, coupled with the ever-increasing spatial resolution 
and temporal frequency of image acquisitions, ideally position remote 
sensing applications in the big-data landscape (Wang et al. 2015; Liu 
et al. 2018). Satellite imagery archives are being radically transformed 
from terabytes to petabyte scale (Witharana et al. 2021). The sheer 
volumes of imagery pose new challenges in storage, analysis, and 
visualization techniques (Liu 2015; Y. Ma et al. 2015), and the require-
ments exceed the capabilities of existing general-purpose computing 
resources. Therefore, highly efficient workflows with high-perfor-
mance computing resources are required for implementing big-imagery 
applications.

High-throughput computing (HTC) and high-performance comput-
ing (HPC) are both important in high-resolution imagery analysis on 
a petabyte scale. HTC is used for workloads that consist of tasks that 
are independent of each other and can start or complete in any order 
(e.g., automated feature extraction from thousands of satellite images 
in repeated mapping applications). Therefore, there is a lot of flex-
ibility in scheduling these HTC jobs in HPC systems. In contrast, an HPC 

workload is characterized by its scalability or running time. Typically, 
an HPC workload consists of a single job that coordinates multiple 
processes which run at the same time. When running these jobs, input–
output requirements are important. Usually, HTC tasks operate on a 
small volume of data and HPC workloads operate on large volumes 
of data. But in running many HTC jobs, the limitations of input–out-
put bandwidth become significant. Usually, most supercomputers 
are designed for HPC workloads. Huerta et al. (2019) argue that new 
applications require a paradigm shift in computing architecture to ad-
dress large data sets, deep-learning algorithms, and hybrid workloads 
using both HPC and HTC. It is imperative to find out how applications 
with hybrid workloads can be run efficiently in existing HPC resources. 
Remote sensing (RS) big-data applications typically consist of hybrid 
workloads requiring efficient use of existing HPC systems. Lee et al. 
(2011) reviewed advances in HPC applied to remote sensing problems, 
and in particular HPC-based platforms, such as multi-processor systems 
and large-scale and heterogeneous networks of computers.

A seamless application of HPC resources for translating big satellite 
imagery into science-ready products can enable knowledge discov-
ery at the nexus of the human and natural systems (Chi et al. 2016). 
In recent years, the use of HPC resources has become an inextricable 
component in big-imagery applications (Wang et al. 2018). A plethora 
of applications can be found in the literature involving big imagery 
and HPC. Amat et al. (2015) developed a workflow for light-sheet 
microscopy, which involves several tens of terabytes of data. Schmied 
et al. (2016) compared the performance of an automated workflow on a 
single workstation and an HPC cluster. Liu et al. (2016) analyzed a geo-
sciences workflow on multi-core processors and graphical processing 
units (GPUs), achieving a 5× speedup on a multi-core processor and a 
43× speedup for some parts of the workflow on GPU. In a recent study, 
Al-Saadi et al. (2021) compared workflow application designs for 
high-resolution satellite-imagery analysis. They analyzed three work-
flow designs using the Extreme Science and Engineering Discovery 
Environment (XSEDE) HPC system for two use cases, for a total of 4672 
high-resolution satellite and aerial images and 8.35 TB of data.

Modern HPC systems consist of many HPC computer nodes. Each 
node contains multi-core central processing units (CPUs) and multi-
GPUs. RS big-data applications need to use both CPUs and GPUs in their 
workflow, because GPUs are efficient at processing RS images and CPUs 
are efficient at executing complex algorithms. Several traditional paral-
lel paradigms are widely used in these systems, such as OpenMP and 
Message Passing Interface. Implementation of parallel RS algorithms 
using Message Passing Interface is difficult, and HPC systems are not 
optimized for data-intensive computing (Wang et. al. 2016). RS work-
loads involve both HPC and HTC features, so they are considered hybrid 
HPC/HTC workloads. A single RS workload may not be large enough 
for use in many multiple nodes. It is therefore critical to examine 
how to optimize RS hybrid HPC/HTC workloads in a single node with 
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multi-CPU and multi-GPU cores. The use of HPC resources is measured 
using service units (SUs). RS workflows with big-imagery analysis need 
to be optimized for both Sus and running time. Different HPC systems 
measure the use of SUs by different accounting models. These different 
configurations present new challenges in designing efficient workflows 
for targeted applications which require both CPU and GPU processing.

Traditional remote sensing image-analysis algorithms fail to 
grapple with the image complexities and high-level semantics arising 
from sub-meter-resolution satellite imagery (Blaschke 2010; Blaschke 
et al. 2014; Lang et al. 2018). Sophisticated algorithms which exploit 
color, texture, spatial arrangement, and context, and construct high-
level abstractions based on low-level motifs, are needed for automated 
object detection, segmentation, and classification (Ma et al. 2019). 
Deep-learning convolutional neural nets (DLCNNs; LeCun et al. 2015) 
have shown great potential for semantic object-instance segmenta-
tion in detecting and delineating each distinct object in an image of 
common objects from everyday images. The success of DLCNNs in 
computer-vision applications has received great interest from the 
remote sensing community (Ma et al. 2019). But DLCNN algorithms are 
computationally intensive and demanding of memory. Thus, it is im-
portant to optimize data management, image processing, classification, 
and visualization techniques, because they serve as key bottlenecks in 
image-to-assessment pipelines.

Archived observation data was predicted by the Open Geospatial 
Consortium to exceed an exabyte by 2015 (Karmas et al. 2016). But 
it is estimated that up to 95% of the data present in existing archives 
have never been accessed (Nikolaou et al. 2014). Over the last decade, 
the entire Arctic has been imaged at 0.5-m resolution several times 
by commercial satellite sensors of Maxar Technologies (previously 
known as DigitalGlobe; Witharana et al. 2020). The image repository 
at the Polar Geospatial Center at the University of Minnesota provides 
transformational opportunities to observe, monitor, and document per-
mafrost thaw occurring across the Arctic tundra, which is a logistically 
challenging region with an extremely sparse field observation network. 
Landscapes of Alaska, Canada, and Russia harbor approximately 
5 million km2 of tundra. But imagery is underutilized, and derived 
science products are rare despite their unprecedented potential for pan-
Arctic permafrost monitoring and modeling applications.

Permafrost—unique landscapes comprising Earth materials that 
remain at or below 0°C for at least two consecutive years—cov-
ers approximately 24% of the exposed land surface of the Northern 
Hemisphere (Brown et al. 1997). Ice-rich permafrost can be identi-
fied by atypical surface features called ice-wedge polygons (IWPs), 
which are underlain by ice wedges several meters wide and deep that 
form a connected network across the tundra (Kanevsky et al. 2016). 
Vegetation and geology maps suggest that about two-thirds or more 
of the Arctic landscape is occupied by polygonal ground (Kokelj et 
al. 2015; Raynolds et al. 2019) and therefore ice-rich ground, but the 
exact extent and the prevailing IWP types (i.e., whether the ice wedges 
experience melt or not) are largely unknown.

Over recent decades, ice-wedge degradation—the transforma-
tion of low-centered polygons into high-centered polygons—has 
been documented at several locations across the Arctic tundra in the 
field and through localized remote sensing analyses (Liljedahl et al. 
2016; Steedman et al. 2017). The shift from one IWP type to the other 
is documented to occur in less than a decade (Liljedahl et al. 2016), 
with unusually warm summers, wildfires, or human activities initiat-
ing the onset of ice-wedge degradation (Jorgenson et al. 2006; Jones 
et al. 2015; Raynolds et al. 2020). Degradation of ice wedges is a 
quasi-cyclic process, often occurring over a shorter time scale than the 
formation of new permafrost (aggradation), with the latter controlled 
by the accumulation of organic and mineral soil above the ice wedge 
(Kanevskiy et al. 2017). Understanding the spatiotemporal dynamics 
behind the evolution of ice-wedge polygonal tundra demands objec-
tive and detailed maps consolidating the extent of ice wedges and their 
prevailing successional stages (Witharana et al. 2021).

Despite the alarming signals, the Arctic science community has 
a limited understanding of the spatiotemporal continuity of these 

otherwise locally observed changes. The lack of knowledge about the 
larger geographical extent and successional stage of IWPs introduces 
uncertainties to regional and pan-Arctic estimates of carbon, water, and 
energy fluxes. Remote sensing provides transformational opportunities 
to observe, monitor, and measure the Arctic polygonal landscape at 
multiple spatial scales and in varying temporal windows (Nitze et al. 
2018; Witharana et al. 2019). IWPs are difficult to detect in any remote 
sensing imagery with a spatial resolution coarser than 4 m (Muster 
et al. 2012). Sub-meter-resolution commercial satellite imagery 
(e.g., Maxar) demonstrates greater promise for accurate delineation 
and characterization of ice-wedge polygonal networks. Due to IWPs’ 
varying spectral and morphometric characteristics, visual inspection 
and manual digitization has so far been the most widely adopted and 
promising method for delineating polygons from high-resolution re-
mote sensing imagery (Witharana et al. 2021). A considerable number 
of local-scale studies have analyzed ice-wedge degradation processes 
using satellite imagery, as well as imagery and lidar data from manned 
and unmanned aerial vehicles (Muster et al. 2013). Most studies to 
date have relied on manual image interpretation or semi-automated 
approaches (Skurikhin et al. 2014) and been confined to site-to-local-
scale mapping. Therefore, there is a need and an opportunity to use 
very-high-spatial-resolution imagery in regional-scale mapping efforts 
to spatiotemporally document microtopographic changes due to thaw-
ing ice-rich permafrost.

Despite the remarkable performance of DLCNNs in everyday image 
understanding, bottlenecks still exist in the translation to geo-object 
detection from remote sensing imagery. Image dimensions, multiple 
spectral channels (more than the standard red, green, and blue chan-
nels), spatial reference, seasonality, and most importantly the semantic 
complexity of geo-objects aggregated into multiple spatial scales 
impose greater friction on the inferential strength of DLCNN model 
predictions. The scalability of automated analysis over millions of 
square kilometers comprising heterogeneous landscapes reinforces 
the need for efficient workflows. To surmount these challenges, we 
have developed a novel image-to-assessment pipeline—Mapping 
Application for Arctic Permafrost Land Environment (MAPLE)—which 
can be deployed in heterogeneous supercomputing resources. MAPLE is 
a first-of-its-kind pan-Arctic mapping effort that attempts to charac-
terize microtopography using sub-meter-resolution imagery without 
compromising geographical extent.

The overarching goal of MAPLE is to produce the first pan-Arctic 
IWP map using a large volume of commercial satellite imagery avail-
able at the Polar Geospatial Center and HPC resources from computing 
facilities funded by the US National Science Foundation. In the first 
stage, we will produce a circumpolar IWP map for the regions that have 
been identified as high-probability ground ice content by Brown et al. 
(2002). Then we will progressively extend the mapping to medium- 
and low-probability ground ice areas of Brown et al. (2002), ultimately 
covering the entire tundra. The ongoing mapping area (Figure 1) 
includes around 25 000 satellite images and over 180 TB of data.

The main objective of this article is to analyze the computational 
efficiency of the MAPLE workflow in heterogeneous HPC environments, 
which involve both CPUs and GPUs. We further aim to understand how 
different workflow designs interact with underlying SU accounting 
models of the HPC systems, which in turn support optimal resource us-
age to complete image-analysis problems at hand.

