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 After more than 15 years of research and writing, the Landsat Legacy 
Project Team published, in collaboration with the American Society for 
Photogrammetry and Remote Sensing (ASPRS), a seminal work on the 
nearly half-century of monitoring the Earth’s lands with Landsat. Born of 
technologies that evolved from the Second World War, Landsat not only 
pioneered global land monitoring but in the process drove innovation in 
digital imaging technologies and encouraged development of global 
imagery archives. Access to this imagery led to early breakthroughs in 
natural resources assessments, particularly for agriculture, forestry, and 
geology. The technical Landsat remote sensing revolution was not 
simple or straightforward. Early conflicts between civilian and defense 
satellite remote sensing users gave way to disagreements over whether 
the Landsat system should be a public service or a private enterprise. 
The failed attempts to privatize Landsat nearly led to its demise. Only 
the combined engagement of civilian and defense organizations 
ultimately saved this pioneer satellite land monitoring program. 
With the emergence of 21st century Earth system science research, 
the full value of the Landsat concept and its continuous 45-year 
global archive has been recognized and embraced. Discussion of 
Landsat’s future continues but its heritage will not be forgotten. 

The pioneering satellite system’s vital history is captured in this 
notable volume on Landsat’s Enduring Legacy.  

Landsat Legacy Project Team
Samuel N. Goward
Darrel L. Williams
Terry Arvidson
Laura E. P. Rocchio
James R. Irons
Carol A. Russell
Shaida S. Johnston

Landsat’s Enduring Legacy
Hardback. 2017,  ISBN 1-57083-101-7   
Student 	 $36*
Member 	 $48*
Non-member 	 $60*

* Plus shipping

LANDSAT’S ENDURING LEGACY

Pioneering Global Land Observations from Space

Landsat Legacy Project Team

Landsat’s Enduring Legacy
Pioneering Global Land Observations from Space

Order online at 
www.asprs.org/landsat
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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

Teledyne Geospatial is pleased to announce that the next gen-
eration Optech CZMIL SuperNova topo/bathy lidar system 
has been awarded both the Geospatial Excellence Award for 
Technology Innovation and the Geospatial Excellence - Proj-
ect of the Year Grand Award.

The Optech CZMIL SuperNova boasts the best depth perfor-
mance and the highest green laser point density in its class. 
With SmartSpacing technology for even and efficient point 
spacing, real-time processing capability for reduced post-pro-
cessing time and configurable modes for maximizing perfor-
mance in different water environments, the SuperNova pro-
vides a wide range of inputs for climate change modelling 
and is Ideal for inland water environments, base mapping for 
coastal zones and shoreline.

A true geospatial solution, the CZMIL SuperNova’s workflow 
is integrated with CARIS Base Editor software for seamless 
data processing capability and built-in AI techniques for land/
water classification.

Teledyne Geospatial Director of Product Management Karen 
Cove comments, “We are thrilled to have the CZMIL Super-
Nova recognized by MAPPS and excited to see customers like 
Dewberry and Terratec tackle challenging projects with its 
demonstrated efficacy in environments like coastal beaches, 
inland waterways, coral reefs and deep-water mapping.”

Teledyne Geospatial unifies the hardware and software ex-
pertise of both Teledyne CARIS and Teledyne Optech.  The 
new group provides customers with innovative integrated 
solutions. Offerings include turnkey systems, lidar and sonar 
integrated workflows and a range of systems and solutions 
that support holistic, precision data collection.

¼½¼½ 

NCEES seeks professional surveyors’ and mapping scientists’ 
expertise and advice NCEES is currently seeking licensed 
professional surveyors and mapping scientists to participate 
in a professional activities and knowledge study, or PAKS, 
for the Principles and Practice of Surveying (PS) exam. The 
results of this study will be used to update the specifications 
for the exam, which is used throughout the United States for 
licensing purposes. 

NCEES requires a cross section of licensed professional sur-
veyors and mapping scientists—including those working in 
consulting, the public sector, and academia—to complete an 
online questionnaire about the knowledge, skills, and abilities 
required of a newly licensed surveyor or mapping scientist to 
practice in a manner that safeguards the health, safety, and 
welfare of the public. The questionnaire can be completed in 
35–45 minutes. 

“These studies help NCEES ensure its licensing exams re-
flect current professional practice,” explained Chief Officer of 
Examinations Jason J. Gamble, P.E. “We need input from as 
many professional surveyors and mapping scientists as possi-
ble to ensure that the PS exam continues to meet the demands 
of the profession.” 

For access to the online questionnaire, visit ncees.org/
PSPAKS. Responses must be received no later than May 30, 
2022. For more information, contact NCEES Exam Develop-
ment Engineer John (Andy) Bindewald, P.E., at abindewald@
ncees.org. 

¼½¼½ 

LAND INFO Worldwide Mapping LLC recently completed up-
to-date 10m resolution thematic raster GIS data covering all 
50 U.S. states.  Optimized for low-band (broad-area coverage) 
5G wireless planning, the dataset supports additional appli-
cations including utilities, insurance and government, and 
complements LAND INFO’s 1m resolution datasets that are 
used for mid-band and high-band 5G in more densely popu-
lated areas.

“The dataset is unique in that in addition to using 2020-2021 
Sentinel imagery and numerous ancillary layers, we were able 
to create best-in-class mapping by incorporating into our pro-
cessing aerial-derived Digital Surface Model (DSM) elevation 
data via our longstanding partnership with Hexagon’s HxGN 
Content Program," said LAND INFO president Nick Hubing.

The HxGN Content Program offers high-resolution, coun-
trywide aerial imagery and elevation data of the contiguous 
United States and Western European countries. Hexagon 
continuously advances the program with higher resolution 
products for digital twin initiatives. 

“We are proud to support LAND INFO’s land-use/cover map-
ping solution with our high-quality DSMs,” says John Welter, 
President, Geospatial Content Solutions at Hexagon. “LAND 
INFO is a well-established partner of Hexagon, and the part-
nership enables various industries to gain real-world analyt-
ics for reliable insights and better-informed decision making.” 

LAND INFO’s proprietary automated geospatial processing 
technologies include object-based image analysis and artifi-
cial intelligence where smart rulesets analyzed, classified, 
and merged the imagery, DSM and ancillary layers into a sin-
gle information rich dataset. There are currently just over 20 
classes, and additional classes can be added upon request.

Visit www.landinfo.com for more information.

mailto:rkelley@asprs.org
http://link.mediaoutreach.meltwater.com/ls/click?upn=qqyJCQQWkRiICFeBO-2FHUugoVp5V0P8QI5lYjEyRVGC996K0-2BziBvlFz3WFP-2B8sgVBdf2DLS4-2FXcZzSSKRlKWklXkyl2w789fe54qgIkssxxETKeu3ntIrqScTinT7Oi0KKGD_9xpBzVhCfR8ghcaS-2BO1M-2FHwMVjpJiyNZ335iT8hrDcirOsuHjOwXWjPLlgRK2O11G70icBeQxpIJxgIhPGs5NbQ6hf-2B64c02MfR1651rOKPd-2FrtTn2CyZMKpgMs-2FO1iaRgCj6feVQXRcIZS7W2Td4GfOxsUCyyC6FaPHOIuxMXqipXJqzGzXNhPmbzvKc9-2BSzlE5qOKaeLmsOPak9VSkSpCSfZ5BZUKTnVlgAlL2POgv9RIy7TAyXSICqj-2B5M4UdgLDs4HbXI5O-2FqKotBfyT-2BvV6Xj-2BjM8GB5a6EQhM24A7UfFaZwYfBb4rY6QkXSp6QG1AQvVzxGOqCPZuX-2B4U-2Bwk9od8A6iQ7HBtZBaNa3JbpZ-2F6DGj4Fk9wCI3aNqoUJF
http://link.mediaoutreach.meltwater.com/ls/click?upn=qqyJCQQWkRiICFeBO-2FHUum3DxgcBaQjPDoFceJJYW6BAtyeRBY1OSHi-2BCXl-2FKnTQkbNDBYWdZn-2FKbjlN-2BhkCaW6BKLBapmYm27lAk3tgQYU-3DKT_S_9xpBzVhCfR8ghcaS-2BO1M-2FHwMVjpJiyNZ335iT8hrDcirOsuHjOwXWjPLlgRK2O11G70icBeQxpIJxgIhPGs5NbQ6hf-2B64c02MfR1651rOKPd-2FrtTn2CyZMKpgMs-2FO1iaRgCj6feVQXRcIZS7W2Td4GfOxsUCyyC6FaPHOIuxMXqipXJqzGzXNhPmbzvKc9-2BSzlE5qOKaeLmsOPak9VSkSrrxuxkT-2F5o9zON20r5iRB9Fmp2DPuZRVH6Vjo6YHTTrl0AGyox-2F1GbxBBFmmrouoym9etra7LhRoWpcGq15S8TDMKd6thnviZPT7ssKcfFaIJp4CS-2BcWvey3xZr-2BhHOTi3wGvOYaVATr-2FcC1S3ni9WrwKG-2FkJrJ5KQBKv2mYjss
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INDUSTRYNEWS

TECHNOLOGY

Phase One, a leading developer of digital imaging technologies, 
has announced its new iX Suite, a fully integrated software 
package for aerial mapping project management. Compatible 
with all Phase One PAS airborne systems, iX Suite handles 
mission planning, flight management, data acquisition, image 
selection and processing and in a common workflow.

“We developed the iX Suite for efficient collection and delivery 
of high-quality aerial image products,” said Oodi Menaker, 
Phase One iX Suite Product Manager. “Every step of the 
workflow is planned and executed to ensure mapping projects 
are completed on time and on budget.”

With the iX Suite, Phase One has taken a novel approach to 
managing aerial mapping projects by making quality control 
a key focus throughout the workflow to guarantee the gener-
ated image products meet end user specifications. A unique 
aspect of the iX Suite workflow is that imagery can be re-
viewed inflight and re-collected immediately if necessary, 
reducing the need for budget- and schedule-killing re-flights 
days or weeks later.

The iX Suite is comprised of three software tools that auto-
mate many functions to reduce workloads for pilots and oper-
ators in the air and streamline processing activities for tech-
nicians on the ground. These three software components are:

•	 iX Plan is a 3D photogrammetric flight planning applica-
tion that takes end user requirements, terrain, and sensor 
properties into account to chart flightlines. The software 
includes a sensor database containing details of all Phase 
One PAS cameras and lidar sensors so that each image 
and point cloud acquisition is planned with exact area cov-
erage, overlap, and resolution.

•	 iX Flight Pro is the flight and sensor management appli-
cation that guides the pilot through the flight and triggers 
acquisition of sensor data. Images are displayed and over-
laid on digital terrain model (DTM) in the graphical user 
interface so the onboard operator can view their quality 
and confirm precise coverage of the AOI. 

•	 iX Process is an all-in-one mission review, quality assur-
ance, and image export application. Using the mission re-
port generated by iX Flight Pro, the processing tool over-
lays captured images on the flightline map and 3D DTMs, 
allowing the photogrammetric technician to check again 
for data quality and precise coverage of geographic areas. 
Accepted data sets are processed to generate and export 
images in commercial formats for delivery to end users.

“The iX Suite is tightly coupled with Phase One sensors, mak-
ing our PAS aerial mapping systems easier, more intuitive, 
and cost-effective to operate,” said Menaker. “Also, iX Suite 
interfaces with Riegl LiDAR systems, enabling customers to 
simultaneously operate a Phase One PAS camera and Riegl 
LiDAR with one management software in flight.”

The Phase One PAS line of sensor systems was designed spe-
cifically to address the challenges of aerial image acquisition 
for 2D and 3D city modelling, photogrammetric mapping and 
surveying, agriculture, and other geospatial applications. The 
PAS product line includes the five-camera PAS 880 oblique 
and nadir system, PAS 280 large-format system, and PAS 150 
systems.

Learn more at https://phaseone.ws/iX-suite.

CALENDAR

•	8 April, ASPRS GeoByte—A History of the Landsat Program. For more information, visit https://www.asprs.org/geo-
bytes.html.

•	22 April, ASPRS GeoByte— Using Geospatial Data to Evaluate Climate Hazards and Inform Environmental 
Justice. For more information, visit https://www.asprs.org/geobytes.html.

•	27 May, ASPRS GeoByte—Deep Fake Geography? A Humanistic GIS Reflection upon Geospatial Artificial In-
telligence. For more information, visit https://www.asprs.org/geobytes.html.

•	23 September, ASPRS GeoByte— Allen Coral Atlas: A New Technology for Coral Reef Conservation. For more 
information, visit https://www.asprs.org/geobytes.html.

•	3-6 October, GIS-PRO 2022, Boise, Idaho. For more information, visit https://www.urisa.org/gis-pro.

•	23-27 October, Pecora 22, Denver, Colorado. For more information, visit https://pecora22.org/.

https://phaseone.ws/iX-suite
https://www.urisa.org/gis-pro
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223 Research on Machine Intelligent Perception of Urban Geographic Location 
Based on High Resolution Remote Sensing Images
Jun Chen, Cunjian Yang, and Zhengyang Yu

Machine intelligent perception (MIP) provides a novel way for human beings to recognize geographical 
locations automatically. MIP of geographical locations enables computers to describe locations 
automatically and quantitatively by extracting Earth’s surface features and building relationships. Using 
the main cities in China as the experimental area, we have made a useful exploration in the field of MIP 
of geographical location, hoping to promote the development of human cognition of geographical location.

233 Identifying the Driving Factors of Urban Land Surface Temperature
Lifeng Liang, Benhua Tan, Sicheng Li, Zhiming Kang, Xiujuan Liu, and Lihua Wang

Land surface temperature (LST) has a profound impact on urban climate and ecology, and is widely used 
to quantify surface urban heat islands. The spatial heterogeneity of LST is affected by natural and human 
factors, with seasonal differences. This study selected Dongguan, a rapidly urbanizing city in China, as 
an example to analyze the relationship between the spatial heterogeneity of LST in different seasons and 
influencing factors in six dimensions.

243 Urban Land Cover/Use Mapping and Change Detection Analysis Using Multi-
Temporal Landsat OLI with Lidar-DEM and Derived TPI
Clement E. Akumu and Sam Dennis

The mapping and change detection of land cover and land use are essential for urban management. The 
aim of this article was to map and monitor the spatial and temporal change in urban land cover and land 
use in Davidson County, Tennessee in the periods of 2013, 2016, and 2020. 

255 Use of Commercial Satellite Imagery to Monitor Changing Arctic Polygonal 
Tundra
Amit Hasan, Mahendra Udawalpola, Anna Liljedahl, and Chandi Witharana

Commercial satellite sensors offer the luxury of mapping of individual permafrost features and their 
change over time. Deep learning convolutional neural nets (CNNs) demonstrate a remarkable success in 
automated image analysis. In this article, we systematically investigate the effectiveness of a spectrum of 
augmentation methods.

263 An Evaluation of Pan-Sharpening Methods for SuperView-1 Satellite Imagery
Lei Zhang, Bowen Wen, Ming Zhang, Qiongqiong Lan, and Qian Wang

At present, little research focuses on the application of pan-sharpening methods to SuperView-1 
satellite imagery. There is a lack of suitability assessment for existing pan-sharpening methods applied 
to SuperView-1 images. This article proposes an evaluation method that integrates visual evaluation, 
spectral analysis of typical objects, and quantitative indicators to evaluate the advantages of different 
pan-sharpening methods in different scenes of SuperView-1 imagery.

271 Floating Solar Park Impacts Urban Land Surface Temperature Distribution 
Pattern
Bo Yingjie, Li Guoqing, Zeng Yelong, and Liu Zhe

In recent years, the global photovoltaic industry has developed rapidly. It is significant for evaluating the 
impact of large-scale solar parks on the environment for the sustainable development of the photovoltaic 
industry. At present, researchers have paid attention to changes in the local thermal environment caused 
by solar parks. As a new type of solar park, the influence of floating solar parks on urban land surface 
temperature distribution patterns is still unclear. In this article, we examine solar parks in Huainan City, 
China and adjacent areas.
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213	 GIS Tips & Tricks—Need Help Finding GIS Tools – 

Here are a Few Tips
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The Pilbara in northwestern Australia exposes some of the oldest rocks on Earth, 
over 3.6 billion years old. The iron-rich rocks formed before the presence of atmo-
spheric oxygen, and life itself. Found upon these rocks are 3.45 billion-year-old fossil 
stromatolites, colonies of microbial cyanobacteria. The image, acquired in October 
2004, is a composite of ASTER bands 4-2-1 displayed in RGB.