Methods
Mapping Application for Arctic Permafrost Land Environment (MAPLE)
Figure 2 shows a generalized framework for high-performance image 
analysis with MAPLE using imagery from the Polar Geospatial Center 
and computing resources from multiple computing environments, 
such as Frontera at the Texas Advanced Computing Center and XSEDE, 
to produce science-ready products. The MAPLE workflow (Figure 3) 
is threefold: image preprocessing, DLCNN prediction (inferencing), 
and postprocessing. While the first and last segments involve CPU 
implementations, prediction can operate on GPUs or CPUs. MAPLE takes 
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high-resolution satellite images as input and outputs two key geospatial 
layers: ice-wedge polygons and surface water bodies. The spatial reso-
lution of satellite imagery is acquired at 0.5 m, comprising multispec-
tral channels (blue, green, red, near-infrared, or more depending on 
the sensor) at 16-bit radiometric resolution with a typical footprint of 
20×20 km (i.e., 160 million pixels/image). At the initial stage, we pro-
cess the high-probability region of the IWP map using MAPLE. Figure 1 
shows the progress of MAPLE deployment in polygonal tundra.

We use Mask RCNN (He et al. 2016) as the key DLCNN model in 
MAPLE. DLCNN models show better performance in GPUs than in CPUs. 
Usually, the amount of memory available in GPUs (on average, 16 GB) 
is much smaller than that in CPUs. Therefore, we cannot perform DLCNN 
operations for the complete satellite image in GPU memory. Due to this 
limitation, we need to split the satellite image, which is around 5 GB 
on disk (40 000×40 000 pixels) into small tiles (200×200 pixels). To 
alleviate any terminological ambiguities, throughout this article we will 
use the term image scene to refer to an entire satellite image and the 
term image tile to refer to a subsetted array obtained by tiling the image 
scene according to predefined tile dimensions. Due to this splitting, 
the ice-wedge polygons can be intersected by the boundaries and may 
be missed in the prediction stage. To alleviate this effect, we keep a 
10% overlap between image tiles, resulting in more than 40 000 image 
tiles per image scene. These image tiles are saved using a compressed 
HDF5 binary data format, after excluding water bodies and No-data 
areas. Subsequently, compressed tiles are accessed in parallel within 
the workflow and output detected ice-wedge polygons. Each parallel 
process stores predicted ice-wedge polygons as an individual shape file.

In the postprocessing stage (stage 3), the shape files generated by 
each GPU are stitched into a single shape file. The resulting shape file 
contains duplicate polygons along the seams of images tiles due to the 
10% overlap. We remove those duplicate polygons during this stage. 
Figure 4 depicts automated mapping results of ice-wedge polygons and 
water bodies from example locations comprising different tundra types 
in Alaska and Canada.

Figure 1. Ongoing deployment of Mapping Application for Arctic 
Permafrost Land Environment (MAPLE) in Arctic polygonal tundra. 
The map is overlain by the circumpolar Arctic vegetation map of 
Raynolds et al. (2019) and the high-probability ground ice map of 
Brown et al. (2002). Colored grid cells (200×200 km) represent 
the progress of the mapping. Red and dark-green squares represent 
completed areas and areas in progress, respectively. Gray squares 
represent the area to be mapped. Blue shading represents the 
Circum-Arctic Map of Permafrost and Ground-Ice Conditions, 
Version 2 (Brown et al. 2002), and light-green shading represents the 
Circumpolar Arctic Vegetation Map (Raynolds et al. 2020), which 
were used as guides to prioritize mapping areas.

Figure 2. General semantic diagram for high-performance analysis 
of very-high-spatial-resolution satellite imagery using Mapping 
Application for Arctic Permafrost Land Environment (MAPLE). 
The images are obtained from the Polar Geospatial Center at the 
University of Minnesota, then processed by the MAPLE workflow 
using high-performance computing (HPC) resources from the 
Frontera system at the Texas Advance Computing Center and 
the Bridges system from the Extreme Science and Engineering 
Discovery Environment (XSEDE). The ice-wedge polygon map and 
the surface water-body map serve as the two key science-ready 
products of the workflow.

Figure 3. General semantic diagram of the Mapping Application for 
Arctic Permafrost Land Environment (MAPLE) workflow. MAPLE 
is a modular workflow consisting of three stages relying on both 
central processing unit (CPU) and graphical processing unit (GPU) 
resources. Stage 1 is a CPU-based implementation, which involves 
two operations: automated extraction of surface water bodies and 
tiling of the input image scene into small patches for use in later 
stages. Stage 2 is a GPU-based operation. It implements the deep-
learning convolutional neural net (DLCNN) algorithm for predicting 
ice-wedge polygons. In stage 3, stitching of shape files and removal 
of duplicates are performed using CPU resources. The final output 
of the MAPLE workflow are the ice-wedge polygon map and surface 
water-body map of the input image scene.
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An efficient workflow is required, because we need to process 
thousands of high-resolution satellite images. We use several techniques 
to optimize our workflow. The first is to minimize the area of processing 
by removing large numbers of water bodies. The Arctic region contains 
many water bodies, on scales from sub-meter to hundreds of meters. 
The MAPLE workflow first detects these water bodies using techniques 
developed by Kaiser et al. (2021). The predicted water from stage 1 of 
the workflow is used as a precursor layer for tiling the image. This will 
avoid unnecessary implementation of the IWP prediction algorithm on 
water areas in stage 2. Iterative prediction and use of the water mask not 
only produces a sub-meter-scale map of surface water but also speeds up 
the IWP prediction. The second optimization strategy is to remove image 
overlaps. A given satellite footprint has a considerable number of spatial 
overlaps with its neighbors, due to different imaging times and different 
sensors. We can significantly reduce the processing volume and comput-
ing resources (caused by duplicate application of the DLCNN model on 
the same spatial locales) by removing these image overlaps. We have 
developed an algorithm that calculates the image overlaps and excludes 
them from processing in our workflow for a given image footprint.

Model Training
We used a transfer learning strategy to retrain the Mask RCNN network. 
Using the online tool VGG Image Annotator, an annotated ice-wedge 

polygon data set was created from satellite imagery comprising hetero-
geneous tundra types. We randomly selected 512 cropped subsets from 
different tundra types (tussock, non-tussock, and sedge) considering 
the spectral and spatial variability. The training data set consists of 
9200 hand-annotated ice-wedge polygons. We started with pretrained 
weights generated by the COCO data set and trained only the head lay-
ers of the Mask RCNN network. The training was implemented using 
an NVIDIA GeForce RTX 2080 GPU with 10 GB of memory. We trained 
the Mask RCNN model with a mini-batch size of two image tiles, 250 
steps per epoch, a learning rate of 0.001, a learning momentum of 0.9, 
a weight decay of 0.0001, and 50 epochs.

Workflow Designs
Modern HPC resources such as Frontera and XSEDE consist of multiple 
nodes. Each node contains multiple CPUs and GPUs. Each CPU and GPU 
contains multiple cores. Programs should be designed to use these 
resources optimally. Figure 5 shows a semantic diagram of the sequential 
workflow (design 1) in a single computing node. In this setup, we do not 
use multiple CPUs and GPUs available in the node. The three stages of 
preprocessing, inferencing, and postprocessing are executed sequentially.

Figure 5. A semantic diagram of a single-CPU (central processing 
unit), single-GPU (graphical processing unit) Mapping Application 
for Arctic Permafrost Land Environment (MAPLE) workflow design 
using a single high-performance computing node (design 1). The 
workflow analyzes a single image at a time in three stages. The first 
stage (preprocessing) and the last (postprocessing) are executed on a 
CPU, and the second stage is executed on a GPU.

Figure 6 shows a semantic diagram of the design in which multiple 
GPUs in a single computing node are used in the inferencing stage. Here 
the image tiles generated in the preprocessing stage are stored in a single 
multi-threaded queue and processed using multiple GPUs on a single node.

Figure 6. A semantic diagram of a single-CPU (central processing 
unit), multi-GPU (graphical processing unit) Mapping Application 
for Arctic Permafrost Land Environment (MAPLE) workflow design 
using a single high-performance computing node with a single 
multi-threaded queue for all GPU cores (design 2). A single image is 
preprocessed using a single multi-core CPU and sent to multiple GPUs 
for detection using a single multi-threaded image queue. The detected 
ice-wedge polygons are postprocessed using a single multi-core CPU.

Figure 7 shows a semantic diagram of a design similar to the one 
in Figure 6. In this workflow, we use a dedicated queue for each GPU 
core, as illustrated. The image tiles generated in the preprocessing 
stage are distributed among separate queues and then inferenced by a 
dedicated GPU core. Figure 8 shows a multi-CPU, multi-GPU workflow 

Figure 4. Sample input image and output ice-wedge polygons and 
water bodies of different scales from the Mapping Application for 
Arctic Permafrost Land Environment (MAPLE) workflow for (a) the 
North Slope of Alaska, and (b and c) Canada (see inset map at left). 
In each subfigure, the leftmost image shows the high-resolution 
satellite image. The second column shows the water-body map 
(blue) and ice-wedge polygon map of the corresponding area. The 
third column shows a zoomed view of two separate areas of the 
previous image patch. The rightmost column shows the water-body 
map (blue) and ice-wedge polygon map of the previous images. 
Imagery © 2016 DigitalGlobe, Inc.
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design in which we processed multiple images per batch (design 4). In 
preprocessing, we use multiple CPU cores in a single node. Then tiles 
from each image are processed in separate nodes for the inferencing 
stage using the optimum number of GPUs available in that node. The 
shape files generated in the inferencing stage are processed in a single 
HPC node using multiple CPU cores in the postprocessing stage.

Figure 7. A semantic diagram of a single-CPU (central processing 
unit), multi-GPU (graphical processing unit) Mapping Application 
for Arctic Permafrost Land Environment (MAPLE) workflow design 
using a single high-performance computing node with a dedicated 
queue for each GPU core (design 3). A single image is preprocessed 
using a single multi-core CPU and sent to multiple GPUs for detection 
of ice-wedge polygons using a dedicated image queue for each GPU. 
The detected ice-wedge polygons are postprocessed using a single 
multi-core CPU.

Figure 8. A semantic diagram of a multi-CPU (central processing 
unit), multi-GPU (graphical processing unit) Mapping Application 
for Arctic Permafrost Land Environment (MAPLE) workflow design 
using multiple high-performance computing nodes with a dedicated 
queue for each GPU core (design 4). A set of images is preprocessed 
using multiple CPU cores in a single node and sent to multiple GPUs in 
different nodes for detection of ice-wedge polygons, with a dedicated 
image queue for each GPU. The detected ice-wedge polygons are 
postprocessed using a single node with multiple CPU cores.

Numerical Experiments
The numerical experiments were carried out on the Frontera Longhorn 
HPC system computing nodes and XSEDE Bridges2 computing nodes. 
The former consists of 96 computing nodes and the latter of 24 com-
puting nodes. Node specifications are listed in Table 1.

The effective use of HPC resources depends on the underlying 
resource accounting model, HPC architecture, and workflow design. 
Project resources are allocated based on SUs. In the Frontera Longhorn 
system, one SU is calculated by multiplying the job duration in wall-
clock hours, the charge rate per node hour, and the number of nodes 
per job. Therefore, to get maximum resource use we need to use all 
four GPUs per job. In contrast, on XSEDE Bridges2, one SU is calculated 
by multiplying the job duration, the number of GPUs per node, the 
charge rate per hour, and the number of nodes. Here we must calculate 
the optimum number of GPUs for a single job. We can optimize our 
workflow based on node time and SUs. In Frontera Longhorn, these 
two are proportional, but in XSEDE Bridges2, the optimum workflows 
for time and SUs can be different. We will examine the four different 
MAPLE workflow designs illustrated in Figures 5 through 8 to find the 
optimum designs on different HPC systems.