With its 14 spectral bands from the visible to the thermal infrared wavelength region 
and its high spatial resolution of about 50 to 300 feet (15 to 90 meters), ASTER 
images Earth to map and monitor the changing surface of our planet and is one of 
five Earth-observing instruments launched Dec. 18, 1999, on the Terra satellite. The 
instrument was built by Japan’s Ministry of Economy, Trade and Industry. A joint 
U.S./Japan science team is responsible for validation and calibration of the instru-
ment and data products.

The broad spectral coverage and high spectral resolution of ASTER provides 
scientists in numerous disciplines with critical information for surface mapping and 
monitoring of dynamic conditions and temporal change. Example applications are 
monitoring glacial advances and retreats; monitoring potentially active volcanoes; 
identifying crop stress; determining cloud morphology and physical properties; 
wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface 
temperature mapping of soils and geology; and measuring surface heat balance.

Image Credit: NASA/METI/AIST/Japan Space Systems, and U.S./Japan ASTER 
Science Team. 

For more information on this image, visit https://www.nasa.gov/image-feature/36-
billion-years-in-pastel-colors.

www.facebook.com/ASPRS.org
www.twitter.com/ASPRSorg
www.youtube.com/user/ASPRS
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GIS &Tips     Tricks By Dave Maune, Ph.D., CP, GS, PS, 
and Al Karlin, Ph.D, CMS-L, GISP
Savannah Carter & Al Karlin, Ph.D. 
CMS-L, GISP

Need Help Finding GIS Tools – Here are a Few Tips
At some time, everyone comes to a point where they need 
help finding something that they know they have used 
before, but just cannot find. I frequently tell my students 
that “GOOGLE knows everything, so just ask GOOGLE!” 
GOOGLE is available 24/7 while I am available, hit or miss, 
so… What to do when GOOGLE cannot answer your ques-
tion, or you know that you have used a GIS tool but just can’t 
remember where to find it.

The solution is actually pretty simple, don’t go to the “Help 
Menu”; use the Search functions. Here are some of Savan-
nah’s and my tips for (1) finding and (2) using the Search 
functions effectively.

For ArcGIS Desktop: 
In ArcGIS Desktop there are multiple ways to open the 
Search functions. For those who prefer keyboard shortcuts, 
the <CTRL>-+F combination will open the search dialog box. 
For those who prefer mouse clicks, the Search dialog can be 
accessed from either the Geoprocessing tab (Figure 1) or the 
Windows tab (Figure 2) on the Main toolbar. 

Once the Search 
dialog (Figure 
3) opens, there 
are multiple tabs 
across the top to 
choose from for 
the search. Us-
ing the “All” tab 
will search for 
all objects in the 
ArcGIS environ-
ment containing 
the EXACT char-
acter string that you type. This can be extremely frustrating, 
particularly when you make a small typo (which we often do) as 
in the example in Figure 4, where a small typo, entering raser 
rather than raster, in the search yielded no results! 

Photogrammetric Engineering & Remote Sensing
Vol. 88, No. 4, April 2022, pp. 213-215.

0099-1112/22/213-215
© 2022 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.88.4.213

Figure 1.  Accessing the Search functions from the Geoprocessing tab.

Figure 2.  Accessing the Search functions from the Windows tab.

Figure 3.  The Search dialog showing multiple tab 
filters acroass the top.  The ALL filter tab is chosen 
in this example.

Figure 4.  A small typo, raser instead of raster, in the search string failed to 
yield any results.
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When the typo was corrected, the search yielded the location 
to the desired tool as in Figure 5.

TIP: An alternative is to search for tools using the Tool filter 
tab on the Search dialog. When using this tab, the search 
functions parses the search string as you type and offers sug-
gestions to complete the string, as shown in Figure 6.

For ArcGIS Pro
In ArcGIS Pro, the Geoprocessing tools are accessed through 
the “Analysis” Tab on the ribbon (Figure 7). Here, there are sev-
eral “ready-to-use” tools and multiple ways to customize the tool 
groupings. But to search for a specific tool, clicking on the Tools 
icon will open the Geoprocessing dialog (Figure 8). Typing in the 
Find Tools box functions much like the ArcGIS Desktop search 
with the Tools filter and immediately starts to locate tools 
containing the character string and offers the options (Figure 9).

Figure 5.  Correcting the typo, raster, not raser, in the search string yielded 
the desired tool.

Figure 6.  Using the Tools tab in the Search dialog box to search for tools.

Figure 7.  The “Tools” icon on the ArcGIS Pro Analysis Tab.

Figure 8.  The Geoprocessing Dialog is used to Find Tools in ArcGIS Pro.

Figure 9.  Typing in the Find Tools starts ArcGIS 
Pro to search for tools matching the character 
string while you type and offers list of tools to 
choose from.
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In QGIS
In most versions of QGIS, the search for a processing tool is 
much the same as in ArcGIS Pro. The Processing Toolbox is 
opened from the Main Menu on the “Processing” tab as in 
Figure 10 or by the key combination <CTRL>+<ALT>+T.

Once the Processing Toolbox is opened, the search area at 
the top of the toolbox will initiate searching as you type. In 
the example below (Figure 11), I started typing “lidar”, got 
as far as “lida” and the search engine suggested two raster 
and four vector tools, much like the ArcGIS Pro tool above. 
Double-clicking on a tool will open its dialog box.

Not all GIS packages behave the way described above. In 
GlobalMapper the “Search” functions search for character 
strings in tables, names in files and/or geographic locations. 
So be aware of what your software does when you start 
searching.

Send your questions, comments, and tips to GISTT@ASPRS.org.

Savannah Carter is a Geospatial Analyst with Dewberry 
in the Tampa, FL office. She specializes in topographic and 
topobathymetric lidar data classification and interpretation 
Al Karlin, Ph.D., CMS-L, GISP is with Dewberry’s Geo-
spatial and Technology Services group in Tampa, FL. As a 
senior geospatial scientist, Al works with all aspects of Lidar, 
remote sensing, photogrammetry, and GIS-related projects. 

Figure10.   QGIS Processing Tab opens the Toolbox.

Figure 11.  A search in QGIS for “lida” found 6 possible tools.
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by Clifford J. Mugnier, CP, CMS, FASPRS

Inhabited by Lucayan Indians at the time 
of sighting by Christopher Columbus on 12 
October 1492, the islands were assigned to 

Spain by Papal grant. Subsequently occupied 
only by slave traders and buccaneers, the 
Bahamas were granted by the British Crown to 
Sir Robert Heath in 1629. The Commonwealth 
of the Bahamas became independent from the 
United Kingdom (PE&RS, October 2003) on 10 
July 1973. Comprised of a 700-island and islet 
archipelago with an additional 2,400 cays and 
rocks in the North Atlantic Ocean, the total land 
area is 10,070 km2, and it is slightly smaller 
than the State of Connecticut. With a total 
coastline of 3,542 km, the terrain of the Bahamas 
is primarily long, low coral formations with 
some low rounded hills. The lowest point is the 
Atlantic Ocean (sea level) and the highest point 
is Mount Alvernia (63 m) on Cat Island. Twenty-
two of the main islands are inhabited; 70% of the 
population of 316,000+ live on New Providence, 
and 16% live on Grand Bahama.

Prior to World War II, the only surveys performed in the 
Bahamas were astronomical observations (Astros) of haz-
ards to navigation and local cadastral-type surveys for some 
privately held properties. Initial geodetic ties of the islands 
to the mainland coast of Florida were performed with flare 
triangulations in the 1960s that were soon followed by 
BC-4 ballistic camera observations of the PAGEOS satel-
lites. Flare triangulations were performed by simultaneous 
theodolite observations to parachute flares dropped from 
airplanes flying at high altitudes in order to make geo-
detic connections over the horizon. BC-4 observations were 
performed by photogrammetric triangulations of passive 

satellite reflections against a background of star fields. Dr. 
Helmut Schmid (one of the original V-2 rocket scientists) 
led that geodetic program for the U.S. Coast & Geodetic 
Survey. The BC-4 program was the intercontinental geo-
detic program that tied all of the continents into the first 
worldwide geodetic system. Dr. Schmid was the designer of 
the BC-4 ballistic camera and was the mentor to Dr. Duane 
C. Brown, a pioneer of modern analytical photogrammetry. 
The Bahamas have been referenced to the North Ameri-
can Datum of 1927 (Clarke 1866 ellipsoid) since the 1960s, 
where a = 6,378,206.4 m and b = 6,356,583.8 m. The datum 
origin point is Meades Ranch, Kansas (quite a distance 
away) at: Φo= 39º 13´ 26.686˝ N, Λo = –98º 32´ 30.506˝ W., 
and the reference azimuth to station Waldo is αo = 75º 28´ 
09.64˝ (PE&RS, April 2000).

Thanks to John W. Hager, the following positions have been 
determined in the Bahamas by classical observation tech-
niques. These following geodetic positions (j, l) are pre-
sumably on the NAD27 while the astro positions (Φ, Λ) are 

The Grids & Datums column has completed an exploration of 
every country on the Earth. For those who did not get to enjoy 
this world tour the first time, PE&RS is reprinting prior articles 
from the column. This month’s article on the Commonwealth 
of the Bahamas was originally printed in 2004 but contains 
updates to their coordinate system since then.

COMMONWEALTH OF THE 

BAHAMAS

Photogrammetric Engineering & Remote Sensing
Vol. 88, No. 4, April 2022, pp. 216-218.

0099-1112/22/216-218
© 2022 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.88.4.216
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independent: Elbow Cay Light (ECL), j = 26° 32´ 21.715˝ N, 
l = –76° 57´ 10.870˝ W. Also there is the Astro Observations 
(1940) where Φ = 26° 32´ 22.500˝ N, Λ = –76° 57´ 15.353˝ W, 
Astro Observations to light = 126.79 m, α = S 79° 01´ 27˝ E 
true. Flamingo Cay Light (FLA), j = 22° 52´ 43.48˝ N, l = 
–75° 51´ 38.28˝ W. Great Inagua Island Light, j = 20° 55´ 
56.81˝ N, l = –73° 40´ 37.58˝ W. Great Isaac Light (GIL), 
j = 26° 01´ 48.30˝ N, l = –79° 05´ 22.08˝ W. Great Ragged 
Island Light (GRL), j = 22° 11´ 17.29˝ N, l = –75° 43´ 16.03˝ 
W. Great Stirrup Cay (GSC), j = 25° 49´ 36.41˝ N, l = –77° 
53´ 50.20˝ W. Gun Cay Light (GUN), j = 25° 34´ 30.22˝ N,l 
= –79° 18´ 01.18˝ W. Harvey Cay Light (HCL), j = 24° 09´ 
16.19˝ N, l = –76° 28´ 53.95˝ W. Hog Island Light (HIL), j 
= 25° 05´ 35.3˝ N, l = –77° 21´ 13.5˝ W. Hogsty Reef Light 
(HRL), j = 21° 41´ 27.71˝ N, l = –73° 50˝ 56.81˝ W. Hole-in-
the-Wall Light (HIW), j = 25° 51´ 32.522˝ N, l = –77° 10´ 
37.938˝ W. Observed astro (1940), Φ = 29° 51´ 22.320˝ N, Λ = 
–77° 10´ 37.370˝ W. Corrected in 1945, Φ = 29° 51´ 21.1155˝ 
N, Λ = –77° 10´ 36.2901˝ W. Little San Salvador Island (LIT), 
j = 24° 33´ 53.73˝ N, l = –75° 56´ 08.00˝ W. Man Island Light 
(MAN), j = 25° 33´ 31.34˝ N, l = –76° 38´ 26.83˝ W. North-
west Point Astro (NPA), Φ = 22° 27´ 24.42˝ N, Λ = –73° 07´ 
44.86˝ W. Northwest Point Light (NPL), j = 22° 27´ 35.56˝ 
N, l = –73° 07´ 47.43˝ W. Pinder Point Light (PPL), j = 26° 
30´ 08.92˝ N, l = –78° 46´ 00.71˝ W. Rum Cay Light (RUM), 
j = 23° 38˝ 36.1˝ N., l = –74° 50´ 05.7˝ W. Santa Maria Light 
(SML), j = 23° 40´ 54.54˝ N., l = –75° 20´ 27.60˝ W. South 
Point Light (SPL), j = 22° 50´ 56.48˝ N., l = 74° 51´ 14.42˝ 
W. Stocking Island Astro (SIA), Φ = 23° 32´ 33.97˝ N., Λ = 
–75° 46´ 10.75˝ W. Sweetings Cay Light (SWC), j = 26° 36´ 
40.62˝ N., l = –77° 54´ 00.86˝ W.

The NGA lists the three-parameter transformation from 
NAD27 to WGS84 for the Bahamas excluding San Salva-
dor Island as ∆X = –4 m±5 m, ∆Y = +154 m ±3 m, and ∆Z = 
+178 m ±5 m, where the 1987 solution is based on 11 station 
observations. For San Salvador Island, ∆X = +1 m ±25 m, ∆Y 
= +140 m ±25 m, and ∆Z = +165 m ±25 m, and the 1987 solu-
tion is based on one station observation. In 1997, the U.S. 

National Geodetic Survey observed a number of high-order 
positions in the Bahamas on the NAD83 datum. The only 
grid ever used in the Bahamas is the UTM.

The Commonwealth of the Bahamas 
Update
The U.S. Department of State issued a new paper on 
Limits in the Seas, No. 128 on the Bahamas Archipe-
lagic and other Maritime Claims and Boundaries on 31 
January 2014.  “This study analyzes the maritime claims 
and maritime boundaries of the Commonwealth of The 
Bahamas, including its archipelagic baseline claim. The 
Bahamas’ Archipelagic Waters and Maritime Jurisdic-
tion (Archipelagic Baselines) Order, 2008 (Annex 1 to 
this study) took effect on December 8, 2008 and estab-
lished the coordinates for the archipelagic baselines of 
The Bahamas.1 The archipelagic baselines are shown on 
Map 1 to this study. This Order was made in exercise of 
the powers conferred by section 3.2 of the Archipelagic 
Waters and Maritime Jurisdiction Act, 1993 (Act No. 37, 
Annex 2 to this study).2 The 1993 Act also established a 
12- nautical mile (nm) territorial sea and 200-nm exclu-
sive economic zone (EEZ). The Bahamas ratified the 
1982 United Nations Convention on the Law of the Sea 
(LOS Convention) on July 29, 1983 and consented to be 
bound by the 1994 Agreement Relating to the Implemen-
tation of Part XI of the Convention on July 28, 1995.3.”  
http://www.state.gov/e/oes/ocns/opa/c16065.htm.  

The contents of this column reflect the views of the author, who is 
responsible for the facts and accuracy of the data presented herein. 
The contents do not necessarily reflect the official views or policies of 
the American Society for Photogrammetry and Remote Sensing and/or 
the Louisiana State University Center for GeoInformatics (C4G).

This column was previously published in PE&RS.

Too young to drive the car? Perhaps!

But not too young to be curious about geospatial sciences.
The ASPRS Foundation was established to advance the understanding and use of spatial data for the 
betterment of humankind. The Foundation provides grants, scholarships, loans and other forms of aid to 
individuals or organizations pursuing knowledge of imaging and geospatial information science and 
technology, and their applications across the scientific, governmental, and commercial sectors.

Support the Foundation, because when he is ready so will we.

asprsfoundation.org/donate

http://www.state.gov/e/oes/ocns/opa/c16065.htm
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THE ASPRS STUDENT ADVISORY COUNCIL (SAC) 

Resilient Research—Asking Students How the Pandemic has Impacted their Work, 
Strategies for Adaptation, and How SAC Can Help.

It has been a tough two years. The pandemic has dramatically changed many aspects of our lives, and the future remains 
uncertain. Though our individual experiences may differ, we at SAC feel that it is important that every person in our 
community (geospatial and beyond) knows that they are not alone. We feel that it is essential for all of us to pause and reflect 
on the emotional and physical toll of these past two years. This processing is not meant to simply be a rehashing of difficult 
times but is instead intended to help us respect where we have been, so we can understand how to continue on to a path of 
healing and growth.