Results and Discussion
We evaluated the time taken for three stages of the sequential workflow 
(design 1) described in Figure 5 for different image dimensions as a 
base case. Figure 9 shows the computation results for Frontera: prepro-
cessing time, inferencing time, postprocessing time, and total time for 
images with different sizes on a CPU or a GPU. The gray bars show the 
time taken for a 400-million-pixel image on a CPU. Orange, green, and 
brown bars respectively, represent 400-, 1600-, and 3600-million-pixel 
images on a GPU. The computation time depends on the image size as 
well as the number of polygons detected. Comparing the first two bars 
for inferencing, it is evident that using a GPU for inferencing achieves a 
9.0× speedup. The reason for this speedup is that DLCNN computations 
can be performed in parallel with many GPU cores. Increasing the size 
of the image increases the time in all stages. The time taken to process 
a 3600-million-pixel image on a GPU is on the same order as the time 
taken to process 400 million pixels using only a CPU.

Figure 9. Comparison of time taken for Mapping Application for 
Arctic Permafrost Land Environment (MAPLE) workflow design 
1 on Frontera for different image sizes on CPUs and GPUs. Gray 
represents the computation times for a 400-million-pixel image 
on a CPU. Orange, green, and brown represent the computation 
times for a 400-million-, 1600-million-, and 3600-million-pixel 
image, respectively, on a GPU. The first three groups of bars 
show computation times for preprocessing, inferencing, and 
postprocessing stages, respectively. The last group shows the total 
time taken to process each image.

Figures 10 (Frontera Longhorn) and 11 (XSEDE Bridges2) show the 
comparison of inferencing times for designs 2 and 3 with a 160-mil-
lion-pixel image. The use of a dedicated queue in design 3 improves 
the running time for all four cases. Using four GPUs, we manage to 
obtain a 3.6× speed up in Frontera and a 2.0× speedup in XSEDE. The 
perfect speedup cannot be obtained because of input–output operations 
and serial sections in the workflow.

Table 1. Computing node configurations for Frontera Longhorn (Texas 
Advanced Computing Center) and Extreme Science and Engineering 
Discovery Environment (XSEDE) Bridges2.

System Frontera Longhorn XSEDE Bridges2

Processor IBM Power 9 Intel Xeon Gold 6248

Total Processors/Node 2 2

Total Cores/Processor 20 20

Total Cores/Node 40 40

Clock Rate (GHz) 2.3 2.5

RAM (GB) 256 512

GPUs/Node 4 × NVIDIA Tesla V100 8 × NVIDIA Tesla V100

GPU RAM/Core (GB) 16 32

GPU = graphical processing unit; RAM = random-access memory.
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Figure 10. Comparison of inferencing times for multiple GPUs in a 
single Frontera Longhorn HPC node to process a 1600-million-pixel 
image with design 2 (orange) and design 3 (green). GPU = graphical 
processing unit; HPC = high-performance computing.

Figure 11. Comparison of inferencing times for multiple GPUs in a 
single XSEDE Bridges2 HPC node to process a 1600-million-pixel 
image with design 2 (orange) and design 3 (green). GPU = graphical 
processing unit; HPC = high-performance computing.

Service units are important in processing large numbers of images, 
because the number of computing resources is limited. In Frontera, 
running time and service units consumed are proportional because of 
its accounting model; therefore we will only present results for running 
time in Frontera. But in XSEDE those two can be different, so we exam-
ine both service units and running time in that system.

Figure 12 shows the service units consumed by inferencing a 
1600-million-pixel image with up to eight GPUs in XSEDE with designs 
2 and 3. The most efficient use of service units can be obtained with a 
single GPU—that is, design 1. But with the four GPUs, we can achieve a 
2× speedup with 2.2 service units.

Figure 12. Comparison of service units used in inferencing a 
1600-million-pixel image with multiple GPUs in a single XSEDE 
Bridges2 HPC node with design 2 (orange) and design 3 (green). GPU 
= graphical processing unit; HPC = high-performance computing.

Figure 13 shows the computation times for a full workflow (design 
3) for a 1600-million-pixel image with up to four GPUs in Frontera. 
The speedup achieved for a full workflow using four GPUs is 2.0×. The 
reason for the lower speedup is the increase in the percentage of serial 
workload. Figure 14 shows the running times for design 3 in XSEDE, 
where we can use up to eight GPUs per node. The speedup achieved 
with multiple GPUs saturates at 1.5× with four GPUs.

Figure 13. Comparison of times taken for multiple GPUs to process a 
1600-million-pixel image in a single Frontera HPC node with design 
3. Preprocessing time, inferencing time, and postprocessing time are 
represented by blue, orange, and gray, respectively. GPU = graphical 
processing unit; HPC = high-performance computing.

Figure 14. Comparison of times taken for multiple GPUs to process 
a 1600-million-pixel image in a single XSEDE HPC node with design 
3. Preprocessing time, inferencing time, and postprocessing time are 
represented by blue, orange, and gray, respectively. GPU = graphical 
processing unit; HPC = high-performance computing.

Figure 15 shows the total SUs consumed in XSEDE when using up 
to eight GPU cores. The most efficient use of SUs occurs when the code 
is run with one GPU core. But we can get a 1.5× speedup for four GPUs 
with 1.75× SU use. Figure 16 shows the total amount of time taken to 
process one 1600-million-pixel image using design 4 with four GPUs in 
a Frontera HPC node. Preprocessing and postprocessing are done using 
multiple CPU cores in a GPU node. The speedup using 10 CPU cores in a 
single computing node for preprocessing is 7.5×, and for postprocessing 
it is 9.7×, which results in a combined speedup of 8.4×. Preprocessing 
is a memory-intensive task. It needs four times the memory of the im-
age. With 256 GB RAM available in one node, we can only process up 
to 10 1600-million-pixel images. The first bar of Figure 16 shows the 
result we obtain with design 3. A speedup of 2.4× with five CPUs and 
2.9× is achieved with design 4 compared to design 3 with a full work-
flow. Compared with design 1, a speedup of 3.4× with five CPUs and 
4.0× with 10 CPUs is achieved. This 4.0× speedup means we can pro-
cess four times faster than design 1 with the same resources in Frontera.

Figure 17 shows the total time taken with design 4 in XSEDE. 
Preprocessing and postprocessing are done using up to 10 CPUs cores per 
image batch and four GPUs per image. The speedup saturates after four CPU 
cores. Figure 18 shows the SUs consumed to process images with design 4 
using up to 10 CPU cores per image batch and a single GPU core per image. 
The SUs at first decrease slightly with the increase of CPU cores, but increase 
again after four cores due to the restriction that only four CPUs are allowed 
for allocation to one unit (GPU) in the shared GPU queue. If we want to allo-
cate more than four CPU cores, we need to allocate two GPUs. This increases 
the SUs used by the calculations, because SUs are proportional to the number 
of GPUs. The same happens when we use more than eight CPU cores.

Conclusion
We developed the Mapping Application for Permafrost Land 
Environment (MAPLE) by combining deep learning, big imagery, and 
HPC resources. Our workflow can run on heterogeneous HPC systems, 

186	 March 2022	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



demonstrating its interoperability for large-scale implementation. 
We tested the workflow with different HPC settings and compared the 
speedup and resource utilization. Four workflow designs were checked 
with the Frontera Longhorn and XSEDE Bridges2 HPC systems.

The speedup achieved with design 4 in Frontera is 3.4× with five 
CPUs and four GPUs. The number of parallel processes that can be used 
depends on the amount of main memory in the computing node. The 
pipeline saturates in Frontera after four GPUs and five CPUs. It is safe 
and effective to use five images per batch, as the gain in speedup is very 
small with 10 images (which is the memory limit) per batch. We can 
process an image with 33% of SUs with five images per batch in design 4 
compared to design 1, according to the Frontera accounting design. The 
speedup achieved in XSEDE design 4 is 2× for the full workflow, which 
is obtained with five CPUs and four GPUs. But this will use more SUs per 
single image, due to the XSEDE accounting model. In XSEDE, design 4 
uses the fewest SUs with four images per batch and one GPU per image.

The multi-CPU, multi-GPU design can be used effectively with het-
erogeneous HPC systems. Design 4 is the fastest of all the designs. But 
with a different HPC system, the optimum number of images per batch 
(CPUs) can be different. Design 4 also has the lowest SU usage with dif-
ferent numbers of GPUs per image. The resource usage can be different 
with different HPC systems due to the accounting design and system ar-
chitecture. Therefore, we need to test design 4 in different HPC systems 
to find out optimum CPU and GPU combinations before doing large-scale 
calculations to optimize our workflow. Design 4 is suitable for big-
imagery GeoAI workflows such as MAPLE in existing HPC systems.
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Assessing the Impact of Land Use Changes on 
Net Primary Productivity in Wuhan, China

Yan Gu, Zhenfeng Shao, Xiao Huang, Yuanhao Fu, Jiyuan Gao, and Yewen Fan

Abstract
Since 2000, major changes have taken place in Wuhan city. Land 
use and land cover (LULC) has changed significantly, characterized 
by increased construction land, reducing farmland, grassland, and 
forest land due to the rapid urbanization process. Taking advantage 
of LULC data and Moderate Resolution Imaging Spectroradiometer 
Net Primary Production (MODIS NPP) data from 2000 to 2020, we 
analyze the impact of LULC type transformation on NPP, reveal the 
relationship between LULC type and NPP, and quantify the impact of 
urban expansion on NPP by taking Wuhan, China as a study case. 
The results showed that: 1) the transformation from farmland and 
grassland to construction land was a dominant LULC change type 
in Wuhan during the investigated period; 2) there exists a signifi-
cant negative correlation between NPP and changes in farmland, 
woodland, and grassland area; 3) the distance from the city center 
has a significant positive correlation with NPP, and the dynamics 
of NPP vary in different regions; 4) there is a significant positive 
correlation between NPP and night light data. The results of this 
study provide scientific references for the formation of greening 
construction and sustainable development strategies in Wuhan.

Introduction
Net Primary Productivity (NPP) of vegetation refers to the amount of 
organic matter accumulated by green plants (per unit area and per unit 
time) through photosynthesis. NPP not only reflects the CO2 fixation 
capacity of vegetation under natural environmental conditions, but also 
represents the quality status and production capacity of ecosystems 
(Yang et al. 2021). As human activities are constantly changing the 
Earth’s ecosystem, NPP is a key ecosystem indicator that measures the 
influence of human interference with the environment (Zhang et al. 
2021; Zhuang et al. 2022).

Numerous efforts have been made to study NPP based on varying 
driving factors and regional environments (Su et al. 2020; Xu et al. 
2020; Zhuang et al. 2022). Many pieces of evidence have shown that 
NPP is more closely related to climate factors (Li and Qin 2019; Sun 
et al. 2019; Zahra et al. 2020). Based on the Carnegie-Ames-Stanford 
approach (CASA) model, Lin and Narangarav et al. (2015) analyzed 
the temporal and spatial patterns of NPP derived from Moderate-
Resolution Imaging Spectroradiometer (MODIS) Normalized Difference 
Vegetation Index (NDVI) in Mongolia using factor variance analysis 
and regression analysis. Zhang et al. (2020) studied the ecosystem of 
two high-yielding grasslands in the Great Plains of Central America in 

the 21st century, and the results showed that elevated atmospheric CO2 
has a fertilizing effect on the grassland ecosystem NPP. Li et al. (2007) 
analyzed the spatiotemporal dynamic changes of landscape pattern 
in Jilin Province by using landscape index models such as landscape 
diversity, fragmentation degree, and average patch fractal dimension. 
Shao and Zhang (2016) proposed a new optical and microwave inte-
grated vegetation index (VI) to estimate forest aboveground biomass 
using Landsat 8 Operational Land Imager (OLI) and RadarSAT-2 
satellite data. Based on Landsat thematic mapper (TM) and field survey 
data, Zhou et al. (2011) discussed the applications of the K-nearest 
neighbor (KNN) technique in estimating terrestrial carbon. Mustafa et 
al. (2012) combined the output of the Physiological Growth Principle 
model with leaf area index (LAI) from advanced Spaceborne Heat and 
Reflection Radiometer satellite images to improve their estimated 
LAI. Qiu et al. (2014) studied the seasonal and interannual spatial and 
temporal dynamic patterns and complex relationships of vegetation and 
climate factors in China during 1982–1998 based on Global Inventory 
Modeling and Mapping Studies (GIMMS) data set and using wavelet 
transform method. Stohr et al. (2010) used thermal infrared images 
to identify the effectiveness of plants affected by high CO2 concentra-
tions under soybean canapes in east-central Illinois. Bayarsaikhan et 
al. (2020) estimated the NPP of Mongolia during 1982–2015 using the 
third-generation GIMMS NDVI data and CASA model. Xiong et al. (2004) 
estimated NPP of the Mongolian Plateau by using a vegetation index 
based on pattern decomposition. Handcock and Csillag (2004) predict 
NPP at monthly temporal resolution for 16 years (1981–1996) at an 
8-km spatial resolution for the approximately 106 km2 area of Ontario, 
Canada.

Urbanization is one of the most important social and economic 
phenomena. The rapid expansion of urban fabrics has become an 
alarming issue (Hadeel et al. 2009; Shao et al. 2021; Xiao et al. 2019). 
Efforts have been made to investigate the effect of climate factors He 
et al. 2021; Berauer et al. 2021), as well as the effect of land use and 
land cover (LULC) dynamics on NPP (Zhang et al. 2020; Xing et al. 
2021). Ma (2020) studied the impact of the spatiotemporal distribution 
of LULC on total primary production and net primary production in 
Schleswig-Holstein, northern Germany. Ge et al. (2021) analyzed the 
relative contribution of human activities and climate change on China’s 
NPP using residual trend analysis. Pan et al. (2021) assessed the impact 
of individual farmland displacement on NPP in a data-driven manner 
using the mean difference method, the newly introduced ridge regres-
sion method, and the method based on actual change excluding climate 
impacts. Zhang et al. (2020) took Zhengzhou, China, as the study 
area and explored the urban expansion pattern and its relationship 
with NPP and climate change. Yan et al. (2008) used National Oceanic 
and Atmospheric Administration/Advanced Very High Resolution 
Radiometer (NOAA/AVHRR) remote sensing data and NPP model, 
combined with China’s LULC data from 1990 to 2000, to evaluate the 
impact of farmland conversion on agricultural productivity. Yang et 
al. (2021) used NDVI from MODIS and meteorological data to estimate 
the regional NPP in the Yangtze River Basin from 2001 to 2018 and 
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analyzed the influence of LULC on the NPP. Taking Jiangyin County 
in the Yangtze River Delta region as a study case, Xu et al. (2006) 
estimated LULC dynamics in the Yangtze River Delta region using 
Landsat TM and ETM+ images and evaluated the impact of urbaniza-
tion on regional NPP and annual NPP in 1991 and 2002. Li et al. (2020) 
quantified the impact of LULC change on China’s terrestrial ecosystem 
NPP from 2001 to 2012. Guan et al. (2019) established and analyzed 
the long-term direct and indirect effects of urbanization on NPP by tak-
ing Kunming City, China, as an example .

Analyzing the spatiotemporal characteristics of urban expansion 
is of great significance for guiding urban planning and protecting the 
priority farmland resources and ecological environment in a scientific 
and reasonable manner. So far, existing efforts have mainly focused 
on the impact of climate and LULC changes on NPP, with few quantita-
tive analyses. In this study, we aim to analyze the impact of LULC type 
transformation on NPP, reveal the relationship between LULC type and 
NPP, and quantify the impact of urban expansion on NPP by taking 
Wuhan, China, as a study case. This study provides scientific support 
and evidence for the formulation of Wuhan’s green development route.

Materials and Methods
Study Area
Wuhan, also referred to as “Han” and known as “Jiangcheng”, is the 
capital city of Hubei Province, China. Wuhan is located in the eastern 
Jianghan Plain with high terrain in the north and low terrain in the 
south. Wuhan is the largest metropolis and the only subprovincial 
city in central China. The Yangtze River (the third-longest river in the 
world) and its largest tributary, the Hanshui River, run through the cen-
ter of the city. Thanks to its superior geographical condition, Wuhan 
has been given the name of the “thoroughfares of nine provinces”. The 
climate of Wuhan belongs to the north subtropical monsoon humid 
climate. Entering the new century, Wuhan has seen rapid development 
in its economy. In October 2016, Wuhan was listed as a megacity by 
the Outline of the Development Plan for the Yangtze River Economic 
Belt. Among the top 100 cities in Asia released by the World Trade 
Organization, Wuhan ranked 15th. However, the acceleration of ur-
banization in Wuhan leads to sharp changes in LULC, posing threats to 
the ecological environment (Wan et al. 2019; Wang et al. 2021; Zhou 

et al. 2021). On 18 June 2021, the Regulations for Urban Physical 
Examination and Evaluation of Territorial Spatial Planning issued by 
the Ministry of Natural Resources was officially implemented. These 
regulations are expected to benefit high-quality urban development 
and improve urban planning in China. Therefore, quantitative evalu-
ation of the impact of climate change and land use change caused by 
human activities on regional NPP in the process of urbanization (Qin 
et al. 2016; Zhou et al. 2013) plays an essential role in the sustainable 
development of Wuhan.

Figure 1. The geographical location of Wuhan.

Data Sets and Preprocessing
The major data sets used in this study include MODIS NPP data and 
LULC data. In this section, we detailed the preprocessing steps of 
MODIS data, the LULC data, and other data sets.

MODIS Data and Preprocessing
In this study, we used the MODIS-NPP product (MOD17A3) with a spatial 
resolution of 1 km, obtained from NASA’s website (https://modis.gsfc.
nasa.gov/). A total of 68 images from 2000 to 2020 were included in 
this study. We used the MODIS Reprojection Tool for format conversion, 
projection conversion, and resampling of the retrieved MODIS images.

LULC Data and Preprocessing
The LULC data used in this study were retrieved from the Data Center 
for Resources and Environmental Sciences of the Chinese Academy 
of Sciences (http://www.resdc.cn), including five periods of data in 

Figure 2. The flowchart of our study workflow. MODIS NPP = Moderate Resolution Imaging Spectroradiometer Net Primary Production; DMSP/
OLS = Defense Meteorological Satellite Program/Operational Linescan System; RSR = ridgeline sampling regression; NPP/VIIRS = National 
Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite.
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years 2000, 2005, 2010, 2015, and 2020, with a spatial resolution 
of 1 km. According to the “Classification System of Land Use/Land 
Cover Remote Sensing Monitoring Data” of the Chinese Academy of 
Sciences, LULC types were classified as shown in Table 1.

Table 1. Land use and land cover (LULC) types in Wuhan.
LULC 
Codes

LULC 
Types Meanings

1 Farmland Paddy field and dry land

2 Forestland Forestland, shrubbery, dredge forestland, immature 
forestland, mirage, nursery, and all kinds of garden

3 Grassland Grassland

4 Waters Drainage channels, lakes, reservoirs and ponds, and 
beaches 

5 Constructive 
land

Urban land, rural residential land, and other 
construction land

6 Unused land Swamp, bare land, and sand

Other Data Sets and Preprocessing
The administrative boundaries of Wuhan used in this study were 
downloaded from the Data Center for Resources and Environmental 
Sciences, Chinese Academy of Sciences (http://www.resdc.cn) and 
were processed in ArcGIS 10.2. The nighttime light remote sensing 
data were derived from two products, i.e., nighttime imagery from 
the Defense Meteorological Satellite Program/Operational Linescan 
System (DMSP/OLS) satellites with a time span from 1992 to 2013 and 
nighttime imagery from Suomi National Polar-Orbiting Partnership/
Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) satellite with a 
time span from April 2012 to December 2020, retrieved from na-
tional environmental information (https://www.ngdc.noaa.gov). Note 
that NPP/VIIRS nighttime light product is on a monthly basis and was 
processed to obtain the annual lumination. We followed Elvidge et al. 
(2019) and the ridgeline sampling regression (RSR) method (Zhang et 
al. 2016) to calibrate these two products, leading to a continuous night-
light remote sensing imagery of Wuhan city from 2000 to 2020.

Data Analysis
Variation Rate of Pixel-Level NPP
We used a nonparametric trend degree (SEN) method to simulate the 
changing trend of NPP at the pixel level in Wuhan from 2000 to 2020 
and implemented a nonparametric test method, i.e., Mann-Kendall, to 
test the significance of the changing trend:
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where xi and xj are the values of NPP in Wuhan in the ith year, and 
the research time span is 21 years. β > 0 indicates that NPP shows an 
upward trend with time increasing. β < 0 indicates that NPP decreases 
with time.
Standardized test statistic Z was defined:
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where the test statistic S follows an approximately normal distribution 
and Var(S) is variance. A significance test can be obtained given differ-
ent significance levels of α.

Correlation Analysis
Correlation measures the degree of the mutual relationship between the 
two variables. Partial correlation analysis, also known as net correla-
tion analysis, investigates the linear correlation between two variables 
while controlling for the linear influence of other variables. The cor-
relation coefficient, based on Wuhan pixel NPP and its influence factors 
function can be expressed as Equation 5 and the partial correlation 
coefficient function can be expressed as Equation 6,
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where n is the year, xi is the impact factor, yi represents the NPP value 
of Wuhan in the ith year, x and y are the mean values of x and y, 
respectively.
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where Rxy,z is the partial correlation coefficient of x and y after control-
ling variable z. Rxy, Rxz, and Ryz are the correlation coefficients of x and 
y, x and z, y and z, respectively.

Dynamics of LULC
LULC dynamics can be used to compare the strength and speed of 
urban expansion in different periods and provide a great reference for 
urban planning (Samie et al. 2017). The calculation that quantifies the 
dynamics of LULC function can be expressed as Equation 7,
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where K is the annual change rate of certain a LULC type. Ua and Ub 
are the area of a certain LULC type at the beginning and end of the 
investigated period, respectively. T denotes the changing time period of 
a certain LULC type.

Results
We first summarize major results and then detail specific findings. The 
major results are as follows: 1) the LULC of Wuhan city has changed 
greatly since 2000; 2) the spatial and temporal variation of NPP in 
Wuhan is notable; 3) the NPP trends of Wuhan city greatly differ at dif-
ferent scales; 4) urbanization has an impact on the NPP change in Wuhan, 
and the NPP increases significantly with the increase of buffer distance.

LULC Changes in Wuhan from 2000–2020
After interpreting five remote sensing images in Wuhan from 2000 to 
2020, we performed the dynamic monitoring of land changes. The re-
sults show that the major LULC types in Wuhan are farmland and water 
bodies. The rapid development of Wuhan’s economy since 2000 leads 
to its rapid expansion, with patterns of LULC undergoing significant 
changes. For instance, the area of construction land increased from 
635 km2 in 2000 to 1142 km2 in 2020, responsible for the decrease in 
farmland, grassland, and forestland. The grassland area decreased from 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 March 2022	 191



Figure 3. Changes of LULC types in Wuhan from 2000 to 2020.

Figure 4. Average net primary production (NPP) distribution in 
Wuhan from 2000 to 2020.

Table 2. Coverages of different LULC categories and their changing dynamics 
in China from 2001 to 2012 (unit: km2).

Periods Grassland
Constructive 

Land Farmland Forestland Waters
Unused 
Land

2000–2005 −6 134 −129 −10 16 −5

 K(%) −1.644% 4.22% −0.491% −0.249% 0.1824% −1.613%

2005–2010 −2 65 −61 −3 1 0

 K(%) −5.97% 1.691% −0.238% −0.076% 0.011% 0

2010–2015 −2 209 −194 −10 −3 0

 K(%) −0.615% 5.012% −0.766% −0.253% −0.034% 0

2015–2020 −8 99 −71 −9 −25 14

 K(%) −2.54% 1.898% −0.292% −0.231% −0.283% 4.912%

Table 3. 2000–2020 land transfer matrix (unit: km2).