For this special edition of SAC Signatures, the SAC team reached out to students asking them about their experiences 
conducting research during the COVID-19 pandemic and requested that they share any advice for other students experiencing 
similar issues. Finally, we asked them to share how SAC has helped or can continue to help them meet their goals and provide 
continued support. The responses we received touched on all spheres of student life (work, home, and social aspects), helping 
us to better understand that vast ripple effects caused by the pandemic, and how these effects interact and interfere with 
research and study.

Student Responses

1.	 How did the COVID-19 pandemic affect the progress of your 
research? Answers are summarized by category.

•	Data Collection & Analysis
Unsurprisingly, a big impact of the pandemic was 
inability to conduct field work and collect data or in-
person interviews. Furthermore, students noted that 
fulfilling deadlines was more difficult as they struggled 
to meet with peers and advisors. Communication, 
though possible through zoom, was lacking for some 
students compared to meeting in person.

•	Technology & Education
During the pandemic, access to school technology has 
been limited, forcing students to use their own internet 
and computers. This has proved difficult for some with 
limited WIFI or computers that are not as powerful as 
those at school. As classes became fully remote, some 
students felt lapsing engagement with class content.

•	Social Life & Wellbeing
Students reflected on how seeing the global and 
local impacts of COVID-19 (or even catching it  
themselves) has been a big source of stress and anxiety. 
Further, students reflected on how the pandemic has 

inequitably impacted caregivers who must juggle work 
and family life as well as the experiences of those who 
are, or are caring for, immunocompromised individuals. 
As social gatherings became impossible and public 
places closed, students felt isolated. Though these 
in-person gatherings were often replaced with virtual 
ones, students experienced a new issue: “zoom burn 
out”, where endless virtual meetings became somewhat 
draining. Additionally, students discussed the physical 
impacts of working from home, including pains and 
stiffness from sitting at a desk all day

Pandemic Research Impacts. 
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2.	 What strategies did you use to adapt to the impacts of the 
pandemic? What advice do you have for students conducting 
research during the pandemic? Answers are summarized by category.

•	Data Collection & Analysis
Students suggest using professional social networks, 
such as LinkedIn, ResearchGate, and others to expand 
their professional networks and learn about exciting 
new skills and data resources.  

•	Technology & Education
For collaborative projects and assignments, students 
recommend using resources like Google Docs, as 
these make it easier to work together and track 
progress. Students also stress the importance of 
time management to stay productive while working 
remotely.

•	Social Life & Wellbeing
To ease isolation, students suggest using “snail mail” 
to correspond with friends and family and to, when 
safe to do so, hold small gatherings for social or 

study time. To help with mental and physical health, 
scheduling and regularly taking walks was suggested 
(as well as investment into a cheap standing desk). 
Another bit of advice for our bespectacled community 
members was to tape your mask across your nose 
to prevent your glasses steaming up. Finally, 
students remind us to keep going and remember that 
“everything will be fine”.  

3.	 How did engagement in SAC and ASPRS assist you in 
achieving your professional and academic goals during the 
pandemic? What else can SAC do to support you?
Students shared their gratitude for the professional, 
academic, and social connections SAC strives to provide 
to students. Furthermore, students are grateful for the 
opportunities shared and implemented by ASPRS, such 
as scholarships, events, and space to present their work. 
Students also expressed appreciation for the connection 
and resources provided by their local ASPRS student 
chapters. SAC will work hard to continue to share 
resources for students and make space for collaboration 
and networking. Thank you to all the students who 
participated in our survey! 

If you are interested in participating in SAC activities
•	Join us every other Thursday from 10-11 am PST!
•	Join us via this zoom link, https://tinyurl.com/SACASPRSMeeting

Pandemic Adaption Strategies. 

How SAC and ASPRS have helped.

https://tinyurl.com/SACASPRSMeeting
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Multimodal Remote Sensing Data Processing and Analysis for 
Earth Observation

Earth observation, by providing critical information on natural 
resources, hazardous areas, and climate change, among others, 
is a powerful tool in all aspects of life. The observations come pri-
marily from space-based sensors such as satellites, but they highly 
depend on ground-based remote sensing devices. Multimodal 
remote sensing systems integrate optical and passive microwave 
radiometers to improve the quality of observations. The ver-
satility of multimodal RS offers enormous potential to monitor 
diverse target phenomena in all climate system components 
with high spatial, temporal, or spectral resolution. It provides 
innovative methods for processing multispectral, hyperspectral, 
and polarimetric remote sensing data for different vegetation, 
geophysical, and atmospheric applications to understand the 
earth better. However, there are still challenges to achieving 
maximum exploitation of multimodal data. At the same time, the 
combination of multimodal remote sensing technologies is a pow-
erful approach that can yield significant advantages compared to 
traditional single-modal sensors.

The techniques such as image processing is typically used to ad-
just and refine data derived from remote sensing. Its capabilities 
are also useful for merging data sources. Image processing tech-
niques, such as filtering and feature extraction, are well suited 
for dealing with the high-dimensionality of spatially distributed 
systems. The input data may come from different sensors, each 
with a different spatial resolution and measurement scale (‘mul-
timodal’). It provides approaches for the extraction of relevant 
non-topographic information from remote sensing data, such 
as demographic indicators from satellite images of urban areas, 
which could assist in future spatial modelling of these areas. It 
helps to analyze shape, topography, and texture phenomena for 
soil and vegetation data and various methods for image fusion 
and analysis of the optical, radar, and gravity data. It covers a 
wide range of geospatial applications, including land and water re-
sources management, urban planning, environmental monitoring, 
natural hazards and climate change, oceanography, engineering 
design, and national security and intelligence. It processes multi-
spectral, thematic-mapping, thermal-infrared (TIR), hyperspectral 
data acquired from optical, SAR or lidar platforms with advanced 
techniques in the areas of scene characterization and feature 
extraction. 

This special issue is intended for remote sensing scientists, 
engineers, and researchers involved in its application for earth 
observation. Innovative techniques dealing with climate moni-
toring; environmental monitoring, including pollution monitoring 
and deforestation detection; geographical information system 
(GIS) applications; maps generation, land cover classification and 
change detection; mineral exploration industries; hydrology and 

water resources management; based on multimodal remote sens-
ing data are most invited for submission.

List of Topics (include, but not limited to the following):
	y Deep learning and computer vision for earth observation and 

multimodal remote sensing
	y Semantic and instance segmentation of the multimodal re-

mote sensing data for earth observation and analysis
	y Multimodal remote sensing data fusion, interpretation and 

analysis for earth observation
	y Hyperspectral remote sensing and image processing for earth 

observation
	y Light weight deep neural network algorithms for earth surveil-

lance
	y Earth object classification and recognition using multimodal 

remote sensing approaches
	y Multi-resolution and multi-modal remote sensing for enhanc-

ing the earth observation processes
	y Novel applications of multi-modal remote sensing in earth 

monitoring and surveillance processes
	y Spatio-temporal data analysis for efficient earth observation
	y Multimodal data reconstruction and restoration for efficient 

classification process
	y Benchmarking multimodal datasets for earth observation
	y New algorithms and frameworks for efficient analysis of multi-

modal remote sensing data  

Deadline for Manuscript Submission
August 1, 2022

Submit your Manuscript to
http://asprs-pers.edmgr.com
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s Modelling, Representation, and Visualization of the 
Remote Sensing Data for Forestry Management

Remote sensing data includes aerial photography, videography data, multispectral scanner (MSS), Radar, and laser to map 
and understand various forest cover types and features. An accurate digital model of a selected forest type is developed 
using forest inventory data in educational and experimental forestry and extensive databases. It includes the formalization 
and compilation of methods for integrating forest inventory databases and remote sensing data with three-dimensional 
models for a dynamic display of forest changes. 

Big data technology employs vast amounts of forestry data for forestry applications that require real-time inquiry and 
calculation. The techniques and strategies of forestry data analysis are integrated into the big data forestry framework, 
enabling interfaces that other Programmes may call. Virtual Reality addresses constraints in forest management such as 
temporal dependence, irreversibility of decisions, spatial-quantitative change of characteristics, and numerous objectives. 
Virtual representations integrate various computer graphics systems with display and interface devices to create a spatial 
presence in an interactive 3 D environment. Visualization of plant species’ growth patterns, changes in species and their 
composition, and other morphological properties of forests are enhanced using machine learning and regression analysis 
methods as part of a digital model. In modelling, deep learning (DL) replicates expert observations on hundreds or thou-
sands of hectares of trees.

Remote sensing is being used to map the distribution of forest resources, global changes in flora with the seasonal vari-
ations, and the 3D structure of forests. Graphic Information System (GIS) based visualizations depict dynamics through 
animations and 3D geo model visualizations and allow advanced spatial analytics and modelling in geographical phenom-
ena for forest management.  Digital forest modelling includes integrating forest inventory data, forest inventory database 
formation, graphics objects of forest inventory allocations with a digital forest model, and technology for visualizing forest 
inventory data. It helps forecast changes and visualizes situational phenomena occurring in forests using data and models 
involving spatial-temporal linkages.

Standard aerial shots capture images that view unseen components to the naked eye, such as the Earth’s surface’s physical 
structure and chemical composition. The challenges in remote sensing models include insufficient Remote Sensing (RS), 
spatial, spectral, and temporal resolution to detect degradation accurately. High costs of RS, the gap between operational 
and scientific uses, and lack of information sharing are some of the challenges of RS for forest management. The list of 
topics of interest include but are not limited to the following:
	y Advancement of forest surveillance through Geographical Information Systems
	y State of the art and perspectives of modelling and visualization framework  for Forest type mapping and assessment of 

distribution 
	y Futuristic Satellite data analysis for stock maps and forest inventory analysis 
	y Big data-enabled GIS framework for forest management information 
	y AI-based Space Remote Sensing For Forest Ecosystem Assessment 
	y Enhanced visualization through deep learning for forest management solutions
	y Novel approaches of multi-temporal satellite data using digital image analysis for forest management
	y Advance representation of discrete objects and continuous fields in virtual environments through VR framework
	y Database framework for regional and plot-based forest allotment data for model representation  and visualization
	y Development of scalable models for area-based metrics from Light Detection and Ranging (lidar) devices and photo-

graphic structure-for-motion (SFM)
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Research on Machine Intelligent Perception 
of Urban Geographic Location Based on High 

Resolution Remote Sensing Images
Jun Chen, Cunjian Yang, and Zhengyang Yu

Abstract
Machine intelligent perception (MIP) provides a novel way for hu-
man beings to recognize geographical locations automatically. MIP 
of geographical locations enables computers to describe locations 
automatically and quantitatively by extracting Earth’s surface features 
and building relationships. The earth surface fingerprint is estab-
lished here by mining the relationship between spatial objects with 
stable characteristics extracted from urban high-resolution remote 
sensing images, which realizes intelligent perception of geographi-
cal location innovatively. Mask Region-based Convolutional Neural 
Network is used to automatically extract the spatial objects such as 
playgrounds, crossroads, and bridges from the images. Then, the 
extracted spatial objects are encoded according to the landuse type, 
distance, and angle of 24 nearest objects to construct urban surface 
fingerprint database. The urban surface fingerprint database is used 
to match the geographical location of spatial objects in local images 
so that the matching algorithm can be used for machine recognition 
of the geographical location of specific objects in the target image. 
Taking the main cities in China as the experimental area, the success 
rate of location perception is 92%. We have made a useful explora-
tion in the field of MIP of geographical location, hoping to promote 
the development of human cognition of geographical location.

Introduction
Human cognition of geographical location has gone through four 
stages. Before words appeared, people expressed geographical location 
by tying knots on ropes. After the invention of words, people began 
to record geographical location with words. Later, people learned to 
represent locations by drawing maps, and the appearance of maps is 
a great leap in human cognition of geographical location. With the 
advent of computers, geographical location is digitized, so the calcula-
tion and service based on geographical location can be provided by 
computers. Today, cutting-edge technologies such as high-performance 
computing and artificial intelligence constantly stimulate and give 
birth to new demands and new applications. The machine intelligent 
perception (MIP) of geographical locations is a new stage of human 
cognition of geographical locations and is an important frontier topic 
in geographic information science.

The key to MIP of a geographical location is to establish a set of 
methods so that computers can describe the location automatically and 
quantitatively. At present, it mainly involves two areas of research: one 
is based on the image features, and the other is to establish the concept 
of geo-science mapping to understand geographic location. The former 

determines the features contained in the image through various transfor-
mations, and then realizes geographic location perception by using the 
feature matching algorithm (Jiang et al. 2021). The classical methods 
for automatically extracting features include Harris feature (Kovacs 
and Sziranyi 2013; Vishwakarma and Bhuyan 2020; Wang et al. 2008), 
scale-invariant feature transform (SIFT) feature (Yang et al. 2019; Yao et 
al. 2009; Zhou 2009) and speeded up robust features (SURF) feature (Bay 
et al. 2006; Su et al. 2010; Tong et al. 2021). With the improvement of 
algorithms, the accuracy and efficiency of feature extraction are getting 
higher and higher. For example, Rublee et al. proposed an improved ORB 
model, which is rotation invariant and resistant to noise (Rublee et al. 
2011). Wu adopted a feature detection method based on image grayscale 
information-FAST operator to improve the speed of extracting image 
feature points (Wu 2019). However, due to the limitation of algorithms, 
a large number of feature points are often extracted from an image. So, 
it requires a complex algorithm to extract useful information that can 
distinguish specific geographical locations from a large number of feature 
points. Fan and Zhao proposed a matching process to cluster features 
from a group of reference images in order to enhance matching robust-
ness (Fan and Zhao 2012). Liu et al. proposed a simple and robust feature 
point matching algorithm, called Restricted Spatial Order Constraints 
(RSOC), to remove outliers for registering aerial images with monoto-
nous backgrounds, similar patterns, low overlapping areas, and large 
affine transformation (Liu et al. 2012). Chen et al. proposed a line-based 
matching method to overcome the low significant level of point feature 
and the shortage in the matching between weak texture images (Chen et 
al. 2013). Although some progress has been made in feature screening 
and matching optimization, for machine intelligent sensing location, it is 
necessary to analyze a wide range of remote sensing images and extract 
a small number of evenly distributed features to quickly indicate the 
location of any place in the region. The existing research rarely involves 
this field. Due to the complexity of algorithm and data organization, it is 
difficult to directly migrate to the field of MIP of geographical location.

Geo-science mapping is another prospective study in this field. 
Based on the theory of geo-science mapping, Luo proposed the spatial 
cognition theory coupled with remote sensing mapping and constructed 
a theoretical and methodological system in the way of “pixel-object-
object-pattern” (Matsuoka and Midorikawa 1993). Based on the theory 
of geo-science mapping and geographic information systems (GIS) 
technology, Lu analyzed the land use “pattern map”, “classification 
map”, “transfer map”, “change pattern map”, and “fluctuation map” of 
land border areas of Guangxi Province from 2003 to 2013, and thus re-
vealed the spatial-temporal evolution process of land use (Rucheng et 
al. 2009). Abrams (2017) constructed the geo-science mapping of the 
land surface. Hewson’s project demonstrated, within the study areas of 
Wagga and Cobar, the usefulness of the National ASTER Geoscience 
Map products for identifying variations in the composition of surface 
materials (Hewson and Robson 2014). Moosavi proposed a generic 
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methodology for combining high-dimensional spatial data to identify 
and visualize the hidden spatial patterns in a single-layer geo-map 
(Moosavi 2017). At present, the study of geo-science mapping is still 
in its infancy, and different scholars describe geographical features in a 
different way, so it is difficult to establish a unified index to automati-
cally construct regional geo-science mapping.

The realization of MIP of geographical location needs to be 
completed automatically by the computer. Given the current research 
results, there is still a long way to go. This paper, with cities as the 
research area, tries to introduce the concept of surface fingerprint, 
discusses how to make computers automatically extract objects from 
remote sensing images, and establishes surface fingerprints. By doing 
so, it realizes the preliminary MIP of geographical location.

The Concept of Machine Perception of Geographical Location
Surface Fingerprint
Fingerprint, also called handprint, is characterized by raised lines on the 
epidermis. Human fingerprint is the product of a combination of environ-
mental and genetic factors. Everyone has unique fingerprints. Fingerprint 
lines are not smooth or continuous, and the interruptions, bifurcations, or 
turns, as feature points, are the basis of fingerprint identification.