2000

2020

Grassland
Constructive 

Land Farmland Forest Waters
Unused 
Land SUM

Grassland 21 7 15 10 19 1 73

Constructive 
land

2 349 229 18 36 1 635

Farmland 15 622 4024 189 377 28 5255

Forest 9 39 177 527 49 1 802

Waters 8 123 336 26 1241 20 1754

Unused land 0 2 19 0 21 20 62

SUM 55 1142 4800 770 1743 71 8581

73 km2 in 2000 to 55 km2 in 2020, the farmland decreased from 5255 
km2 in 2000 to 4800 km2 in 2020, and the forestland decreased from 
802 km2 in 2000 to 32 km2 in 2020. In comparison, water bodies and 
the unused land area remained relatively unchanged. The water area 
slightly decreased from 1754 km2 in 2000 to 1743 km2 in 2020, and the 

unused land slightly increased from 62 km2 in 2000 to 71 km2 in 2020. 
From 2010 to 2015, the farmland in Wuhan decreased by 194 km2, 
while the construction land area increased by 507 km2.

Spatiotemporal Variation of Annual  
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NPP in Wuhan from 2000 to 2020
Spatial Variation
Based on the statistical analysis of the MODIS MOD17A3 data in 
Wuhan, the annual average NPP of the investigated 21 years was 
342.41 g C/ m2. Areas with NPP of 0–200 g C/m2 account for 21.36% 
of the total area, while 200–400 g C/m2 accounting for 19.67%, 
400–600 g C/m2 accounting for 58.08%, and >600 g C/m2 accounting 
for 0.87%. The spatial distribution of the NPP in Wuhan suggests that 
NPP is low in the central Wuhan and high in its periphery, which cor-
responds to the fact that the central Wuhan is featured by a commercial 
activity center with high intensity of human activity.

Temporal Variation
From a temporal perspective, NPP in Wuhan changed greatly from 
2005 to 2010. In comparison, changes were relatively slight from 
2015 to 2020. The annual mean value of NPP in Wuhan ranges from 
283.59–389.39g C/m2, and the annual total value ranges from 37 014 
214.58–53 408 758.32 g C. The minimum NPP occurred in 2001, and 
the interannual variation of NPP was notable. During the time period of 
2000–2006, the NPP of Wuhan fluctuated with no significant change. 
After 2006, the NPP of Wuhan showed a significant upward trend. 
In general, from 2000 to 2020, the overall NPP of Wuhan showed a 
significant upward trend, with an annual change of +3.77 NPP g C/m2. 
During the investigated 21-year period, NPP in Wuhan increased by 

Figure 5. Net primary production (NPP) dynamics in Wuhan from 2000 to 2020.

Figure 6. The changing trend (a) and significance (b) of net primary production (NPP) in Wuhan from 2000 to 2020.
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16 394 543.74 g C. Given the results from the SEN trend analysis and 
Mann-Kendall test, our study area was divided into three categories: 1) 
no significant increase/decline region and weak significant increase/de-
cline region (0.05   P < 0.1); 2) significant increase/decrease zone (0.01   
P < 0.05); 3) very significant increase/decrease region (0 < P < 0.01). 
Areas with a very significant increase, significant increase, and weak 
significant increase of NPP accounted for 62.29% of the study area, 
suggesting that Wuhan’s NPP was on the rise. Moreover, NPP in Wuhan 
changed significantly, accounting for 72.81% of the total area studied. 
The results suggested that the NPP in central Wuhan notably decreased, 

indicating that human activities had an impact on NPP, and the signifi-
cant increase of NPP in the surrounding area could be attributed to the 
establishment of ecological protection areas (Istvan et al. 2020).

NPP Changes of Different LULC Types
Wuhan can be divided into five regions, i.e., the eastern region, western 
region, southern region, northern region, and central region. Due to the 
difference in vegetation cover intensity and human activity intensity, the 
annual mean value of NPP varies greatly across these regions. From the 
LULC type map of Wuhan, it can be seen that the central region of Wuhan 
contains mainly construction land, with a low vegetation coverage rate 
and high intensity of human activities. Therefore, the annual average 
value of NPP is the smallest in the central region. In comparison, the east-
ern region contains mainly farmland, leading to the largest NPP value. 
However, for Wuhan as a whole or in five different regions, we observed 
that the average annual NPP presented an overall upward trend, suggest-
ing that the urban ecological environment of Wuhan had been further 
improved during the investigated period under the general requirements 
of ecological priority, green development, and intensive economy.

Our results suggest that patterns of LULC in Wuhan have changed sig-
nificantly. Therefore, we quantified the relationship between the annual 
mean value of NPP in Wuhan and the dynamics of different LULC areas 
from 2000 to 2020. In general, the average NPP and total NPP of different 
LULC types showed an increasing trend. The increasing trend of forest 
land was the most obvious, with the annual average increase rate of NPP 
of 8.82 g C/m2. In comparison, the annual average change rate of NPP 
of the construction land was the least obvious and showed a decreasing 
trend from 2000 to 2005. The average annual increase rate of NPP was 
3.08 g C/ m2, and the average annual increase rate was 3.08 g C/ m2.Figure 7. Changes in net primary production (NPP) in Wuhan from 

2000 to 2020.

Figure 8. Net primary production (NPP) trends of Wuhan as a whole and Wuhan in five different regions from 2000 to 2020. 

Figure 9. Net primary production (NPP) changes of different land use and land cover (LULC) types.
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In this study, we statistically analyzed the annual change area of 
LULC types in Wuhan from 2000 to 2020 and explored the relationship 
between LULC types and the average annual NPP. The results are shown 
in Table 4. Among all the LULC types, the farmland has the highest 

correlation with the average annual NPP. The areas of farmland, forest-
land, grassland, and water area were found negatively correlated with 
the average annual NPP, with R2 values of 0.96, 0.84, 0.77, and 0.01, 
respectively. Construction land was positively correlated with average 
annual NPP (R2 = 0.60). As for water and unused land, we found no 
significant correlation between them and the annual NPP.

The Impact of Urban Sprawl on NPP
NPP Dynamics in Different Buffer Zones in Wuhan
In this session, we quantitatively analyzed the NPP changes caused by 
the urbanization process by establishing buffers with varying distances 
towards the city center. The results were shown in Figure 10. We 
noticed that the mean values of NPP were significantly correlated with 
the buffer distances, with an R2 of 0.86 (the relationship could be sum-
marized as Y = 39.36x + 43.74). With the increase of distance from the 
city center, the mean NPP in different buffers increased. We also noticed 
that the mean NPP in the five years of 2000, 2005, 2010, 2015, and 
2020 all increased with the increase of buffer distances. Such patterns 
can be explained by the distribution of land use types. Within 5 km of 
the buffer zone, the LULC type is mainly construction land with a low 
average NPP. The farther the distance from the city center, the more 
forestland and farmland area, the less disturbed by human activities, 
leading to increased average NPP.

The Relationship Between Nightlight Intensity and NPP
In this study, we calibrated different products of nighttime light inten-
sity, an indicator that has been increasingly used by economists as a 
proxy for measuring economic activity (Juan et al. 2020; Shao et al. 
2021), to reveal the development of urban areas in Wuhan city from 
2000–2020. In general, Wuhan’s urban sprawl is obvious. The statisti-
cal analysis of nightlight intensity and its relation with NPP is presented 
in Figure 12. The results showed that the correlation between nighttime 
light intensity and NPP values were strong, with an R2 of 0.61 between 
nighttime light mean and NPP annual mean and an R2 of 0.36 between 
total nighttime light and total NPP annual.

Figure 11. Changes of nighttime light in Wuhan from 2000 to 2020 ((a), (b), (c) Defense Meteorological Satellite Program/Operational Linescan 
System (DMSP/OLS); (d), (e) National Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite (NPP/VIIRS)).

Table 4. Relationship between area changes in different land use and 
land cover (LULC) types and annual average net primary production 
(NPP) in Wuhan from 2000 to 2020.

LULC 
Codes

LULC 
Types

Correlation

R2 Formula

1 Farmland 0.9555 y = −0.2724x + 1774.7

2 Forestland 0.8387 y = −5.4138x + 4693.2

3 Grassland 0.767 y = −6.0147x + 733.15

4 Waters 0.0063 y = −0.1698x + 465.98

5 Constructive land 0.6039 y = 0.1226x + 127.05

6 Unused land 0.0939 y = 1.3177x + 183.48

Figure 10. Changes of annual average net primary production (NPP) 
in different buffer zones in Wuhan from 2000 to 2020.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 March 2022	 195



Discussion
Urban expansion has been a notable trend in many global cities, and 
cities greatly differ in their urbanization patterns. Under the context 
of urbanization, NPP serves as an important indicator to monitor the 
quality status and production capacity of ecosystems. The rapid de-
velopment of remote sensing techniques and the ubiquitous of remote 
sensing data benefit the monitoring NPP with finer spatiotemporal 
granularity.

The Patterns of Urban Expansion
The rapid expansion of urban land has become an important feature of 
the accelerated development of cities and the social economy (Hadeel 
et al. 2009; Li et al. 2020). From 2000 to 2020, the urban expansion 
of Wuhan has similarities and uniqueness compared with other cities 
in China. Relying on “Wuhan Urban Green Space System Planning 
(2003–2020)”, the urban greening construction is well defined to 
promote an urban living environment with the ecological greening 
landscape. Wuhan is being developed towards a “green river city” with 
a living environment featured by “crossed by two rivers and covered 
with green mountains”, and strives to become a world city with a more 
competitive and sustainable environment. It can be seen from the trend 
of NPP that Wuhan is making steady progress towards this goal.

NPP Changes
Taking advantage of remote sensing products at varying scales, our re-
sults show that there exist notable differences in the spatial distribution 
of NPP in Wuhan, characterized by a concentration of low NPP values 
in the middle and high NPP values in the periphery, which corresponds 
to the industrial spatial structure, referred to as “2 axes +2 centers +3 
rings +4 pieces +5 plates”. Moreover, there exist significant interan-
nual differences, and NPP trends vary in different regions, presumably 
due to the distribution of LULC in Wuhan. Investigation on the relation-
ship between the spatiotemporal variation of NPP and urban expansion 
provides guidance on urban planning in a more scientific and reason-
able manner. We encourage more studies to be conducted to explore 
the relationship between urban industrial spatial structure and NPP.

Limitations
The LULC data used in this study involve five images from Resources 
and Environmental Sciences and Data Center of the Chinese Academy 
of Sciences in the years 2000, 2005, 2010, 2015, and 2020. We ac-
knowledge that the temporal coverage is relatively short with relatively 
simple classification schemes of LULC types. For further studies, 
we plan to use more detailed classification schemes and expand our 
investigated period. In addition to the impact of LULC change on NPP, 
we believe the intensity of human activities also has a certain impact 
on NPP, which is not covered by this study. Therefore, we encourage 
further efforts to be made to investigate the quantitative relationship 
between the intensity of human activities and NPP.