The concept of surface fingerprint is proposed by generalizing the 
concept of human fingerprint to geographical space to identify the lo-
cation of spatial objects. Surface fingerprint is the unique identification 
of a specific location on the earth. Similar to human fingerprint, it can 
be constructed with spatial feature points. If too many feature points 
are extracted from the image, the complexity of matching computation 
will greatly increase. In this paper, the spatial objects are used as the 
feature points and surface fingerprint can be constructed through the 
spatial relationship of these objects.

MIP of Geographical Location
“Machine intelligent perception of geographical location”, also known 
as “machines automatically understanding the geographical location”, 
means that the computer automatically obtains the feature points of the 
surface, constructs the surface fingerprint through a certain algorithm, 
and uses the surface fingerprint matching algorithm to automatically 
indicate the surface location. Obviously, the MIP of location is based on 
the concept of surface fingerprint. By constructing a large-scale surface 
fingerprint database, the machine can store the unique location identifi-
cation at any location in the research area, so as to achieve the purpose 
of automatic and intelligent perception of location.

The Method of MIP of Urban Geographic Location
Automatic Extraction of Spatial Objects Based on Mask Region-Based 
Convolutional Neural Network (R-CNN)
Obviously, instance segmentation is the basis of machine percep-
tion of geographic location, which can effectively detect objects 
with relatively stable spatial morphological and spectral features. On 

high-resolution remote sensing images, playgrounds, crossroads, and 
bridges have stable spectral characteristics and morphology.

It is necessary to establish a training data set and test data set of 
instance segmentation model. For each picture in the data set, the position 
and shape of each object need to be marked in advance. For a playground, 
we directly mark the area enclosed by the runway edge. For a crossroad, 
we mark the area enclosed by the zebra crossing, and for a bridge, we mark 
the edge of the bridge area. Then it automatically calculates the bounding 
rectangle. Typical sample marks are shown in Figure 1. The yellow line in 
the figure is the outer boundary of the object of interest in the image.

There are 1200 images and 1330 labeled objects in the training 
sample data set, and 500 images and 589 labeled objects in the test 
data set. We selected three instance segmentation models, includ-
ing TensorMask (Chen et al. 2019), CenterMask (Youngwan and 
Park 2020), and Mask Region-Based Convolutional Neural Network 
(R-CNN) to train the data sets, respectively. Stochastic gradient descent 
(SGD) is used to train these models. The test data set was used to 
extract and vectorize the spatial objects on each image, and the per-
formance indexes of frames per second (FPS), mAP50, and mAP75 
were counted, as shown in Table 1. It can be seen that Mask R-CNN has 
the best prediction accuracy in the three models. Therefore, we choose 
Mask R-CNN as the extraction model of spatial objects.
Table 1. Comparison of three models on test data set.

Model Resolution Backbone FPS
mAP50 

(%)
mAP75 

(%)

TensorMask 512 × 512 ResNet-50-FPN 2.74 83.4 72.6

CenterMask 512 × 512 DLA_34 13.48 76.3 70.2

Mask R-CNN 512 × 512 ResNet-50-FPN 7.70 84.1 75.7

FPS = frames per second; R-CNN = Region-Based Convolutional Neural Network.

In order to improve the precision of the model and try to avoid 
the false detection, the category credibility thresholds of playground, 
crossroad, and bridge are set to 0.98, 0.98, and 0.97, respectively, with 
the higher overall precision and relatively high recall rate. The mask 
threshold is set to 0.5, the mask of spatial object extracted by Mask 
R-CNN is closest to the result of manual discrimination. Table 2 shows 
the training accuracy of test data set. The overall recall rate is 83.7% 
and the precision is 95.9%. Compared with the artificially marked 
mask, the average precision is 80.1%.

Figure 2 shows the extraction results of typical sample region. It 
can be seen from the figure that the extraction results of Mask R-CNN 
model are close to human interpretation, which meets the requirements 
of urban spatial object extraction.

However, although the model has relative high detection precision, 
under the influence of image blur, occlusion, and shadow, there are still 
some unrecognized objects. Figure 3 gives some undetected samples. 
Therefore, when the machine perceives the location, the error of auto-
matic object extraction cannot be ignored, and its surface fingerprint 
construction and matching method must be fault-tolerant.

(a) (b) (c)

Figure 1. The typical spatial objects on high-resolution remote sensing images.
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Spatial Object Coding and Automatic  
Construction of Urban Surface Fingerprint Database
Features of Spacial Object
Spatial object features include attribute features, location features, 
morphological features, and spatial relationship features, which are the 
keys of spatial object coding.
(1) Attribute features:
Mask R-CNN can extract not only the distribution range of the spatial 
objects, but also their category with high precision. Therefore, the 
category of the spatial objects is used as the attribute code.
(2) Location features:
The center position of a spatial object is used to measure its position. 
There are: the center of minimum bounding rectangle (the center 
of MBR), the geometrical center, the center of gravity, and so on. 
Transform the mask of each spatial object extracted by Mask R-CNN 
into vector polygon and then calculate the center position of the spatial 
object by its edge nodes.
(3) Morphological features:
There are many indexes to measure the spatial morphological features. 
Among the edge nodes of one spatial object, the connection between 
the farthest two nodes is called the major axis, and the length is 
expressed as d, as shown in Figure 4. The maximum distance from the 
node to the major axis is called the semi-minor axis, which is ex-
pressed as s. The oblateness of the spatial objects e is:

	
e d s

d
= −0 5

0 5
.

.
.	 (1)

Figure 4. Typical morphological features and spatial relationship 
features of spacial object.

(4) Spatial relationship features:
The spatial relationship of spatial objects refers to the geometric 
relationship between each object and its neighboring objects, includ-
ing the distance, orientation, and topology. Because the topological 
relationship is difficult to describe quantitatively, the relative distance 
and orientation between spatial objects are measured based on the 
neighboring baseline. Starting from the center of one spatial object, the 
ray connecting the center of its neighboring spatial object is called the 
neighboring baseline, and its rotation angle to the X axis is called the 
neighboring angle. The length of the line segment is called the neigh-
boring distance, which is expressed as n. Figure 4 shows a schematic 
of the neighboring baseline and distance.

We take one of the neighboring objects as reference in order to mea-
sure other neighboring objects relatively. The angle difference between 
the neighboring baselines is called the deflection angle φ. The ratio of 

Table 2. The training accuracy of test data set with Mask R-CNN.

Object 
Type Category Code

Number of 
Training Samples

Number of Test 
Samples

Category 
Credibility Threshold

Category Precision (%) Mask Precision 
(%)Recall Rate Precision

Playground 1 437 198 0.98 84.8 96.6 83.5
Crossroad 2 450 206 0.98 83.0 96.1 75.3

Bridge 3 443 185 0.97 83.2 95.1 81.5
Total — 1330 589 — 83.7 95.9 80.1

R-CNN = Region-Based Convolutional Neural Network.

(a) (b)

Figure 2. Typical result of object extraction from high-resolution 
remote sensing image.

(a)

(b)

(c)

Figure 3. Typical undetected spatial objects on high-resolution 
remote sensing images. (a) Playground; (b) crossroad; (c) bridge.
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their neighboring distances is called the neighboring distance coeffi-
cient ζ. Clearly, φ and ζ are all scale independent and rotation invariant.

Feature Selection for Spatial Object Coding
In order to ensure the availability and stability of surface fingerprint, 
it is necessary to select relatively stable spatial features that can be 
automatically extracted by computers for spatial object coding. In 
addition, the codes constructed by spatial features should be rotation 
invariant and scale independent so as to realize machine perception of 
geographical location.

(1) Data set preparation for feature selection:
In order to investigate the stability of different features, the city of 
Chengdu was chosen as the study area, and the playgrounds, cross-
roads, and bridges were extracted from the 18-level data of Google on-
line satellite image and Tianditu online satellite image, respectively, to 
form their own object data set. There are 4329 objects and 4924 objects 
extracted from Google and Tianditu, respectively. We overlapped the 
two object data sets and marked the same two objects as an object pair 
with the same identifier. The number of object pairs is 2842, accounting 
for only 65.7% and 57.7% of their total number of objects, respectively.

(2) The best location measurement method of spatial object:
To select the best location measurement method, the object pairs with 
the following characteristics are selected, i.e., their nearest neighbor 
objects also belong to another object pair. These object pairs are used 
to calculate the neighboring distance and angle with different location 
measurement method. Table 3 shows the absolute errors of the two 
data sets. It can be seen from the table that with the location measure-
ment method based on center of gravity, the average error of neigh-
boring distance and neighboring angle is less than that of the other 
two methods. Therefore, the center of gravity is used to measure the 
location for each object.

Table 3. Neighboring distance and angle error of different location 
measurement methods.

Measurement 
Method

Neighboring Distance (m) Neighboring Angle (°)

Average 
Error

Maximum 
Error

Average 
Error

Maximum 
Error

Center of MBR 4.53 39.5 1.2 22.6

Geometrical center 8.29 81.9 1.95 25.1

Center of gravity 4.06 39.8 1.14 22.4

MBR = minimum bounding rectangle.

(3) Comparison of stability between morphological characteristic 
parameters and spatial relationship characteristic parameters:
The major axis length, semi-minor axis length, and oblateness of each 
object pair are calculated, and then the parameter errors are compared 
with the nearest neighboring distance. Because the parameters have 
different units, the relative error s is used for the analysis:

	

| |σ μ μ
μ

= −1 2

1

,	 (2)

where μ1 and μ2 are the parameter value of the spatial objects extracted 
from Google and Tianditu, respectively.

The relative errors of morphological characteristic parameters are 
shown in Table 4. It can be seen that the relative errors of the major 
axis length, semi-minor axis length, and oblateness of the objects 
extracted from different remote sensing images are all larger than those 
of the nearest neighboring distance. It means that the spatial objects ex-
tracted by Mask R-CNN have lower stability of morphological features 

compared with the neighboring relationship. Spatial object coding 
should mainly consider the adjacency of the objects.

Table 4. Relative error of morphological characteristic parameters.

Oblateness
Semi-Minor 
Axis Length

Major Axis 
Length

Nearest 
Neighboring 

Distance

Average 
Value

Peak 
Value

Average 
Value

Peak 
Value

Average 
Value

Peak 
Value

Average 
Value

Peak 
Value

3.186 8352 0.16 10 0.11 6.01 0.0032 0.72

Spatial Object Coding
Spatial object coding includes three parts: location coding, attribute 
coding, and spatial relationship coding.
(1) Location coding and attribute coding:
The coordinate of the gravity of the center of each object is regarded as 
its location code. Attribute coding uses landuse type code to represent 
the attributes of spatial objects. Table 2 gives the category codes of 
playgrounds, crossroads, and bridges.
(2) Spatial relationship coding:
A fixed-length string is used to store the spatial relationship codes. For 
each coded bit, the value range is limited to 0–35, 0–9 is coded as 0–9, 
and 10–35 are respectively coded with capital letters of A–Z.
For the central object to be coded, a certain number of nearest objects 
are searched. With one of the neighboring objects as reference, the 
other neighboring objects are coded according to the landuse type, 
distance, and angle in the order from near to far, forming a fixed length 
code, as shown in Figure 5.

In Figure 5, Ci is the neighboring object category code. D0 and A0 
are distance code and angle code of the reference object. Di and Ai 
(i > 0) are distance codes and angle codes of other neighboring objects. 
According to Figure 5, the length of the spatial relationship code is 
three times of N. D0 and A0 are coded with reference to major axis of 
the center object. To encode D0, δ is calculated as follows:

	
δ = n

d
0 ,	 (3)

where n0 is the neighboring distance of the reference object. δ will be 
rounded and clamped to 0–35 to get the code D0.

To encode A0, the angle between the major axis of the central object 
and the neighboring baseline of the reference object is calculated, 
divided by 10.

Based on the neighboring baseline of the reference object, Di and Ai 
of other neighboring objects are coded. In order to expand the range of 
distance code as much as possible and enhance the robustness, Equation 
4 is used to calculate the stretching value of distance coefficient:

	 ri = log1.15ζ,	 (4)

where ζ is calculated as follows:

	
ζ = < <( )n

n
i Ni

0

0    ,	 (5)

where ni is the neighboring distance of the ith other nearest object. 
Based on the same coding method, the ri in Equation 4 will be rounded 
and clamped to 0–35 to get the code Di. Angle code Ai directly calcu-
lates the deflection angle φ of the neighboring baseline relative to the 
reference object, and converts it to 0–360, which then will be divided 
by 10 and rounded to get Ai.

Spatial relationship code actually demarcates the grades of angle 
and distance. The similar coding values correspond to a certain angle 

Figure 5. Spatial relationship coding.
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or distance range, which ensures the robustness of machine perception 
algorithm of location to a certain extent.

(3) Selection of reference neighboring objects for spatial relationship 
coding:
For the same spatial object, choosing a different reference neighboring 
object will lead to different spatial relationship codes. Therefore, it is 
the premise of spatial object matching to select the same neighboring 
object for spatial relationship coding. In order to study the probability 
that different object data sets contain the same neighboring object, we 
still take the above-mentioned object pairs of Google and Tianditu as 
samples. For each pair, search m nearest objects in their own data set, 
and judge whether there is at least one same object. Count the number 
of object pairs which have the same neighbor under different m values, 
as shown in Figure 6.

Figure 6. The number of objects with the same neighbor under 
different m values in the test area (p represents the number of object 
pairs which have the same neighbor, m represents the searched 
number of nearest neighbor objects).

It can be seen that when m takes 1, the number of object pairs which 
have the same nearest neighbor is 1261, only accounting for 25.6% and 
29.1% of the total number of object pairs, respectively. When m takes 2, 
the value of p increases sharply, reaching 2173. Since then, the growth 
rate of p has been decreasing and the value of p approaching 2842.

Considering the matching rate and computational efficiency, the 
spatial relationship coding is constructed on the basis that m takes 2. 
For each spatial object, the nearest object and the next nearest object 
are used to construct its spatial relationship codes.

Establishment of Urban Surface Fingerprint Database
The spatial objects automatically extracted by computer are encoded 
and stored in the urban surface fingerprint database. For each of the spa-
tial objects, the category code C, major axis d, projection coordinates, 
the spatial relationship code of the nearest object (FCode), and the next 
nearest object (SCode) are stored as a record, as shown in Table 5.

Table 5. Data table design of urban surface fingerprint database.
C d X Y FCode SCode

1 91.22 11599... 3584... 2G021J23Q26627... 2DK20G22725N26...

…

FCode = the spatial relationship code of the nearest object; SCode = the next 
nearest object.

MIP of Geographical Location
Technical Process of MIP of Geographic  
Location Based on Remote Sensing Image
Firstly, the spatial objects of regional remote sensing images are 
automatically detected by the Mask R-CNN model, and an urban surface 
fingerprint database is constructed. Then, the same Mask R-CNN model 

is used to detect and encode the spatial objects contained in a local 
remote sensing image.

Finally, the fingerprint matching algorithm is used to calculate 
geographic location of the spatial objects in local remote sensing 
image based on the urban surface fingerprint database. The technical 
flowchart is shown in Figure 7.

Figure 7. Technical flow of machine perception of geographical 
location based on remote sensing images.

Similarity Calculation of Spatial Object
(1) The similarity calculation algorithm:
It is assumed that a spatial object exists in both the fingerprint database 
and the local object set, and is represented as S and L, respectively. 
When using the spatial relationship codes to calculate the similarity 
between spatial objects S and L, their two codes match each other, 
and the maximum similarity among the four matches is taken as the 
similarity of S and L.

In each match in S and L, their codes are expressed as follows:
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where FS and FL represent the code of S and L, and Ci, Di, and Ai repre-
sent the category, distance, and angle codes of its neighboring objects, 
respectively. The equation for calculating the similarity of FS and FL is:
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where w is the matching coefficient, p0 is the degree of the distance 
code matching of the reference object, p1 is the average degree of code 
matching of other neighboring objects, and a is the similarity thresh-
old. The equation to calculate p0 is as follows:
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w and p1 both involve the matching of other neighboring objects. Take 
out one of other neighboring objects from S and L, respectively, and 
their similarity is:
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where i and j represent the order number of each neighboring object of 
S and L, respectively.

A certain neighboring object in L traverses all other neighbor-
ing objects in S in turn, and the similarity is calculated according to 
Equation 9. If the maximum similarity is greater than or equal to α, it 
is considered that the neighboring object has found a match among the 
neighboring objects of S. Then, p1 is calculated by Equation 10:

	
p pij
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1
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,	 (10)

where NSL is the matching number of other neighboring objects. The 
matching coefficient w can be calculated by:
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where β is the minimum matching number of neighboring objects 
required for spatial object matching.