Conclusions
Analyzing the spatiotemporal characteristics of urban expansion is 
of great significance for guiding urban planning and protecting the 
priority farmland resources and ecological environment in a scientific 

and reasonable manner. Since 2000, major changes have taken place in 
Wuhan city. LULC has changed dramatically in a short time, character-
ized by increased construction land, reducing farmland, grassland, and 
forest land due to the rapid urbanization process. In this study, we aim 
to analyze the impact of LULC-type transformation on NPP, reveal the 
relationship between LULC type and NPP, and quantify the impact of ur-
ban expansion on NPP in Wuhan, China. The results suggest that the ur-
banization process has a significant impact on NPP. The LULC of Wuhan 
city has changed greatly since 2000, and the spatial and temporal varia-
tion of NPP in Wuhan is notable. The further away from the city center, 
the higher the NPP value. However, the urban expansion in Wuhan 
does not lead to decreased NPP. On the contrary, the NPP in Wuhan has 
been steadily increasing since 2006, presumably due to the fact that the 
forest land in Wuhan has remained unchanged since 2006 and also due 
to the more rational use of land in Wuhan. In 2006, Wuhan issued the 
General Plan for Land Use (2006–2020), aiming to establish arrange-
ments for and promote the optimization of LULC. Such a plan is also 
related to the concept of overall planning, coordination, innovation, and 
green in Wuhan’s urban construction and development. According to 
the NPP dynamics, we can conclude that the urban ecological environ-
ment of Wuhan has been improved during the investigated period.
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AI-Based Environmental Monitoring with UAV Systems
Photogrammetric Engineering and Remote Sensing (PE&RS) is 
seeking submissions for a special issue on AI-Based Environmental 
Monitoring with UAV Systems.

Global warming and climate change have become the most 
important factor threatening the world. Climate change results 
in dramatical environmental hazards and threatens the planet 
and human life. A wide variety of policies have been proposed to 
decrease the effects of global warming and climate change. The 
most important one is the Paris Agreement which aims to limit 
global warming to well below two degrees Celcius. Many coun-
tries have formulated long term low greenhouse gas emission de-
velopment strategies related to the Paris Agreement which aimed 
to meet the essential strategies addressing issues with climate 
change, environmental protection and low carbon. 

The astonishing developments on unmanned aerial vehicle (UAV) 
systems and artificial intelligence (AI) technologies enables a great 
opportunity to monitor the environment and propose reliable 
solutions to restore and preserve the planet and human health. 

Data acquisition and processing paradigm has been changed as a 
result of technological developments. It is obvious that new solu-
tions, innovative approaches will make significant contributions 
to solve the problems which our planet is facing. UAV data can be 
collected by various platforms (planes or helicopters, fixed wing 
systems, drones) and sensors for earth observation and sustain-
able environmental monitoring which are also utilized by the Unit-
ed Nations to support the delivery of its mandates, resolutions, 
and activities.

UAV based earth observation data and AI techniques have a wide 
range of applications such as risk management, disaster monitor-
ing and assessment, environmental impact evaluation and res-
toration, monitoring agriculture and food cycles, urban analysis, 
digital twin and smart city applications and providing increased 
situation awareness. This growth of widely available UAV data as-
sociated with the exponential increase in digital computing power, 
machine learning and artificial intelligence plays a key role in the 
environmental monitoring and solution generation of geospatial 
information for the benefit of humans and the planet.

The proposed special issue aims to contributes ASPRS’s key mis-
sion on ‘Simplify and promote the use of image-based geospatial 
technologies for the end-user’, ‘Promote collaboration between 
end users and geospatial experts to match data and technology to 
applications and solutions’ and ‘promote the transfer of geospa-
tial data and information technology to developing nations’ by 

serving as an innovative knowledge exchange platform for authors 
from the globe to deliberate on the latest advancements, state-of-
the-art developments and solutions that can help the community 
to solve many real-world challenges on the topic of “AI-Based 
Environmental Monitoring with UAV Systems.” 

This special issue aims to bring researchers to share knowledge 
and their expertise about state-of-art developments and contrib-
ute to the goal of a livable world by integrating human creativity 
with UAV and AI technologies for environmental monitoring to 
combat global threats on ecosystems. We wish to discuss the 
latest developments, opportunities and challenges that can solve 
many real-world challenges in environmental monitoring includ-
ing but not limited to:
	y AI-Based UAV and GIS Applications
	y AI-Based Object Detection and Recognition from UAV Imagery
	y AI-Based Digital Twin Applications
	y AI-Based Smart City Applications

Papers must be original contributions, not previously published 
or submitted to other journals. Submissions based on previous 
published or submitted conference papers may be considered 
provided they are considerably improved and extended. Papers 
must follow the instructions for authors at http://asprs-pers.
edmgr.com/.  

Deadline for Manuscript Submission
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Submit your Manuscript to
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Guest Editor
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Information Extraction from High-Resolution 
Remote Sensing Images Based on Multi-Scale 

Segmentation and Case-Based Reasoning
Jun Xu, Jiansong Li, Hao Peng, Yanjun He, and Bin Wu

Abstract
In object-oriented information extraction from high-resolution remote 
sensing images, the segmentation and classification of images involves 
considerable manual participation, which limits the development of 
automation and intelligence for these purposes. Based on the multi-
scale segmentation strategy and case-based reasoning, a new method 
for extracting high-resolution remote sensing image information by 
fully using the image and nonimage features of the case object is 
proposed. Feature selection and weight learning are used to construct 
a multi-level and multi-layer case library model of surface cover 
classification reasoning. Combined with image mask technology, this 
method is applied to extract surface cover classification informa-
tion from remote sensing images using different sensors, time, and 
regions. Finally, through evaluation of the extraction and recognition 
rates, the accuracy and effectiveness of this method was verified.

Introduction
With the rapid advancement of remote sensing technology and the 
popularization of high-resolution remote sensing images, in order to 
accurately extract information from high-resolution remote sensing 
images, experts focus on remote sensing information to extract the 
ecological environment (Shao et al. 2014; Cao et al. 2015), sustainable 
development (Shao et al. 2020; Shao et al. 2020), protection of cul-
tivated land (Shao et al. 2020), and other issues that have been under 
in-depth and extensive research.

The accuracy of large-scale information extraction from high-res-
olution remote sensing images, the degree of complexity, and univer-
sality of the method are still big challenges (Wang et al. 2013). The 
existing methods of extraction of surface cover classification informa-
tion fail to meet practical application requirements (Zhang et al. 2013). 
The reasons for this are:
1.	 The decision tree has poor antinoise abilities (Shao et al. 2016); 

obtaining clustering results using the fuzzy clustering method 
when the sample size is too large is difficult (Shao et al. 2018); 
geographic information systems (GIS)-aided classification methods 
are limited by the present status and accuracy of GIS data; the sup-
port vector machine (SVM) algorithm has difficulties solving the 
problem of multi-classification (Zhang et al. 2018).

2.	 Artificial neural networks are prone to local minimization prob-
lems, the relationship between knowledge rules is not transparent, 
and expert systems do not have sufficient learning ability (Du et 

al. 2002); convolutional neural networks have a huge demand for 
samples (Shao et al. 2020).
The idea of case-based reasoning was first described by Schank of 

Yale University in the United States. Its principle is to use the original 
case to explain or solve a new problem. It is mainly to solve the problem 
through the method of analogy, to integrate problem solving and learn-
ing, and to use case to express knowledge, emphasizing the use of past 
experience accumulation and appropriate modifications to solve new 
problems; many scholars have also tried to apply this method to the fields 
of geography and remote sensing. The case-based approach has played 
an important role in the classification of and information extraction from 
radar images (Li et al. 2004; Li et al. 2009), synthetic-aperture radar 
(SAR) images (Chen et al. 2008), SPOT-5 images (Liu et al. 2014), and 
hyperspectral images (Tang 2010). But it does not form a unified model.

As of yet, there has been no in-depth study of the case-based and 
case-based management methodologies of information extraction from 
high-resolution remote sensing images.

Currently, the following three problems commonly exist in object-
oriented image classification methods for information extraction (Miao 
et al. 2010):
1.	 First, the optimal segmentation scale problem: The spectral char-

acteristics of high-resolution remote sensing images are less stable, 
and the texture features are more variable, resulting in different 
optimal segmentation scales for each type of surface cover (Wang et 
al. 2009). Common methods for determining the optimal image seg-
mentation scale include the trial and error method, maximum area 
method, object function method, local variance method, and area 
ratio method. However, the calculations involved are cumbersome 
and the result obtained cannot be used as a fixed value (Li, 2013).

2.	 Second, the optimal combination of features: The feature informa-
tion from high-resolution remote sensing images is rich, and in 
order to get the best combination of features for each type of surface 
cover the redundant features need to be removed (Shao et al. 2020). 
Due to the characteristics of object-oriented classification with small 
samples and high-dimensional features, the quality of feature selec-
tion may be affected due to a limitation in the number of samples.

3.	 Finally, the applicability of classifiers: There are various classi-
fiers, such as artificial neural networks (Pacifici et al. 2009), expert 
systems (Sun et al. 2007), fuzzy clustering (Li et al. 2011), support 
vector machine (Chang et al. 2012), and decision tree (Yan 2011; 
Chen et al. 2013). However, each classifier has its own limitations, 
creating a need to further amend and improve the classification 
strategy and enhance the applicability of the classifier for high-
resolution images of the different types of surface cover.
This paper proposes a new method of high-resolution remote sens-

ing information extraction. This method constructs multi-scale cases of 
different land cover classification types and uses case-based reasoning 
to predict the land cover type of the target case.
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Methodology
In view of the rich image features of high-resolution remote sens-
ing images, a method using multi-scale segmentation combined with 
case-based reasoning for information extraction from high-resolution 
remote sensing images was designed. The first step in the method is 
to use a multi-level and multi-level, multi-scale segmentation strategy 
to segment the target image in multi-scale. Then, feature selection and 
weight calculation are done, and a multi-level and multi-level case 
base is constructed. After that, the Kullback-Leible divergence similar-
ity model and K-nearest neighbor search strategy are used to construct 
the case reasoning classifier, combined with image mask and feature 
fusion, which is driven by the case study to achieve the intelligent 
extraction of information from remote sensing images. 

The flowchart of the method technology is shown in Figure 1.

Figure 1. The flowchart of high-resolution remote sensing image 
information extraction method based on multi-scale segmentation 
and case reasoning.

Multi-Scale Segmentation
Multi-Level and Multi-Layer Image Segmentation
Multi-layer classification of the surface cover is a multi-level classifi-
cation system, with the first layer containing several parent classes; the 
second layer is a number of subclasses corresponding to each parent 
class; and the third layer is a number of subcategories corresponding 
to each subclass. To extract the surface cover classification type, a 
layer-by-layer classification system is used starting at the highest level, 
which is the first layer, and continuing to the end of the lowest level 
(Shao et al. 2019; Zhou et al. 2014).

With the multi-level image segmentation, the first step uses a large 
scale segmentation to extract larger area land patches(Cao et al. 2015). 
These extracted larger areas are then masked to separate them out from 
the remaining undivided portions with smaller segmentation scales. 

After this, the land patches with smaller area are extracted. The above 
steps are repeated until the completion of the extraction of the target of 
this layer (Xu et al. 2017).

Determination of Optimal Segmentation Parameters
The multi-level and multi-layer segmentation strategy is adopted so 
the optimal segmentation parameter becomes an optimal “less-seg-
mentation” parameter. Multi-scale segmentation mainly involves band 
weight, scale, shape factor, compactness, and four other parameters 
(Xu et al. 2017). The area, brightness mean value, and standard devia-
tion eigenvalue of each band under different segmentation parameters 
were calculated; the weighted mean selection method was combined 
with the maximum area for optimal segmentation parameter selection 
(Gu et al. 2009).

Case Library Construction
Case Expression
The traditional object-oriented model is used to represent the case; that 
is, case characteristics and case type are used to describe the case (Du 
et al. 2002). The case features include basic, matching, and auxiliary 
features. The basic and auxiliary features are used to describe nonimage 
features of the case, correspondingly record case metadata information 
and statistical information, and participate in retrieval and matching 
(Shao et al. 2014). Matching features are used to describe image fea-
tures that play an important role in the process of reasoning and have a 
causal relationship with the inference results; these features also record 
case characteristics such as spectral, geometric, and texture information.

Accordingly, a case can be expressed as Equation 1:

	 s = (f1, f2, …, fn; σs)	 (1)

Here, fn is the eigenvalue of the nth attribute of case s, n is the 
number of attribute features, and σs is the surface cover classification 
type (Zhou et al. 2017).

 Case Library Structure
The case library consists of cases and weights. Each type of feature 
corresponds to a group of cases, each case constitutes a property table, 
and each property table corresponds to a set of weights. Each layer 
corresponds to a plurality of surface cover objects and a plurality of 
segmentation scales, and each scale corresponds to a set of attribute 
tables, that is, a case database (Xu et al. 2018).

The case is organized hierarchically according to the classification 
level and scale level of the case to form a multi-layer and multi-scale 
case library. The structure of a case library is shown in Figure 2.

Figure 2. Case library structure.

Feature Selection and Weight Calculation
The improved relief algorithm is used to calculate the matching feature 
weight of a case. Then, features whose weights are greater than the 
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threshold are selected as the final matching feature of the case. The 
basic idea is based on feature weights calculated from all the train-
ing samples and the total number of samples is set as the number of 
iterations. First, the sums of the feature weights in a class are averaged, 
then the averages of the features obtained for each class are summed to 
give the summed average. This is done to achieve the weight of match-
ing features (Li 2004; Yang 2011).

After feature selection, the weight values of the retained features are 
normalized to obtain the final weight value of the case matching feature.

Case Match
Similarity Measurement Model
Using Kullback-Leibler divergence as a measure of similarity between 
cases, Equation 2 is:
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where Sim is the case similarity value; D is the Kullback-Leibler 
divergence; wi is the weight of the ith attribute of the case; ai is the ith 
attribute of Case A; and, bi is the ith attribute of Case B.

Case Retrieval Strategy
A staged neighbor search strategy is adopted to improve retrieval 
efficiency. The strategy organizes the case structure into two levels: a 
representative case library and subcase library. These levels are divided 
into two stages for case retrieval. In the first procedure, the nearest 
neighbor retrieval method is used to set the similarity threshold θ1(0 
< θ1 < 1) and the representative case with the highest similarity with 
the new case is found in the representative case library. The second 
procedure sets the similarity threshold θ2(0 < θ2 < 1) in the K-nearest 
neighbor method for further searching to find the k most similar cases.

Matching Postprocessing
Image Mask
When the split layer and the case base complete the first case match, a 
part of the split layer map is extracted to identify the first information ex-
traction results and the remaining part of the split layer, that is not identi-
fied from the map, is masked. Only the remaining part of the masked 
image, which has not been extracted is obtained. Then the masked image 
for the second image segmentation and information is extracted, and so 
on until the land cover classification objects in the original remote sens-
ing image have been extracted and identified to the maximum extent.

Feature Fusion
After multiple image masking and case matching, the surface cover clas-
sification results are obtained multiple times, and then the merger and 
element fusion processing are performed to obtain the final result of sur-
face cover classification information extracted from the original image.

Experiment
To verify this method, two WorldView-2 satellite remote sensing im-
ages of the Qinzhou City of Guangxi Province and one Siwei Digital 
Camera (SWDC)-4 aerial image of the Guigang City of Guangxi 
Province were used. The WorldView-2 image sizes (of both) were 
6564×4219 (pixels). The acquisition times were April 2015 and January 
2013. Both images had a spatial resolution of 0.5 meters and were ac-
quired with the China Geodetic Coordinate System 2000. The SWDC-4 
aerial image size was 6394×3872 (pixels) with 0.2 meters spatial reso-
lution. The geographical location diagram is shown in Figure 3.

This method was used to completely extract information on surface 
cover from the experimental image, and the same case library was used 
to extract information from the WorldView-2 images acquired from dif-
ferent regions and at different times.

Figure 3. Experimental image geographic location diagram.
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Information Extraction Experiment
WorldView-2 Satellite Image Experiment
This method was used to extract classification information from 
WorldView-2 images taken in April 2015, including those of cultivated 
lands, forest lands, buildings, roads, and water bodies. The results are 
shown in Figure 4 as:
1.	 a multi-scale segmentation result image;
2.	 a first extraction result image;
3.	 a nonextracted image;
4.	 a re-extraction result;
5.	 and a final result extracted from the first extraction result and the 

re-extraction result.

SWDC-4 Aerial Images Experiment
This method was used to extract classification information from 
the SWDC-4 aerial images taken in May 2013, including those of 
cultivated lands, forest lands, buildings, roads, and water bodies. The 
results are shown in Figure 5.

Accuracy Evaluation
In order to verify the accuracy of this method, the extraction results of 
the five major land cover classifications were referenced with the land 
cover analysis (LCA) layer of the National Geoinformation Survey in 
order to determine if the correct objects were extracted from the high-
resolution remote sensing images.

The extraction rate and the recognition rate are taken as the ac-
curacy evaluation indexes for extracted surface cover classification 
information by this method, wherein extraction rate = total amount 
extracted/total number of plaques × 100%; recognition rate = number 
of correct extractions/total number of extractions × 100%; total number 
of extractions = number of correct extractions + number of incorrect 
extractions. The evaluation accuracy of information extraction from 
the experimental image is presented in Table 1 and Table 2.

The “total number of spots” refers to that on the LCA layer. In 
Table 1, the extraction rate of the five types of surface covered objects 
is above 60% and the recognition rate is above 90%, which shows 
good accuracy. Among them, the building extraction rate was the 
highest, reaching 89.07%, followed by that of water bodies, which 
indicates that most of the target images with building and water body 
information could be identified and extracted. In Table 2, although the 
experimental data comes from different sensors, the image resolution is 
high, and the method used in this paper still has good results and high 
accuracy (Shao et al. 2020).

Case Reuse Experiment
To test the reusability of the case and further verify the effectiveness of 
the proposed method, we used the case library constructed in the sec-
tion “Case Library Construction.” Experimental images were used to 
extract information from different regions and times. The experimental 
results are shown in Figure 6.

Figure 4. WorldView-2 satellite image information extraction results.

Figure 5. Siwei Digital Camera-4 aerial image information extraction results.
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Figure 6a is an image showing different regions at the same time 
as that in the section “Case Library Construction,” and Figure 6c is 
an image taken in January 2013 in the same region as that in section 
“Information Extraction Experiment.” The surface cover classification 
results obtained by this method are shown in Figure 6b and 6d, respec-
tively. For Figure 6b, most of the information on cultivated land, forest 
land, building construction, and water bodies can be correctly identi-
fied and extracted because the image acquisition time is consistent with 

that in the case library. As for Figure 6d, part of the cultivated land 
information was not identified and extracted due to the seasonality of 
vegetation and crop cultivation. In addition, due to the dry season in 
winter, the area of the water bodies extracted is also reduced. However, 
this extraction result can also reflect realistic surface cover. Through 
this experiment, we tested the reusability of a case and further verified 
the correctness of the proposed method.

Table 1. Evaluation of the accuracy of information extraction from the experimental image (WorldView-2 satellite image).

Code
Total Number 

of Spots
Number of Correct 

Extractions
Number of Incorrect 

Extractions
Total Number of 

Extractions
Extraction 
Rate (%)

Recognition 
Rate (%)

0100 815 549 13 562 68.98 97.69
0300 352 256 8 264 75.00 96.97
0500 750 652 16 668 89.07 97.60
0600 42 27 0 27 64.29 100
1000 424 339 0 339 79.95 100

Table 2. Evaluation of the accuracy of information extraction from the experimental image (Siwei Digital Camera-4 aerial image).

Code
Total Number 

of Spots
Number of Correct 

Extractions
Number of Incorrect 

Extractions
Total Number of 

Extractions
Extraction 
Rate (%)

Recognition 
Rate (%)

0100 2514 1574 14 1588 63.17 99.12
0300 90 79 6 85 94.44 92.94
0500 165 135 5 140 84.85 96.43
0600 168 136 3 139 82.74 97.84
1000 28 18 0 18 64.29 100

Figure 6. Case reusability experiment results.
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Comparison with SVM Method
In order to verify the superiority of the proposed method, the SVM meth-
od was also used to extract the surface information in the WorldView-2 
image obtained in April 2015. The comparison of the extraction results 
of the SVM method and the proposed method is shown in Figure 7.

By comparing the results of extracting the surface coverage infor-
mation from the SVM method and the proposed method, it is found 
that the results extracted by the SVM method are rich in informa-
tion and have good visual effects, but there are also many incorrectly 
extracted surface coverage objects, which require a large amount of 
manual removal later. The amount of information extracted by the 
proposed method is relatively small, and there are relatively few er-
roneously extracted surface coverage objects, and the workload of later 
manual removal is small.

Discussion
Case-based reasoning is based on the high-resolution, remote sensing 
image surface cover classification information extraction system, and 
the prerequisite is the sufficient case library. The case library should 
not only cover different regions, different seasons, different sensors, 
and different resolutions, but also ensure that each type of case has 
a considerable number. The main reason is that the accuracy of the 
information extraction experiment in this paper is affected by the lack 
of a sufficient case library.

In the experiment, five types of land cover were extracted and the 
classification information, such as whether it was cultivated lands, 
woodlands, grasslands, house buildings, roads, or water bodies, was 
determined. According to the extraction results in each experiment, the 
spectral characteristics of a single forest, building, road, and water body 
were better, particularly of a water body and road. This was followed by 
woodlands and housing construction. The worst was for the cultivated 
land because of the different crop types due to seasonal changes and till-
age. This caused the spectral and texture features of arable land to vary 
greatly in different seasons and different periods. To accurately extract 
cultivated land information the cropland needs to be further subdivided 
according to crop type, season, and farming cycle, and then correspond-
ed to a large number of cultivated land acquisition samples to build a 
more extensive case library to meet the case-based reasoning method’s 
requirements. If a certain kind of crop can be identified, such as sugar 
cane, then a case library image of sugar cane could be built and subse-
quently used by this method to extract sugarcane ground information.

Generally, the merits of the proposed method are the high accuracy 
of information extraction and the small amount of follow-up manual 
intervention. In the case that the case library is sufficiently rich, the 
extraction accuracy and the number of extractions will be continuously 
improved with the operation of the case reasoning system. Compared 

with the classic object-oriented information extraction method like the 
SVM method, the drawbacks of this method are that it is difficult to 
obtain all the information of the entire remote sensing image, and it 
depends on a suitable segmentation scale and a rich case library.

Due to the limited number of experimental cases, the effect of case 
learning was not significant; this paper does not present the experi-
mental results for case learning. However, with the continual expan-
sion and enrichment of the case library, the effect of case learning will 
become more and more obvious.

Conclusion
Due to the similar imaging mechanisms of high resolution remote 
sensing images, in the same region the surface cover characteristics 
will have certain similarities and stability in terms of geographical 
features. For example, crop planting type, planting distribution, and 
plant characteristics will be similar, and topographical features will be 
relatively stable (Zhang et al. 2020). At the same time, the spectral and 
textural features of vegetation cover change with seasonal changes and 
different growth periods have different characteristics. In view of the 
above characteristics of high-resolution remote sensing images, it can 
be concluded that they are very suitable for use with the case-based 
reasoning method to extract land cover classification information from 
high-resolution remote sensing images (Xu 2017).