For each of objects in the local object set, traverses all objects in 
the fingerprint database to find the object with the maximum similar-
ity. If the maximum similarity is greater than or equal to the similarity 
threshold α, take the object as the matching one.

(2) Determination of the number of nearest objects participating in coding:
In order to obtain the best number of nearest objects participating in 
encoding, each object in Google data set and Tianditu data set is en-
coded. We set α = 0.75 (which will be proved to be the best parameter 
later), increased β from 7 to 10, traversed the code of each object in the 
Tianditu data set, and searched for the matching object with the highest 
similarity from the Google data set. If they have the same identifier, 
the correct match is considered to be found. The number of correct 
matches is calculated, as shown in Table 6.

It can be seen from the table that when β is fixed, with the increase 
of N, the number of correct matches first increases and then remains 
stable or even decreases slightly. This means that in order to find the 
matched object from database, a certain number of nearest objects are 
required to construct a spatial relationship code. Because the objects 
extracted by Mask R-CNN are unreliable, too many nearest objects may 
have a negative impact on matching to a certain extent. Therefore, it is 
necessary to find a reasonable number of nearest objects participating 
in coding. As can be seen from the table, the peak value of N is related 
to β, which is about 2.4 to 2.7 times the value of β.

On the other hand, it is necessary to set a fixed length for spatial 
relationship code in the fingerprint database. Considering that in the 
actual matching, the larger the value of β, the higher the requirements 
for the number of objects extracted from the local remote sensing im-
age, β is set to about 7–10, so N is set to 24 to encode spatial relation-
ship with a length of 72. During the matching calculation, refer to 
Table 6 to obtain the best number of nearest objects from the spatial 
relationship code for calculation.

(3) Study on the optimal value of α and β:
To get the optimal value of α and β, we also count the total matches Pt 
and correct matches Pr under different values of α and β, as shown in 
Figure 8.

As can be seen from the figure, when β is fixed, with the increase 
of a, Pt deceases and Pr increases first and then decreases, reaching a 
peak near 0.75. It shows that the optimal parameter of a is 0.75. Figure 
8d shows the values of Pt and Pr under different conditions of β when 
α = 0.75. It can be seen that with the increase of β, Pt is constantly 
decreasing while Pr increases first and then decreases, and reaches the 
optimum at 11.

Fingerprint Matching Algorithm
It can be seen from Figure 8, it is difficult to ensure that the object with 
maximum similarity is the correct one only considering the similarity 
of spatial relationship codes. Further filter is required. If there are two 
objects L1 and S1, L1 is from the local object data set, S1 is from the 
fingerprint database which matches L1. The nearest N objects of L1 and 

S1 are searched respectively. If the number of neighboring objects is 
less than N, the actual number is used. Each of the neighboring objects 
of L1 is represented as L2. The best similar object of L2, which is named 
as S2, is searched from the neighboring objects of S1. If S2 is found, the 
rotation, skewing and scaling factors from the coordinate system of the 
local image to the coordinate system of the finger database are calcu-
lated by using the four objects, including L1, L2, S1, and S2. According 
to Equation 12, the factors are used to verify the matching effective-
ness of spatial relationship code firstly.

	 |zdL – dS| ≤ ε,	 (12)

where z is the scaling factor, dL and dS are the major axis of the local 
object and the object in the fingerprint database, respectively, and ε is 
the distance threshold.

If the relationship between scaling factor and major axis satisfies 
Equation 12, the neighboring objects of L1 are traversed and their real 
coordinates are calculated according to the rotation, skewing, and scal-
ing factors. Within a distance of ε, the matched object for each of the 
neighboring objects of L1 is searched from the neighboring objects of 
S1 by their real coordinates. If the number of matches is equal to or big-
ger than 3, the fingerprint matching is considered successful.

Table 7 shows the accuracy of fingerprint matching under different 
values of ε when α is assigned to 0.75 and β is assigned to 7.

As can be seen from Table 7, ε is related to the spatial scale of 
the extracted object. With the increase of ε, both the number of total 
matches and the correct matches increase, but the correct rate decreas-
es. If the correct rate is required to be at least 95%, the optimal value in 
the experimental data is about 50 m.

In order to study the improvement of the accuracy of fingerprint 
matching, α and ε are set to 0.75 and 50, respectively, and accuracy 
rate is compared to that of similarity matching of spatial relation code 
with different β values, as shown in Table 8. It can be seen from Table 
8 that based on the similarity calculation of spatial relationship code, 
the matching results are further filtered by using fingerprint matching 
algorithm, and the filtered objects has more than 95% probability of 
being the correct matched object.

Fingerprint matching algorithm is the bedrock of machine percep-
tion for geographical location. In the local object set, as long as there is 

Table 6. Correct matches with different number of nearest objects 
participating in coding.

N

Correct Matches

b = 7 b = 8 b = 9 b = 10
14 1579 1281 871 448
18 1783 1810 1723 1513
19 1795 1832 1825 1768
20 1767 1839 1846 1779
21 1745 1821 1866 1854
22 1730 1817 1886 1890
23 1726 1804 1866 1905
24 1715 1799 1854 1907
25 1703 1785 1847 1897
28 1702 1781 1830 1877
60 1679 1715 1751 1778

Table 7. Matching accuracy of fingerprint matching under different 
values of ε.

ε (m) Total Matches Correct Matches Correct Rate (%)
10 1413 1408 99.6
25 1619 1589 98.1
50 1746 1667 95.5
75 1867 1711 91.6
100 1976 1726 87.3
125 2099 1744 83.1
150 2443 1762 72.1
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one object whose matched object is founded from fingerprint data-
base, we can use the matched object in the fingerprint database and its 
adjacent matched objects to automatically perceive the geographical 
location of the local remote sensing image.

Performance Evaluation of Fingerprint Matching Algorithm
In Table 8, we also calculated average matching time required for each 
object. The CPU of the experimental computer is an Intel® core (TIM) i7-
7700. The matching time of a single local object is directly proportional 
to the number of records in the fingerprint database. The number of ob-
jects searched in the Google data set in the experiment is 4329, and the 
matching time is about 0.012s when β is equal to 7. According to this, 
when the number of spatial objects in the fingerprint database is less than 
about 360 000, the matching time of a single object will not exceed 1 s.

Experiments and Results
Establishment of Experimental Fingerprint  
Database in Major Cities of China
Taking major cities in China as examples, 18-level Google online 
satellite image were used to extract playgrounds, crossroads, and 

bridges. Due to the irregularity of urban area, we only extracted spatial 
objects in the main urban area. For example, we only extracted the 
central area of Wuhan. As for Hangzhou, we only chose the urban area 
near Qiantang River. A total of 13 649 spatial objects were extracted, 
as shown in Table 9. The code of each spatial object was stored in the 
fingerprint database.

Table 9. Experimental fingerprint database of major cities in China.

City Playground Crossroad Bridge Total
Area 
(km2)

Density 
(per km2)

Fuzhou 276 1624 628 2528 710.41 3.55
Hangzhou 153 849 348 1350 306.33 4.41
Nanjing 606 1890 525 3021 740.21 4.08
Wuhan 475 1636 720 2831 776.86 3.64

Changsha 179 879 208 1266 270.58 4.68
Guangzhou 349 1299 1005 2653 679.33 3.91

Total 2038 8177 3434 13649 3483.72 3.92

Figure 8. Parameter analysis of similarity calculation of spatial objects. (a) Total number of matches and correct number of matches when β = 7. 
(b) Total number of matches and correct number of matches when β = 8. (c) Total number of matches and correct number of matches when β = 
9. (d) Total matching number and correct matching number when α = 0.75. pcs = pieces.

Table 8. The accuracy rate and average matching time of each object of fingerprint matching compared to that of similarity matching of spatial 
relation code.

β

Similarity Matching of Spatial Relation Code Fingerprint Matching

Total Matches Correct Matches Accuracy Rate (%) Average Time (s) Total Matches Correct Matches Accuracy Rate (%) Average Time (s)
7 4661 1795 38.5 0.012 1746 1667 95.5 0.012
8 4449 1839 41.3 0.012 1765 1704 96.5 0.013
9 4359 1886 43.3 0.014 1803 1736 96.3 0.015
10 4316 1907 44.2 0.016 1829 1763 96.4 0.017
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The Experiment of MIP of Urban Geographic Location
To prove the performance of the proposed method, we cut 200 local 
remote sensing images from Tianditu in different areas of the cities 
listed in Table 9.

We have ensured that the number of objects contained in each local 
image is greater than or equal to 7. In this experiment, the number of 
successful matches was 184 and the number of failures was 16, with 
a matching rate of 92%. Figure 9 shows two typical cases of MIP of 
geographical location. Figure 9a and 9d visualize two local areas of the 
urban surface fingerprint database. Figure 9b and 9e show local objects 
of two local areas extracted from local remote sensing images based on 
Tianditu online satellite images. Figure 9c and 9f show the fingerprint 
matching results in two cases. The first case shown in the first row 
contains all types of objects extracted, such as playground, crossroad, 
and bridge, of which 12 of the 17 objects are successfully matched. 
The second case shown in the second row contains only the extracted 
crossroads, of which eight of the nine objects are successfully matched.

Figure 9. Two typical cases of MIP of geographical location. Local 
visualization (a) and (d) of urban surface fingerprint database for 
extracted objects from different areas of Google online satellite 
images. Local objects (b) and (e) extracted from the two areas of 
local remote sensing images (based on Tianditu online satellite 
images). Location perception results (c) and (f) of the two areas.

Method Adaptability Analysis
We tried to scale and distort local images to test the performance of 
machine geographical location perception under different conditions. 
In Figure 10a, we rotated the original local image by 12° and reduced 
the resolution from 0.597 m to 0.70 m. Figure 10b shows the loca-
tion perception results. This proves the angle independence and scale 
independence of fingerprint matching.

In Figure 10c, we distorted the origin local image as shown in 
Figure 9b to a certain extent. Most of the perceived objects in Figure 
10d are the same as those in Figure 9c. This proves that the fingerprint 
matching has a certain degree of robustness. Compared with Figure 9c, 
the imperceptible objects mainly come from areas where the degree 
of distortion exceeds the matching parameter ε of Equation 12, or the 
local deformation exceeds the recognition ability of the model. 

Although the fingerprint matching algorithm is scale independent, 
the object extracted by Mask R-CNN is closely related to the spatial 
scale. In order to test the sensitivity of the image resolution, we resa-
mpled the local image shown in Figure 9b according to the multiples 
of 0.25, 0.5, 0.7, 1.2, 1.5, and 2.0, respectively. The objects extracted 
by Mask R-CNN are shown in Figure 11a– f.

It can be seen from the figure that the Mask R-CNN model has a most 
suitable resolution range. In this example, except for the resolution 
of 0.150 m and 1.194 m, the objects extracted from other images can 
be used to complete machine location perception successfully, which 
reflects that the spatial scale of this method has a certain degree of 

robustness to a certain extent. However, if the resolution is too small 
or too large, such as 0.150 m and 1.194 m in this example, the spatial 
scale of the image exceeds the best suitable range of Mask R-CNN 
model, resulting in huge differences between the local fingerprint 
and the fingerprint database and unable to complete machine location 
perception.

Discussion
Through the above experiments, we find that the method of location 
intelligent perception has high accuracy for urban high-resolution im-
ages, and has angle independence, certain robustness, and spatial scale 
independence. Because this method is based on Mask R-CNN to extract 
spatial objects, the ability of machine location perception is limited by 
this model. In order to further improve the machine’s ability to precept 
the location, there are several potential problems should be considered.

Figure 10. A typical case of MIP of geographical location. (a) 
The extraction result of rotated and reduced local image. (c) The 
extraction result of distorted local image. (b) and (d) result of 
location perception of locations.

Figure 11. Object extraction result of the resampled local image with 
different resolutions.
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The first problem is the distribution density of extracted objects. As 
shown in Table 9, the density of extracted objects is greater than 3.5 
per km2, which means that if the coverage area of the local urban im-
age is more than 2 km2, the number of objects may exceed 7, and com-
puters will be able to find the position automatically. However, there 
are some errors in the object extraction by Mask R-CNN, the minimum 
area requirement of local image for machine perception position may 
be greater than 2 km2, which depends on the quality of the local image 
and the number of objects contained.

The second problem is the similarity of object distribution between 
the local image and fingerprint database. If there are great differences 
in imaging time and image quality between the local image and the 
image used in the establishment of fingerprint database, the number of 
effective spatial objects extracted from the remote sensing image will 
be insufficient to realize location perception. It is necessary to update 
the fingerprint database at any time.

The third challenge is the consistency between the spatial scale of 
local image and that of fingerprint database. Although Mask R-CNN has 
certain spatial scale robustness, it still has a suitable spatial scale range. 
To correctly perceive the location, the spatial scale of local image and 
fingerprint database must be similar.

It is noted that the key parameters are based on the data of the 
experimental area, which may deviate from the ideal parameters.

Conclusion
A preliminary study on MIP of geographical location based on high-res-
olution remote sensing images is carried out. First, the surface finger-
print is defined as the unique identification of the surface. In order to 
achieve MIP of geographical location, the instance segmentation model 
Mask-RCNN is introduced, and a relatively reliable model of extracting 
spatial object is automatically obtained through sample training. Then, 
the position, attribute, morphological, and spatial relationship features 
of the spatial objects are analyzed. It is found that the gravity center is 
superior to other location measurement, and the neighboring relation-
ship features of the spatial object are more stable than the morphologi-
cal features. Therefore, a location measurement method for spatial 
objects based on gravity center and a spatial relationship measurement 
method based on neighboring baseline are proposed. The surface 
fingerprint database is constructed by encoding the spatial relationship 
of 24 nearest objects for each of the spatial objects. Through the spatial 
object coding similarity algorithm and fingerprint matching algorithm, 
the technical route of MIP of geographic location based on remote sens-
ing images is formed.

Finally, through the experiments of geographical location machine 
perception in major cities of China, the feasibility of this method is 
proved, which provides a new method for the in-depth study of geo-
graphical location MIP. In future work, we will enrich the diversity of 
spatial object categories, and build fingerprint databases with multiple 
spatial scales to further improve the accuracy of MIP.
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Identifying the Driving Factors of Urban Land 
Surface Temperature

Lifeng Liang, Benhua Tan, Sicheng Li, Zhiming Kang, Xiujuan Liu, and Lihua Wang

Abstract
Land surface temperature (LST) has a profound impact on urban 
climate and ecology, and is widely used to quantify surface ur-
ban heat islands. The spatial heterogeneity of LST is affected by 
natural and human factors, with seasonal differences. This study 
selected Dongguan, a rapidly urbanizing city in China, as an ex-
ample to analyze the relationship between the spatial heterogeneity 
of LST in different seasons and influencing factors in six dimen-
sions. Multi-source spatial data were combined, including Landsat 
images, meteorological data, digital elevation models, National 
Polar-Orbiting Partnership Visible Infrared Imaging Radiometer 
Suite nighttime light, and points of interest. The results show that 
spatial patterns of LST across different seasons were consistent, 
although there were local differences. Based on the GeoDetector 
model, the result indicated differences between separate effects and 
interactive effects, and identified the high temperature risk areas.

Introduction
Land surface temperature (LST) is a key parameter affecting the bal-
ance of land surface radiation, climate, and environmental changes (K. 
Wang and Liang 2009). During rapid urbanization, the extent to which 
human activities affect and transform the land surface increases. The 
natural land surface is replaced by an artificial surface, which causes 
the urban land surface temperature to be significantly higher than the 
suburban land surface temperature, and surface urban heat islands 
(SUHIs) have become a global urban environmental problem, with a 
profound impact on health, energy consumption, economic develop-
ment, and biological phenology (Faroughi et al. 2020; Y. Li et al. 2020; 
Mirzaei et al. 2020; X. Li et al. 2021).

LST inversion is the premise underpinning the quantitative analysis 
of the spatial heterogeneity of LST; the commonly used methods are 
mainly divided into two categories. The first method uses meteorologi-
cal data recorded by ground stations, combined with mathematical 
statistics, to analyze temperature differences between urban and subur-
ban areas, then analyzes the characteristics of spatial differences in LST 
(Eludoyin et al. 2014). The second method is a quantitative inversion 
of the LST based on thermal infrared remote sensing data. Compared 
with observed data from traditional ground meteorological stations, 
the latter offer wide coverage and high resolution, providing support 
for research on LST in widespread areas (Liu et al. 2021). Currently, 
Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat, 
and Advanced Very High Resolution Radiometer (AVHRR) satellite 
data are widely used to evaluate the spatial distribution of LST (Balling 

and Brazel 1998; T. Liu et al. 2015; Zhao et al. 2021). The radiation 
transfer equation method proposed by Sobrino is based on the Landsat 
Thematic Mapper 5 with high accuracy (Sobrino et al. 2004; Y. Wang 
et al. 2021).