The objective of this paper is to integrate multi-scale segmenta-
tion and case-based reasoning, and based on the proposed integration 
method to realize the automatic extraction of land cover classification 
information from high-resolution remote sensing images, and verify the 
effectiveness and accuracy of the method through integrated experi-
ments. Since the surface vegetation will show different characteristics 
according to the geographical area and growing season, it is particularly 
important to obtain high-resolution remote sensing image data sources 
with a wide coverage area and long time series and to establish a cor-
responding case database. The method proposed in this paper makes 
full use of the nonimage features and multi-scale characteristics of the 
surface cover classification object. With the operation mechanism of the 
case reasoning system and case self-learning, the accuracy of surface 
cover classification information extraction will be increased. In addition, 
there are some other issues worthy of consideration. For example, how 
to further optimize case feature combinations of different case libraries 
or case matching similarity models. These will be our future studies.
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IN-PRESS ARTICLES
Xuzhe Duan, Qingwu Hu, Pengcheng Zhao, and Shaohua Wang. A 

low-cost and portable indoor 3D mapping approach using biaxial 
line laser scanners and a one-dimension laser rangefinder inte-
grated with MEMS.

Jun Chen, Cunjian Yang, Zhengyang Yu. Research on Machine 
Intelligent Perception of Urban Geographic Location Based on 
High Resolution Remote Sensing Images.

Lihua Wang, lifeng Liang, Benhua Tan, Sicheng Li, Zhiming Kang, 
Xiujuan Liu. Identifying the driving factors of urban land surface 
temperature.

Clement Akumu, Sam Dennis. Urban Land Cover/Use Mapping and 
Change Detection Analysis Using Multi-Temporal Landsat OLI 
with Lidar-DEM and Derived TPI.

Amit Hasan, Mahendra Udawalpola, Anna Liljedahl, Chandi 
Witharana. Use of Commercial Satellite Imagery to Monitor 
Changing Arctic Polygonal Tundra.

Lei Zhang, Bowen Wen, Ming Zhang, Qiongqiong Lan, and Qian 
Wang. An Evaluation of Pan-Sharpening Methods for SuperView-1 
Satellite Imagery.

Bo Yingjie, Li Guoqing, Zeng Yelong, and Liu Zhe. Floating Solar 
Park Impacts Urban Land Surface Temperature Distribution 
Pattern.

He Yanjun, Xu Jun, Li Jiansong, Peng Hao, Wu Bin. Information 
Extraction from High-resolution Remote Sensing Images Based on 
Multi-scale Segmentation and Case-based Reasoning.

Gaofei Yin. Smartphone Digital Photography for Fractional Vegetation 
Cover Estimation.

Toshihiro Sakamoto, Daisuke Ogawa, Satoko Hiura, Nobusuke 
Iwasaki. Alternative procedure to improve the positioning accuracy 
of orthomosaic images acquired with Agisoft Metashape and DJI 
P4 Multispectral for crop growth observation

Guangyun Li, Senzhen Sun, Yangjun Gao, Li Wang. Robust Dynamic 
Indoor Visible Light Positioning Method Based on CMOS Image 
Sensor.

Zhenfeng Shao, Hongping Zhang, Wenfu Wu, Xiao Huang, Jisong 
Sun, Jinqi Zhao, Yewen Fan. Comparing the sensitivity of pixel-
based and sub-watershed-based AHP to weighting criteria for flood 
hazard estimation.

Gang Qiao, Hongwei Li. Lake Water Footprint Determination Using 
Linear Clustering-based Algorithm and Lake Water Changes in the 
Tibetan Plateau from 2002 to 2020.

Jason Parent, Chandi Witharana, Michael Bradley. Classifying and 
georeferencing indoor point clouds with ARCGIS.

Paul Pope, Brandon Crawford, Anita Lavadie-Bulnes, Emily Schultz-
Fellenz, Damien Milazzo, Kurt Solander, Carl Talsma. Towards 
Automated/Semi-Automated Extraction of Faults from Lidar Data

Li Tan, Guoming Li, Xin Liu, Aike Kan. Feature-based convolu-
tional neural network for very-high-resolution urban imagery 
classification

Ravi Dwivedi, Syed Azeemuddin. Conjunctive use of Landsat-8 OLI  
and MODIS Data for Delineation of Burned Areas

Chih-Hung Hsu, Che-Hao Chang, Chih-Tsung Hsu, Shiang-Jen Wu, 
Po-Hsien Chung. Hydrological Topography Dataset (HTD) - the 
Dataset for High Resolution 2D Urban Flood Modeling.

Xiaojun Yang, Feilin Lai. Improving land cover classification over a 
large coastal city through stacked generalization with filtered train-
ing samples.

Xiaoyue Wang, Hongxin Zhang, Dailiang Peng. Evaluation of urban 
vegetation phenology using 250 m MODIS vegetation indices.

Zhihua Xu, Xingzheng Lu, Wenliang Wang, Ershuai Xu, Rongjun Qin, 
Yiru Niu, Xu Qiao, Feng Yang, Rui Yan. Monocular Video Frame 
Optimization through Feature-based Parallax Analysis for 3D Pipe 
Reconstruction.
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BOARD OFFICERS
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Christopher Parrish, Ph.D
Oregon State University
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Lorraine B. Amenda, PLS, CP
Towill, Inc.
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Bandana Kar
Oak Ridge National Lab
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Jason M. Stoker, Ph.D, 
U.S. Geological Survey

Treasurer
Stewart Walker, Ph.D.
photogrammetry4u

Secretary
Harold Rempel
ESP Associates, Inc.

COUNCIL OFFICERS
ASPRS has six councils. To learn more, visit https://www.asprs.org/Councils.html.

Sustaining Members Council 
Chair: Ryan Bowe
Deputy Chair: Melissa Martin

Technical Division Directors Council 
Chair: Bill Swope
Deputy Chair: Hope Morgan

Standing Committee Chairs Council 
Chair: David Stolarz
Deputy Chair: TBA

Early-Career Professionals Council 
Chair: Madeline Stewart
Deputy Chair: Kyle Knapp                

Region Officers Council 
Chair: Demetrio Zourarakis
Deputy Chair: Jason Krueger 

Student Advisory Council 
Chair: Lauren McKinney-Wise
Deputy Chair: Oscar Duran

TECHNICAL DIVISION OFFICERS
ASPRS has seven professional divisions. To learn more, visit https://www.asprs.org/Divisions.html.

Geographic Information Systems 
Division 
Director: Denise Theunissen 
Assistant Director: Jin Lee

Lidar Division 
Director: Ajit Sampath
Assistant Director: Mat Bethel

Photogrammetric Applications Division 
Director: Ben Wilkinson
Assistant Director: Hank Theiss

Primary Data Acquisition Division
Director: Greg Stensaas
Assistant Director: Srini Dharmapuri

Professional Practice Division 
Director: Bill Swope
Assistant Director: Hope Morgan

Remote Sensing Applications Division
Director: Amr Abd-Ehrahman
Assistant Director: Tao Liu

Unmanned Autonomous Systems (UAS) 
Director: Jacob Lopez
Assistant Director: Bahram Salehi

REGION PRESIDENTS
ASPRS has 13 regions to serve the United States. To learn more, visit https://www.asprs.org/regions.html.
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Robert Hariston-Porter

Eastern Great Lakes Region
Michael Joos, CP, GISP

Florida Region
Xan Fredericks
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Whit Lynn
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David Hughes
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Founded in 1934, the American Society for Photogrammetry and Remote Sensing (ASPRS) is a scientific association 
serving thousands of professional members around the world. Our mission is to advance knowledge and improve under-
standing of mapping sciences to promote the responsible applications of photogrammetry, remote sensing, geographic 
information systems (GIS) and supporting technologies.
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SUSTAININGMEMBERS
ACI USA Inc.
Weston, Florida
https://acicorporation.com/
Member Since: 2/2018
Aerial Services, Inc.
Cedar Falls, Iowa
www.AerialServicesInc.com
Member Since: 5/2001

Applanix
Richmond Hill, Ontario, Canada
http://www.applanix.com
Member Since: 7/1997

Ayres Associates
Madison, Wisconsin
www.AyresAssociates.com
Member Since: 1/1953

Dewberry
Fairfax, Virginia
www.dewberry.com
Member Since: 1/1985

Environmental Research Incorporated
Linden, Virginia
www.eri.us.com
Member Since: 8/2008

Esri
Redlands, California
www.esri.com
Member Since: 1/1987

GeoCue Group
Madison, Alabama
http://www.geocue.com
Member Since: 10/2003

GeoWing Mapping, Inc.
Richmond, California
www.geowingmapping.com
Member Since: 12/2016

GPI Geospatial Inc. 
formerly Aerial Cartographics of America, Inc. (ACA)
Orlando, Florida
www.aca-net.com
Member Since: 10/1994

Green Grid Inc.
San Ramon, California
www.greengridinc.com
Member Since: 1/2020

Halff Associates, Inc.
Richardson, Texas
www.halff.com
Member Since: 8/2021

Keystone Aerial Surveys, Inc.
Philadelphia, Pennsylvania
www.kasurveys.com
Member Since: 1/1985

Kucera International
Willoughby, Ohio
www.kucerainternational.com
Member Since: 1/1992

L3Harris Technologies
Broomfield, Colorado
www.l3harris.com
Member Since: 6/2008

Merrick & Company
Greenwood Village, Colorado
www.merrick.com/gis
Member Since: 4/1995

NV5 Geospatial
Sheboygan Falls, Wisconsin
www.quantumspatial.com
Member Since: 1/1974

Pickett and Associates, Inc.
Bartow, Florida
www.pickettusa.com
Member Since: 4/2007

Riegl USA, Inc.
Orlando, Florida
www.rieglusa.com
Member Since: 11/2004

Robinson Aerial Surveys, Inc.(RAS)
Hackettstown, New Jersey
www.robinsonaerial.com
Member Since: 1/1954

Sanborn Map Company
Colorado Springs, Colorado
www.sanborn.com
Member Since: 10/1984

Scorpius Imagery Inc.
Newark, Delaware
aerial@scorpiusimagery.com
Member Since: 6/2021

Surdex Corporation
Chesterfield, Missouri
www.surdex.com
Member Since: 12/2011

Surveying And Mapping, LLC (SAM)
Austin, Texas
www.sam.biz
Member Since: 12/2005

T3 Global Strategies, Inc.
Bridgeville, Pennsylvania
https://t3gs.com/
Member Since: 6/2020

Terra Remote Sensing (USA) Inc.
Bellevue, Washington
www.terraremote.com
Member Since: 11/2016

Towill, Inc.
San Francisco, California
www.towill.com
Member Since: 1/1952

Woolpert LLP
Dayton, Ohio
www.woolpert.com
Member Since: 1/1985

Membership
	9 Provides a means 

for dissemination 
of new information

	9 Encourages 
an exchange 
of ideas and 
communication 

	9 Offers prime 
exposure for 
companies

SUSTAININGMEMBERBENEFITS
Benefits of an ASPRS Membership
	– Complimentary and discounted Employee Mem-

bership*
	– E-mail blast to full ASPRS membership*
	– Professional Certification Application fee dis-

count for any employee 
	– Member price for ASPRS publications
	– Discount on group registration to ASPRS virtual 

conferences
	– Sustaining Member company listing in ASPRS 

directory/website
	– Hot link to company website from Sustaining 

Member company listing page on ASPRS website 

	– Press Release Priority Listing in PE&RS Industry News
	– Priority publishing of Highlight Articles in PE&RS 

plus, 20% discount off cover fee
	– Discount on PE&RS advertising
	– Exhibit discounts at ASPRS sponsored confer-

ences (exception ASPRS/ILMF)
	– Free training webinar registrations per year*
	– Discount on additional training webinar registra-

tions for employees
	– Discount for each new SMC member brought on 

board (Discount for first year only)

*quantity depends on membership level
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ASPRS Offers
	» Cutting-edge conference programs
	» Professional development workshops
	» Accredited professional certifications
	» Scholarships and awards
	» Career advancing mentoring programs
	» PE&RS, the scientific journal of ASPRS
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