Research on the spatial heterogeneity of LST is essential for analyz-
ing the formation and evolution of SUHIs, which can also can help 
improve the quality of life for residents, enhance the health of urban 
ecology, and provide pertinent information for the formulation of sus-
tainable development strategies (Zhou et al. 2017). Analysis of the spa-
tial heterogeneity of LST comprises two key decision points: the selec-
tion of driving factors and the selection of the analysis method. For the 
first decision, most researchers tend to select a single factor and ignore 
the influence of comprehensive factors such as meteorology, landscape 
pattern, and social development. Liu et al. (2021) analyzed the impact 
of land cover types on the spatial patterns of LST in Tokyo from 2001 
to 2015; Baldinelli and Bonafoni (2015) suggested that albedo was 
the dominant factor affecting the spatial variability of LST in Florence, 
Italy; and Huang et al. (2016) compared MOD11A2 surface tempera-
ture data with Defense Meteorological Satellite Program Operational 
Linescan System nighttime light remote sensing data and analyzed the 
impact of socioeconomic activities on the spatial differentiation of LST. 
Hua et al. (2020) analyzed the relationship between SUHIs, impervious 
surface, and vegetation coverage in Xiamen, China, and concluded 
that the coverage of impervious surface is closely related to changes in 
SUHIs.

For the second decision, previous studies have mainly identified the 
dominant factors using traditional mathematical statistical methods, 
such as geographically weighted regression, ordinary least-squares 
regression analysis, or Pearson correlation analysis. However, these 
methods neglect the influence of interactions between different influ-
encing factors on LST, which makes it difficult to carry out in-depth re-
search on the spatial heterogeneity of LST or SUHIs (Chen et al. 2017). 
J. F. Wang and Hu (2012) proposed the GeoDetector model, which is 
a geospatial statistical method that can be used to analyze the spatial 
heterogeneity of geographical phenomena and reflects underpinning 
drivers. This method does not need to consider the collinearity of 
independent variables, and has been applied to quantify the impact of 
potential driving factors on geographic phenomena (Zhu et al. 2020).

Dongguan city was selected as the research area. Remote sensing 
data, digital elevation models, points of interest, and other spatial data 
served as the data sources, which were combined with the GeoDetector 
model to compensate for two shortcomings identified in the literature 
and designed to address two research questions:
(1)	 How do natural and human factors such as topography, meteorol-

ogy, vegetation, water bodies, socioeconomics, surface reconstruc-
tion intensity, and landscape patterns affect the spatial heterogene-
ity of LST?

(2)	 How do the interactive effects of the driving factors influencing the 
spatial heterogeneity of LST differ from the separate effects?
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Methodology
Study Area
Dongguan city is located on the east coast of the Pearl River Estuary, 
south of the cities of Guangzhou and Huizhou and north of Shenzhen 
(an important node city in the Guangdong–Hong Kong–Macao Greater 
Bay Area; Figure 1). Dongguan comprises four subdistricts and 28 
towns, and is one of the five prefecture-level cities in China without 
districts, spanning a total area of 2465 km2. The terrain in Dongguan 
city has a high elevation in the southeast but low in the northwest, and 
the city is composed of various geomorphic types, including alluvial 
plains, hills, and flat terraces. Dongguan city has a subtropical marine 
monsoon climate characterized by long summers, short winters, and a 
rainy season mainly concentrated in summer and autumn. The average 
rainfall in 2019 was 1912.3 mm. As the forefront of the reform and 
opening up of China, Dongguan is known as the “world’s factory.” 
Over the past 30 years (1990–2020), the area of cultivated land and 
forests in Dongguan has decreased from 472.4 and 609.87 km2, 
respectively, to 359.2 and 332.53 km2; accordingly, built-up area has 
increased from 82.48 to 1139.83 km2 over this time, and the size of the 

urban population increased from 60.04% in 2000 to 92.15% in 2020. 
With the expansion of urban land, changes in surface morphology, 
and rapid population growth, Dongguan exemplifies a city that has 
undergone rapid urbanization. This rapid change inevitably aggravated 
the local heat island effect, and has attracted attention from researchers 
in various fields.

Data Sets and Variables
The data sets used in this study span from June 2019 to February 2021, 
and mainly comprise remote sensing imagery, alongside meteoro-
logical, topographic, and socioeconomic data. The remote sensing 
images of Dongguan include Landsat-7 and Landsat-8 (path 122/row 
44) and National Polar-Orbiting Partnership Visible Infrared Imaging 
Radiometer Suite nighttime light data for different months, provided 
by the US Geological Survey1 and National Oceanic and Atmospheric 
Administration,2 respectively. Landsat data were used to characterize 
LST for different seasons and to calculate vegetation coverage, albedo, 

Figure 1. (a) Guangdong Province, located in the south of China. (b) Dongguan city, located on the east coast of the Pearl River Estuary, south 
of the cities of Guangzhou and Huizhou and north of Shenzhen. (c) Land cover/land use imagery in study area, acquired by Landsat-8 through 
supervised classification of a random-forest model.

1. <http://earthexplorer.usgs.gov/>
2. <https://eogdata.mines.edu/download_dnb_composites.html>
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improved normalized difference water index (MNDWI), and normalized 
difference impervious surface index (NDISI; S. Liang 2001; Xu 2005, 
2010; Yang et al. 2015). In addition, land use and land cover data were 
obtained from supervised classification of Landsat-8 Operational Land 
Imager/Thermal Infrared Sensor data through a random-forest model, 
which involved five categories: water bodies, architecture, forests, 
farmland, and bare land (Vander et al. 2015). The landscape pattern 
indexes CONTAG, the Shannon diversity index, DIVISION, and COHESION 
can be calculated from the land cover/land use data (Xiong and Zhang 
2021). These constitute important factors of the LST. The National 
Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite 
nighttime light data were used to reflect how the intensity of anthro-
pogenic activity was spatially distributed. The meteorological data 
were provided by the National Earth System Science Data Center, at 
the National Science and Technology Institute of China.3 This data set 
included four types of grid data, with a resolution of 1 km: monthly 
average temperature, rainfall, humidity, and wind speed. The topo-
graphic data included the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer Global Digital Elevation Model and slope data 
sets. The former was provided by the Geospatial Data Cloud (China)4,  
and the latter was extracted from the digital elevation model using 
the ArcGIS slope calculation tool (Environmental Systems Research 
Institute, Inc., Redlands, CA). Socioeconomic data were extracted from 
the points-of-interest data set sourced from Gaode Map (China) using 
an application programming interface, which contains locational and 
functional information such as latitude, longitude, and address. As the 
coordinate system and resolution of these data were inconsistent, it was 
necessary to preprocess them and unify their resolutions and coordinate 

systems to 1 km and UTM WGS-84, respectively. Finally, an influencing-
factor system was constructed, with two first-level indicators, six 
second-level indicators, and 16 third-level indicators (Figure 2).

Inversion of LST in Different Seasons
Delineation of seasons is the prerequisite for analyzing the spatial 
heterogeneity of LST in different seasons. We referred to the method of 
season division in the adjacent area of Shenzhen city (Peng et al. 2018) 
and used Python to process monthly average temperature data sets 
from 2001 to 2020 and establish a violin plot (Figure 3), which can re-
flect the distribution and probability density of temperature. According 
to the information provided by the violin plot about the monthly 
maximum, minimum, and change of temperature in Dongguan in the 
past 20 years, the seasons in Dongguan city were divided into three: 
summer (June, July, August, and September), the transition season 
(April, May, October, and November), and winter (December, January, 
February, and March).

The calibration parameters of band 11 of the Landsat-8 Thermal 
Infrared Sensor contain errors, and there is a lack of a reasonable correc-
tion scheme. Therefore, the US Geological Survey recommends single-
band inversion of LST. Based on the availability of calculation param-
eters, the radiation transfer equation method was used, with Equations 1 
and 2 for LST inversion and Equation 3 to calculate the heat index:

	 LT = [L – L↑ – τ(1 – ε)L↓]/(ετ) 	 (1)

	 T = K2/ln(K1/LT + 1) 	 (2)

	  HI = (T – T)/T	 (3)

Figure 2. Natural and human geographic factors.

3. <http://www.geodata.cn>
4. <http://www.gscloud.cn/>
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where L represents the radiation brightness of the thermal infrared 
band; L↑ and L↓ are the upward and downward radiation brightness of 
the atmosphere; ε is the atmospheric transmittance in thermal infrared 
bands, obtained by inputting the location and imaging time through the 
National Aeronautics and Space Administration website5; τ repre-
sents surface emissivity, which was calculated using the mixed-pixel 
method; LT, T, and T respectively represent the radiation brightness 
of the black body, LST, and average LST; and K1 and K2 represent the 
calibration parameters, which were obtained by querying the image 
header file.

The heat index can be calculated after obtaining the LST; we then 
divided it into seven ascending levels of heat-island intensity using the 
division method of mean and SD (Table 1): high cold island, relatively 
cold island, weak cold island, no heat island, weak heat island, relative 
heat island, and high heat island.

Table 1. Division method with mean and SD coefficient of variation for 
the thermal field.
HI Interval Class
HI < u − 2.5SD High cold island
u − 2.5SD ≤ HI < u − 1.5SD Relatively cold island
u − 1.5SD ≤ HI < u − 0.5SD Weak cold island
u − 0.5SD ≤ HI < u + 0.5SD No heat island
u + 0.5SD ≤ HI < u + 1.5SD Weak heat island
u + 1.5SD ≤ HI < u + 2.5SD Relative heat island
HI ≥ u + 2.5SD High heat island
HI = heat index; u = mean coefficient of variation for the thermal field.

GeoDetector Model
The GeoDetector model consists of four detectors: factor, interaction, 
risk, and ecological. The factor detector is the dominant parameter 
used to identify geographic phenomena. The interaction detector is 
used to analyze the explanatory power of the combined effect of two 
influencing factors on geographic phenomena. The risk detector is 
used to assess whether there are significant differences between two 
subregions. The ecological detector is used to compare the effects of 
two driving factors on geographic phenomena. The purpose of this 
study was to detect the effects of interactions between the dominant 
and driving factors underpinning the spatial heterogeneity of LST and 
to identify whether there are significant differences in LST between 

different subregions. Therefore, the factor, interaction, and risk detec-
tors were used to comprehensively analyze the underlying drivers of 
spatial heterogeneity of SUHIs.

Factor Detector
By calculating q according to Equation 4, it was possible to quantita-
tively evaluate the explanatory power of each driving factor in the spa-
tial heterogeneity of LST. The range of q was [0,1]; the larger the value, 
the more significant the influence of the factor on LST heterogeneity.
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In these equations, Nh denotes that the subregion is composed of h 
units; h = 1, 2, …, N is the total number of units in the study area; and 
SSW and SST are the sum of variance and total variance.

Interaction Detector
The interaction detector explores whether the LST intensity changes 
from the combination of different factors X1 and X2 by calculating q for 
two driving factors. The interactive relationships between two factors 
are of the following types:
1.	 Nonlinear–weaken: q(X1∩X2)<min(q(X1), q(X2))
2.	 Uni-enhance/weaken: min(q(X1), q(X2))<q(X1∩X2)<max(q(X1), 

q(X2))
3.	 Bi-enhance: q(X1∩X2)>max(q(X1), q(X2))
4.	 Independent: q(X1∩X2)= q(X1)+ q(X2)
5.	 Nonlinear–enhance: q(X1∩X2)> q(X1)+ q(X2)

Risk Detector
The main function of the risk detector is to search for units with 
potential high temperature risk. The mean difference in the heat-island 
intensity of different units is tested using the   value; the larger the 
value, the greater the high temperature risk of the unit, defined as the 
risk range of UHI:
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where Yh represents the mean value of the heat-island intensity in h units, 
nh represents the number of samples, and Var represents the variance.

Results
Statistical Analysis
Based on temperature data for Dongguan recorded by the National 
Meteorological Science Data Center,6 the temperature ranges on 15 
June and 14 November 2019, and 8 February 2020 were 23.7°C to 
34°C, 19.3°C to 26°C, and 8.6°C to 18°C, respectively. Based on 
the LST statistical results, 92.47% of the study area had temperatures 
between 23°C and 37°C on 15 June, 86.75% had temperatures between 
18°C and 29°C on 14 November, and 92.41% had temperatures be-
tween 10°C and 21°C on February 18. The LST retrieval from Landsat 
series remote sensing data was highly consistent with temperature data 
recorded on the same day. This indicates that LST retrieval by the radia-
tion transfer equation method is reliable.

Seasonal Changes in LST Spatial Patterns
Figure 4a–c shows that LST in Dongguan during different seasons has a 
similar spatial pattern and presents an irregular ring-shaped distribution 
of heat island, no heat island, and cold island. The low-temperature 
zone is distributed in forests, ecological parks, rivers, and lakes, such 
as the Tongsha Ecological Park (Figure 4a4), Foling Reservoir (Figure 5. <https://atmcorr.gsfc.nasa.gov/>

6. <http://data.cma.cn/>

Figure 3. Violin plot of monthly average temperatures for 2001–2020.
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4b5), and Dazhongling Reservoir (Figure 4c6). The transition zone 
is distributed around the cold island region and transitions to the heat 
island region, mainly near the urban greenbelt. High-temperature zones 
are largely concentrated in construction, population, and industrial-
intensive areas, such as near the Dongguan City International Trade 
Center, the Global Economic and Trade Center (Figure 4a1), industrial 
parks (Figure 4b2), and high-density residential areas (Figure 4c3). 
From summer to the transition season and then to winter, the highest, 
lowest, and average LST decreased; in summer, the highest LST was 
44.12°C, the lowest was 17.10°C, and the average was 32.56°C. The 
maximum and minimum LST during the transition season were not 
significantly different from those in summer; the maximum was 41°C, 
the minimum was 14.11°C, and the average decreased to 26.44°C. In 
winter, the highest LST was 32.13°C, the lowest was 11.07°C, and the 

average was 18.6°C. In addition, the coverage of the high-temperature 
region also showed a downward trend from summer to winter; the 
proportion of the high-temperature area decreased from 35.17% to 
29.25%, while the proportion of cold islands reached a maximum value 
of 36.5% in summer. On the contrary, the proportion of no heat island 
showed an upward trend.

Detection of the Spatial Heterogeneity of LST
The multi-source spatial data were processed in three steps before the 
GeoDetector model was used to analyze the driving factors of the spa-
tial heterogeneity of LST. First, the influencing factors were normalized 
to [0,1] (Figure 5), then converted into type variables and discretized 
to levels 1–7. Second, the boundary of the study area was used to 
delineate a grid of 1×2 km, generating a total of 2887 grid points. It is 
noteworthy that q values differ as the classification method changes, 

Figure 4. Seasonal spatial heterogeneity of land surface temperature in Dongguan.

Figure 5. The results of normalization: (X1) DEM, (X2) slope, (X3), temperature, (X4) rainfall, (X5) humidity, (X6) wind speed, (X7) Fvc, (X8) 
MNDWI, (X9) POI, (X10) light intensity, (X11) NDISI, (X12) albedo, (X13) CONTAG, (X14) SHDI, (X15) DIVISION, (X16) COHESION. DEM = 
digital elevation model; MNDWI = improved normalized difference water index; NDISI = normalized difference impervious surface index; POI = 
points of interest; SHDI = Shannon diversity index.
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which raises the uncertainty of the results. Finally, several classi-
fication methods have been compared: natural break, quantile, and 
equal-interval. Among those, the natural break method is the optimal 
discretization method with the highest q values.

Impact of a Single Factor on LST Spatial Heterogeneity
The factor detector results are composed of p and q values (Table 2), 
which are used to measure, respectively, the significance and explana-
tory power of the influence of factors on LST. The p values of all 
factors in the summer and transition seasons were <0.004, whereas 
those of wind speed and landscape pattern index in winter exceeded 
0.7, which indicates that the significant influence of wind speed and 
landscape pattern index on the spatial heterogeneity of LST decline in 
winter. The seasonal variation of the q value shows that the geographic 
factors in different seasons have varying effects on the spatial pattern 
of LST. In summer, the q values of NDISI, MNDWI, and Fvc exceeded 
0.4, and the explanatory power for the spatial heterogeneity of LST 
was >40%; therefore, these three factors may be considered domi-
nant factors. The explanatory power of socioeconomic activity and 
topography were second only to the dominant factors, and thus they 
were defined as secondary factors. In addition, the q value of wind 
speed was greater than those of other meteorological factors, and the q 
value of the COHESION index was higher than those of other landscape 
pattern factors. Compared with summer, the explanatory power of 
MNDWI during the transition season decreased, whereas that of night-
time light brightness, topography, and meteorology factors increased. 
In winter, the explanatory power of NDISI showed an upward trend, but 
other factors showed a downward trend. These results demonstrate that 
impervious surfaces are a key factor affecting the spatial differentiation 
of the thermal environment in Dongguan. We also found that compared 
with human-related factors, the explanatory power of natural factors 
on the spatial heterogeneity of LST was seasonally volatile. To better 
understand the explanatory power of natural and human factors on the 
spatial heterogeneity of LST, the q values of these factors in different 
seasons were added together. The total q values of natural factors in 
summer, the transition season, and winter were 1.606, 1.9891, and 
1.282, respectively. The total q values of human-related factors were 
1.8338, 1.7097, and 1.4966 in summer, the transition season, and win-
ter, respectively. Therefore, the influence of human factors was greater 

in summer and winter than that of natural factors, and weaker in the 
transition season.

Interaction of Factors on LST Spatial Heterogeneity
Based on the results of interaction detection (Tables 3–5), q values 
of the same interactive factors vary with time. Compared with the 
separate effects, the interactive effects of influencing factors had a 
more significant impact on spatial heterogeneity of LST, mainly of the 
Bi-enhance and Nonlinear–enhance types. Comparing the interaction 
detection results in different seasons, three main conclusions were 
drawn: First, the explanatory power of interactions between meteo-
rological factors (X3–X6), landscape pattern factors (X13–X16), and 
other factors exceeded those of their separate effects. This shows that 
separate effects of meteorological and landscape pattern factors are not 
significant for LST. Instead, these two factors change the spatial hetero-
geneity of LST through interaction with other factors. Second, the ex-
planatory power of interactions between NDISI (X11) and other natural 
factors for the spatial pattern of LST showed an increasing trend, reach-
ing a maximum in winter. The q value of NDISI combined with those of 
vegetation and water bodies (X7, X8) and albedo (X12) exceeded those 
of interactions with other factors. Third, the q values of the interactions 
between topography (X1, X2), vegetation and water bodies (X7, X8), 
and human factors (X9–X16) were greater overall than those of inter-
actions with other natural factors, indicating that these factors change 
the spatial pattern of LST by affecting the layout of human factors such 
as social production, population, and building density.

Detection of High LST Risk Areas
Few studies have considered the difference of LST in different intervals 
of the driving factors, which is important for identifying high tempera-
ture risk areas of the factors. In this study, the level of UHI was used 
to measure high temperature risk; these are positively correlated, and 
combine with the result of the risk detector to make three interest-
ing points. First, the level of UHI decreased with increases in eleva-
tion (X1), slope (X2), CONTAG index (X13), Shannon diversity index 
(X14), and DIVISION index (X15). This means that the potential risks 
from high temperatures decrease, which means these can be defined as 
negative influencing factors, whereas increases in the point-of-interest 
density (X9), light brightness (X10), NDISI (X11), albedo (X12), and 
COHESION index (X16) elevate the high temperature risk, meaning 

Table 2. Factor detector results.

Factor

Summer Transition Season Winter

p q q Order p q q Order p q q Order

DEM 0.000 0.1826 8 0.000 0.3372 6 0.000 0.318 2

Slope 0.000 0.2002 7 0.000 0.3540 5 0.000 0.2923 4

Temperature 0.000 0.0956 11 0.000 0.1233 9 0.000 0.1490 9

Rainfall 0.000 0.0321 16 0.000 0.0489 12 0.000 0.0183 11

Humidity 0.000 0.0476 15 0.000 0.0919 11 0.000 0.0472 10

Wind speed 0.000 0.1042 10 0.000 0.1041 10 0.727 0.0070 16

Fvc 0.000 0.4345 3 0.000 0.5614 2 0.000 0.2549 5

MNDWI 0.000 0.5092 2 0.000 0.3683 4 0.000 0.1953 7

POI 0.000 0.3727 4 0.000 0.3334 7 0.000 0.2188 6

Light intensity 0.000 0.3446 5 0.000 0.4201 3 0.000 0.3074 3

NDISI 0.000 0.5155 1 0.000 0.6280 1 0.000 0.7550 1

Albedo 0.000 0.2528 6 0.000 0.1961 8 0.000 0.1683 8

CONTAG 0.000 0.0692 14 0.002 0.0282 16 0.867 0.0116 14

SHDI 0.000 0.0867 12 0.003 0.0322 14 0.953 0.0118 13

DIVISION 0.000 0.0858 13 0.000 0.0316 15 0.938 0.0113 15

COHESION 0.000 0.1065 9 0.000 0.0401 13 0.712 0.0124 12

DEM = digital elevation model; MNDWI = improved normalized difference water index; NDISI = normalized different impervious surface 
index; POI = points of interest; SHDI = Shannon diversity index.
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Table 3. Interaction detector results in summer (confidence level = 95%).
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 0.18
X2 0.24B 0.20
X3 0.22B 0.25B 0.10
X4 0.22N 0.24N 0.13N 0.03
X5 0.23B 0.26N 0.14B 0.07B 0.05
X6 0.23B 0.26B 0.17B 0.12B 0.13B 0.10
X7 0.47B 0.48B 0.49B 0.47N 0.49N 0.49B 0.43
X8 0.54B 0.54B 0.53B 0.52B 0.52B 0.53B 0.70B 0.51
X9 0.42B 0.43B 0.40B 0.39B 0.39B 0.40B 0.59B 0.60B 0.37
X10 0.37B 0.38B 0.38B 0.38N 0.39B 0.38B 0.55B 0.59B 0.43B 0.34
X11 0.54B 0.54B 0.55B 0.55N 0.56B 0.56B 0.68B 0.70B 0.62B 0.59B 0.52
X12 0.37B 0.39B 0.32B 0.28B 0.29B 0.33B 0.68B 0.57B 0.53B 0.49B 0.64B 0.25
X13 0.30N 0.32N 0.19N 0.11N 0.13N 0.20N 0.50B 0.59N 0.43B 0.42N 0.57B 0.31B 0.07
X14 0.33N 0.35N 0.21N 0.13N 0.15N 0.22N 0.51B 0.61N 0.45B 0.44N 0.58B 0.33B 0.09B 0.09
X15 0.33N 0.35N 0.21N 0.13N 0.15N 0.22N 0.51B 0.61N 0.45B 0.44N 0.58B 0.33B 0.09B 0.09B 0.09
X16 0.37N 0.39N 0.24N 0.15N 0.18N 0.25N 0.54B 0.63N 0.46B 0.47N 0.59B 0.34B 0.11B 0.11B 0.11B 0.11

B = bi-enhance; N = nonlinear-enhance.

Table 4. Interaction detector results in transition season (confidence level = 95%).
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 0.35
X2 0.40B 0.34
X3 0.38B 0.37B 0.12
X4 0.37B 0.36B 0.18N 0.05
X5 0.39B 0.38B 0.23N 0.12B 0.09
X6 0.37B 0.37B 0.23N 0.16N 0.18B 0.10
X7 0.62B 0.61B 0.60B 0.58B 0.58B 0.59B 0.56
X8 0.54B 0.52B 0.43B 0.40B 0.41B 0.42B 0.62B 0.37
X9 0.50B 0.49B 0.40B 0.35B 0.36B 0.39B 0.61B 0.48B 0.33
X10 0.50B 0.49B 0.46B 0.43B 0.44B 0.45B 0.63B 0.53B 0.46B 0.41
X11 0.70B 0.70B 0.70B 0.69B 0.70B 0.70B 0.78B 0.76B 0.73B 0.73B 0.68
X12 0.52B 0.49B 0.30B 0.25B 0.29B 0.30B 0.65B 0.51B 0.48B 0.54B 0.77B 0.20
X13 0.43N 0.42N 0.17N 0.09N 0.13N 0.15N 0.63N 0.43N 0.38N 0.47N 0.71N 0.23N 0.03
X14 0.44N 0.43N 0.17N 0.09N 0.14N 0.16N 0.64N 0.44N 0.38N 0.48N 0.71B 0.24N 0.04B 0.03
X15 0.44N 0.43N 0.17N 0.09N 0.13N 0.16N 0.64N 0.44N 0.38N 0.48N 0.72N 0.24N 0.04B 0.03B 0.03
X16 0.47N 0.47N 0.19N 0.10N 0.15N 0.18N 0.66N 0.47N 0.40N 0.51N 0.72N 0.25N 0.04B 0.04B 0.04B 0.04

B = bi-enhance; N = nonlinear–enhance.

Table 5. Interaction detector results in winter (confidence level = 95%).
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 0.32
X2 0.35B 0.29
X3 0.34B 0.33B 0.15
X4 0.34B 0.32N 0.17N 0.02
X5 0.34B 0.32B 0.21N 0.08N 0.05
X6 0.34N 0.32N 0.20N 0.05N 0.07N 0.01
X7 0.39B 0.36B 0.34B 0.29N 0.29B 0.28N 0.25
X8 0.43B 0.40B 0.31B 0.23N 0.24B 0.22N 0.36B 0.20
X9 0.40B 0.38B 0.32B 0.24B 0.24B 0.24N 0.36B 0.31B 0.22
X10 0.40B 0.39B 0.37B 0.33N 0.34B 0.33N 0.38B 0.38B 0.35B 0.31
X11 0.76B 0.76B 0.76B 0.77B 0.76B 0.76N 0.79B 0.80B 0.77B 0.76B 0.75
X12 0.44B 0.41B 0.31B 0.20N 0.23N 0.19N 0.41B 0.31B 0.34B 0.41B 0.81B 0.17
X13 0.36N 0.34N 0.18N 0.04N 0.07N 0.03N 0.33N 0.24N 0.25N 0.35N 0.77N 0.20N 0.01
X14 0.37N 0.35N 0.19N 0.04N 0.07N 0.02B 0.34N 0.25N 0.25N 0.36N 0.77N 0.20N 0.02B 0.01
X15 0.37N 0.35N 0.19N 0.04N 0.07N 0.02N 0.34N 0.26N 0.25N 0.36N 0.77N 0.20N 0.02B 0.01B 0.01
X16 0.38N 0.37N 0.19N 0.04N 0.08N 0.03N 0.37N 0.28N 0.26N 0.37N 0.77N 0.21N 0.02B 0.02B 0.01B 0.01

B = bi-enhance; N = nonlinear–enhance.
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these can be defined as positive influencing factors (Figure 6). Second, 
with increasing wind speed (X6), Fvc (X7), and MNDWI (X8), the risk 
of UHI increased and then decreased. For example, the level of FVC 
was in the second range when the highest temperature risk occurred, 
mainly located at the junction of suburbs and urban areas, which can 
be thus defined as potential high-temperature risk regions (Table 6). 
Third, there are seasonal differences in the relationship between me-
teorological factors (X3–X5) and heat island risk. In summer, with an 

increase in rainfall, the level of UHI first increased, then decreased, then 
increased again, whereas it showed a positive correlation with tem-
perature and humidity. During the transition season, with an increase 
in rainfall and humidity the level of UHI increased to a maximum in the 
first level. With an increase in temperature, the level of UHI increased 
and then decreased. In winter, the level of UHI first increased and then 
decreased with increasing rainfall and humidity, whereas it increased 
increasing temperature.

Figure 6. The intensity of UHI changes with the value of influencing factors, and presents different trends. (a to c) Changes of UHI and natural 
factors in different seasons. (d to f) Changes of human factors in different seasons.

Table 6. High temperature risk areas (confidence level = 95%).

Factors

Summer Transition Season Winter

Risk Areas Average UHI Risk Areas Average UHI Risk Areas Average UHI
DEM (m) 0–56 4.23 0–56 4.33 0–56 4.27
Slope (°) 0–8.28 4.36 0–8.28 4.40 0–8.28 4.34

Temperature (℃) 29.19–31.64 4.42 20.89–21.59 4.19 17.66–19.15 4.11
Rainfall (mm) 431.33–519.88 4.20 0–22.27 4.19 31.31–39.03 4.11

Humidity (mm) 0.020–0.023 4.16 0.006–0.013 4.54 0.0074–0.0078 4.30
Wind speed (m/s) 4.80–5.60 4.26 4.94–5.62 4.19 4.30–4.89 4.14

Fvc (0–1) 0–0.66 4.96 0–0.76 4.85 0–0.79 4.56
MNDWI (−1 to 1) −0.47 to 0.81 4.79 −0.51 to 0.58 4.70 −0.53 to 0.86 4.50
POI (number/km2) 749.93–1292.56 4.77 749.93–1292.56 4.48 749.93–1292.56 4.58

Light intensity (nW/cm2/sr) 113.51–189.14 5.50 147.07–244.69 6.00 110.35–211.07 6.00
NDISI (−1 to 1) 0.17–0.67 5.15 0.17–0.67 5.15 0.17–0.67 5.24

Albedo (0–1) 0.52–0.99 5.17 0.27–1.00 5.41 0.21–1.00 5.20
CONTAG (%) 0–55.30 4.15 0–55.30 4.09 0–55.30 4.05

SHDI (%) 0–1.58 4.18 0–1.58 4.11 0–1.58 4.05
DIVISION (%) 0–0.84 4.18 0–0.84 4.11 0–0.84 4.05

COHESION (%) 74.53–100 4.24 74.53–100 4.15 74.53–100 4.06

DEM = digital elevation model; MNDWI = improved normalized difference water index; NDISI = normalized difference impervious surface 
index; POI = points of interest; SHDI = Shannon diversity index.

240	 Apr i l  2022	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Discussion
Impact of COVID-19 on LST
Due to the impact of COVID-19 on 18 February, Landsat-8 Operational 
Land Imager/Thermal Infrared Sensor images of non-COVID-19 
(20 February 2021) were selected for LST inversion. The impact of 
COVID-19 on the spatial patterns of the LST in Dongguan was discussed 
by comparing the difference in LST between COVID-19 and non-COV-
ID-19. At the global scale, the maximum, minimum, and average winter 
LST obtained during the non-COVID-19 period were 37.97°C, 14°C, and 
23.72°C, respectively; generally, these values are higher than those for 
the LST during the COVID-19 winter. The urban heat island ratio index 
(URI) of COVID-19 (18 February 2020) and non-COVID-19 (20 February 
2021) were selected to analyze the local differences; this statistic is 
used to quantitatively evaluate the difference of UHI effect in different 
years based on the ratio of UHI area to the total area of the city, so a 
greater URI means more intense UHIs (Xu et al. 2009). The influence of 
COVID-19 on the local LST in Dongguan was examined by calculating  
ΔURI2021–2020 during the COVID-19 and non-COVID-19 winters in each 
block. A ΔURI2021–2020 ≤ 0 means that the UHI during the COVID-19 pe-
riod was more intense, whereas a ΔURI2021–2020 > 0 means the UHI was 
weaker than during the non-COVID-19 period. Figure 7 shows  
ΔURI2021–2020 ≤ 0 in the towns of Gaobu, Shilong, Fenggang, 
Zhongtang, Qingxi, Tangxia, Machong, Shijie, Yingshi, Wangniudun, 
and Wanjiang. These towns are mostly located to the northwest, south-
west, and northeast of Dongguan, bordering Guangzhou, Huizhou, 
and Shenzhen, where substantial population flow occurs. Due to the 
influence of COVID-19, some of the floating population returned to 
these areas, increasing the intensity of regional population activities 
and the high-temperature coverage area. Compared with winter values 
during COVID-19, the URI of the towns of Liaobu, Changping, Chashan, 
Dalang, Dalingshan, Humen, Changan, and Dongcheng increased by 
>0.05 during the non-COVID-19 period, alongside an expansion of the 
high-temperature coverage area. This may be related to the return to 
normal life and production following the pandemic, characterized by 
an increased intensity of human activity.

Figure 7. The map of winter URI for COVID-19 and non-COVID-19. 
The quantity ΔURI2021–2020 is the URI index difference between 
non-COVID-19 and COVID-19, which is used to explore the influence 
of COVID-19 on the local LST in Dongguan City. A ΔURI2021–2020 ≤ 0 
means the UHI during COVID-19 was more intense than during the 
non-COVID-19 year; a ΔURI2021–2020 > 0 means it was weaker. LST = 
land surface temperature; URI = urban heat island ratio index.

Influence of Dominant Factors on LST Spatial Heterogeneity
Shao et al. (2020), discussing the relationship between urbanization 
and the ecological environment in the Yangtze River Delta, observe 
that built-up and coastal areas with low vegetation coverage and intense 

human activities experience a significant UHI. There is therefore a need 
to determine the relationship between the spatial heterogeneity of LST 
and the spatial patterns of impervious surfaces and the FVC. This sec-
tion primarily discusses this relationship based on the analysis results 
of the GeoDetector. First, the q value of the NDISI was >0.5 in different 
seasons, which means that the NDISI is a positive dominant factor of 
UHI. During urbanization, artificial surfaces replace natural surfaces, in-
creasing the area of impervious surface. Ultimately, this alters the form 
of the underlying urban surface, affecting the urban thermal environ-
ment and increasing the ground temperature. Second, the q value of the 
Fvc initially increased then decreased from summer to winter; the high-
est (0.56) occurred during the transitional season, and the lowest (0.25) 
in winter. This is closely related to the climate type and biological 
phenology of Dongguan. The growth of vegetation branches and leaves 
peaks in summer and autumn, imposing a strong alleviation effect on 
the high-temperature phenomenon. Finally, these dominant factors do 
not affect the spatial heterogeneity of LST in isolation. By neglecting 
the interaction of these factors, it is easy to ignore the impact of minor 
factors with lower explanatory power on the spatial pattern of LST, such 
as meteorology and landscape patterns. Although these factors often do 
not directly affect the LST, they alter its distribution pattern by influenc-
ing socioeconomic activities, surface morphology, and other factors.

Conclusion
Dongguan represents a typical city experiencing rapid urbanization in 
China, and SUHIs have become a major problem. This study used the 
GeoDetector model to analyze the impact of the geographic environ-
ment on the spatial heterogeneity of LST based on 16 influencing 
factors in six dimensions, and the results highlighted three key findings 
and contributions: First, by comparing the differences in URI between 
COVID-19 and non-COVID-19 periods, it was possible to analyze the 
impact of the movement restriction policies during the pandemic on 
the UHI intensity in local areas of Dongguan. LST during the winter of 
COVID-19 was generally lower than during normal days (i.e., the non-
COVID-19 period), although some areas with   were mainly distributed 
in the border areas of Guangzhou, Huizhou, and Shenzhen. Second, the 
results of the GeoDetector model showed that the interaction of driving 
factors had greater explanatory force as to the spatial heterogeneity of 
LST than did the individual effects of each factor. Third, this research 
demonstrates that the GeoDetector is suitable for related research on 
surface temperature. It was able to detect dominant factors affecting 
the spatial heterogeneity of LST, analyze the interaction effects of these 
factors, and identify areas at risk of high temperatures.

Although this research fulfilled a range of outcomes, it also has 
shortcomings. First, LST inversion was mainly derived from Landsat 
data; future research should attempt to combine multi-source surface 
temperature data and deep-learning methods to improve the accuracy 
of LST inversion. Second, this study did not consider the modifiable 
areal unit problem; future research should consider the impact of scale 
effects on the spatial heterogeneity of LST. This enables a comprehen-
sive analysis of the formation and evolution mechanisms underpinning 
the spatial heterogeneity of urban surface temperatures.
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Urban Land Cover/Use Mapping and Change 
Detection Analysis Using Multi-Temporal Landsat 

OLI with Lidar-DEM and Derived TPI
Clement E. Akumu and Sam Dennis

Abstract
The mapping and change detection of land cover and land use are 
essential for urban management. The aim of this study was to map 
and monitor the spatial and temporal change in urban land cover 
and land use in Davidson County, Tennessee in the periods of 2013, 
2016, and 2020. The urban land cover and land use categories were 
classified and mapped using Random Forest algorithm. A combina-
tion of Landsat Operational Land Imager (OLI) satellite data with 
Light Detection and Ranging (lidar)-Digital Elevation Model (DEM) 
and derived Topographic Position Index (TPI) were used in the clas-
sification and monitoring of urban land cover and land use change. 
The urban land cover and land use types were mapped with aver-
age overall accuracies of about 87% in 2020, 85% in 2016 and 
2013. The overall accuracy increased by around 8%, 9%, and 6% 
in 2020, 2016, and 2013 classifications respectively when lidar-
DEM and derived TPI were added to Landsat OLI satellite data in 
the classification relative to standalone Landsat OLI. Total change 
occurred in about 63% of Davidson County between 2016 and 2020 
with significant net gains and losses among land cover and land 
use types. This information could support land use planning.

Introduction
Land cover change is defined in this study as any change in the land 
biophysical characteristics including but not limited to vegetation and 
soil properties, whereas land use change is associated with the altera-
tion of land by humans. Urban land use change is generally driven 
by urban growth, and this can lead to loss of natural vegetation and 
open space, a decline in connectivity of wetlands and wildlife habitats, 
and a loss in biodiversity (Patel et al. 2019; Verma et al. 2020). The 
understanding of urban land cover and land use change can provide 
insights on the impacts of land management practices and feedback to 
the environment to better manage land resources. Furthermore, it helps 
to quantitatively project future change in urban land cover to support 
land use management and planning. A change in land cover and land 
use category alters land biophysical surface characteristics and this can 
lead to significant consequences including but not limited to land deg-
radation, water pollution, expedition of climate change, and changes to 
ecosystem services (Foley et al. 2005; Homer et al. 2020; Pielke 2005).

The Davidson County constitutes the largest city of Nashville in 
Tennessee and has experienced significant growth in population over 
the years with a population of around 477 800 in 1980 to approximately 
678 889 in 2015 (Mojica 2018; United States Census Bureau 2018). 
The population growth in Davidson County is expected to influence 
land cover and land use change. Therefore, there is a need to spatially 
and explicitly detect and monitor the land cover and land use change in 
Davidson County to support urban planning and management. The use of 
multi-source and temporal data such as Landsat Operational Land Imager 

(OLI) in combination with Light Detection and Ranging (lidar)-Digital 
Elevation Model (DEM) and derived Topographic Position Index (TPI) 
could improve the detection, monitoring and change detection analysis of 
urban land cover and land use classification. This is because land cover 
and land use types respond to electromagnetic radiation differently and 
their spectral information is useful to map and monitor spatial and tempo-
ral change in land cover categories. A TPI is simply the difference between 
a cell elevation value and the average elevation of the neighborhood 
around that cell (Weiss 2001). The positive values of TPI mean the cell 
is higher than its surroundings, whereas negative values mean it is lower 
than its surroundings. TPI values near zero imply flat areas where the 
slope is near zero or mid-slope areas (Jenness 2013). The integration of 
topographic variables such as lidar-DEM and TPI could improve detection 
and change analysis because land cover and land use change generally 
occurs along topographic gradients (Birhane et al. 2019; Liu et al. 2020).

Several classification methods, including but not limited to deep 
learning and machine learning, have been recently used in land cover 
mapping and change detection analysis (Bai et al. 2021; Sefrin et al. 
2021; Shao et al. 2014; Yao et al. 2021; Zhao et al. 2017; Zhong et 
al. 2021). For example, Sefrin et al. (2021) used fully convolutional 
neural network independently and combined with long short-term 
memory networks to distinguish land cover changes and misclassifica-
tions of deep learning approaches. They found that the multi-temporal 
sequential information used when fully convolutional neural network 
was combined with long short-term memory networks outperformed 
the mono-temporal fully convolutional neural network approach in 
landcover change detection mapping. Furthermore, Zhao et al. (2017) 
integrated object-based classification with deep learning to improve ur-
ban land cover classification. Shao et al. (2014) used a machine learn-
ing hierarchical semi-supervised support vector machine algorithm to 
classify landcover in hyperspectral images. They found improved accu-
racy in landcover detection using hierarchical semi supervised support 
vector machine technique relative to Kernel fuzzy C-means approach. 
In addition, Yao et al. (2021) explored continuous multi-angle remote 
sensing data relative to single angle in land cover and use classifica-
tion. They found improved land cover classification accuracy using 
continuous multi-angle relative to single angle remote sensing data.

Recent study in Connecticut, United States examined land cover 
and land use change from 1985 and 2015 using Landsat-derived 30 
m land cover maps (Arnold et al. 2020). They found a 4.7% increase 
in development related land covers and corresponding losses to forest 
and agricultural land. Furthermore, Homer et al. (2020) analyzed land 
cover change patterns from 2001 to 2016 in the Conterminous United 
States using Landsat series satellite data and ancillary data included 
but not limited to the National Land Cover Database, DEM, and deriva-
tives such as slope and aspect. They found significant change in the 
Conterminous United States landscape with about 50% of forest loss. 
Agriculture areas increased slightly during the study period but there 
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was a substantial decline (≈8%) in pasture/hay. Furthermore, they 
found developed areas increased by about 6% with southern states 
exhibiting most of the developmental expansion. Although these 
studies captured important changes in land cover and land use in the 
United States, their analyses of recent changes were limited to years of 
2015 and 2016. This study presents analyses of recent urban land cover 
and land use change in Davidson County, Tennessee, United States for 
the periods of 2020, 2016, and 2013 using a combination of Landsat 
OLI satellite data with lidar-DEM and derived TPI. It aims to map and 
monitor the spatial and temporal change in urban land cover and land 
use categories within these periods. This information could be useful 
to urban planners and policy makers to support land cover and land use 
planning and management.

Materials and Methods
Study Area
The study area of Davidson County consists of the city Nashville 
and surrounding suburbs. The area ranges from latitude 35°58'15" 
to 36°22'49" N and longitude 86°36'45" to 86°54'43"W (Figure 1). 
Davidson County is the second largest in Tennessee and among the 
rapid growing counties in the United States (Sellers 2018; United 
States Census Bureau 2018). The rapid growing urban population will 
likely cause significant change to the environment because of increased 
pressure on ecosystem services and resources.

Climate
The region experiences modest climate with cool winters and warm 
summers (Hodges et al. 2018). The mean annual temperature of 
Davidson County is approximately 78°F (26°C) in the summer and 
around 41°F (5°C) in the winter. The annual precipitation is about 51 
inches (1300 mm) and generally distributed homogeneously through-
out the seasons (Hodges et al. 2018). The month of May generally 
experiences the maximum monthly average precipitation of about 
5.51 inches, whereas the month of October experiences the minimum 
monthly average rainfall of around 3.03 inches (United States Climate 
Data 2018).

Geology and Hydrology
The study area consists of a variety of gentle and highland terrains 
(Hodges et al. 2018). Alkaline soils are generally found around the 
central basin, whereas acidic soils occur on the highlands (Mitsch et 
al. 2009). The gentle and highland terrains are occasionally cut across 
by major rivers such as the Cumberland River that flows southwards in 
the county (Mitsch et al. 2009). Several reservoirs have been con-
structed around the Cumberland River to manage flooding during high 
periods of rainfall. Several streams in the area have also been re-direct-
ed to support agricultural activities (Meador 1996).

Methodology
The methodological approach mainly involved the temporal clas-
sification and mapping or urban land cover and land use categories in 
Davidson County, Tennessee using Landsat OLI satellite data acquired 
in the years 2020, 2016, and 2013 with lidar-DEM and derived TPI 
(Figure 2). The Landsat OLI and lidar-DEM data were preprocessed, 
integrated, and used in the classification and monitoring of urban land 
cover and land use classes (Figure 2). Classification accuracy assess-
ments were conducted, and the generated urban land cover and land 
use maps were exported as raster files to Geographic Information 
System (GIS) for change detection analyses. The assessment of tempo-
ral and spatial change in urban land cover and land use classes was car-
ried out using post-classification comparison technique. The detection 
of areas where change occurred and areas where no change occurred in 
Davidson County was performed using image differencing technique.

Landsat OLI satellite scenes acquired in the months of August 2020, 
June 2016, and September 2013 respectively were downloaded from 
the United States Geological Society (USGS) Science Data reposi-
tory. The images were selected because they had zero percent of cloud 
cover. Five major remote sensing image processing phases’, i.e., pre-
processing, data integration, classification, accuracy assessments/vali-
dations, and change detection (Figure 2) were used to map and monitor 

Figure 1. Study area: Davidson County, Tennessee.

Figure 2. A schematic representation of the methodology used to 
map and monitor urban land cover and land use change in Davidson 
County, Tennessee.
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the urban land cover and land use classes. The Landsat OLI satellite 
images were subsetted to the study area, georeferenced, co-registered, 
and calibrated radiometrically in the preprocessing stage. The geo-
metric calibration was performed using greater than 50 ground control 
points and a root-mean-square (RMS) value of less than 1 pixel. The 
radiometric calibration involved the transformation of digital numbers 
(DN) to spectral reflectance.

The Landsat OLI scenes were converted from digital numbers to at-
surface reflectance by using reflectance rescaling coefficients (Equation 
1) derived from National Aeronautics and Space Administration (2018).

	 ρλ' = MpQcal + Ap	 (1)

where 
ρλ' = top of atmosphere (TOA) planetary reflectance without correc-

tion for solar angle; Mp = band-specific multiplicative rescaling factor 
(Reflectance_Mult_Band_x, where x is the band number); Ap = band-
specific additive rescaling factor (Reflectance_Add_Band_x where x is 
the band number); and Qcal = digital numbers.

The band-specific multiplicative rescaling factor (Reflectance_
Mult_Band_x), and additive rescaling factor (Reflectance_Add_
Band_x) were obtained in the header file of the imagery.

Furthermore, the correction of TOA planetary reflectance for sun 
angle was performed using Equation 2 (National Aeronautics and 
Space Administration 2018).

	 ρλ =ρλ' /sin(θSE) 	 (2)

where ρλ = TOA planetary reflectance corrected for sun angle; ρλ' 
= TOA planetary reflectance without correction for solar angle; and 
θSE = local sun elevation angle in degrees provided in the metadata 
(Sun_Elevation).

The spectral reflectance Landsat OLI scenes were integrated with 
30 m lidar-DEM and derived TPI images. The 30 m lidar-DEM was 
filled and used to generate TPI. The TPI was computed using Equation3 
(Weiss 2001).

TPI < scalefactor <= int (dem – focalmean(dem, annulus, irad, orad)) +0.5	 (3)

where scalefactor = outer radius in map units; irad = inner radius of 
annulus in cells; and orad = outer radius of annulus in cells.

The TPI was derived using 500 m radius and 1000 m radius 
neighborhood window sizes. Both the TPI and lidar-DEM were added 
independently as separate bands with the reflectance Landsat OLI satel-
lite data in the mapping and monitoring of urban land cover and land 
use classes.

Supervised classification was carried out using standalone Landsat 
OLI satellite data and in combination with lidar-DEM and derived TPI. 
The urban land cover and land use training classes were visually 
detected in Google Earth Pro version 7.3.3.7786 and polygons were 
digitized around the training classes. The polygons were later exported 
as Keyhole Markup Language files and converted to shape files in GIS 
environment. The urban land cover and land use polygons constituted 
the training data used to classify and map the urban land cover and 
land use categories. There were 320 polygons (training) data used in 
the classification and were randomly distributed throughout the study 
area. The training data for each land cover and land use class used in 
the supervised classification had at least 500 pixels. The classification 
was performed using a machine-learning Random Forest classification 
algorithm. The Random Forest classification algorithm is an ensemble 
classification algorithm that produces multiple decision trees using a 
randomly selected subset of training samples and variables (Belgiu and 
Dragut 2016). It is expressed using Equation 4 (Breiman 2001).

	 {DT(x,θk)kT
=1	 (4)

where x is the input vector, and θk represents a random vector, which is 
sampled independently but with the same distribution as the previous 
θk, …, θk–1. T bootstrap samples are initially derived from the training 
data. A no-pruned classification and regression tree (CART) is drawn 
from each bootstrap sample β where only one of M randomly selected 

feature is chosen for the split at each node of CART (Breiman 2001; 
Magidi et al. 2021).

Each of the decision tree casts a unit vote for the most popular class 
to classify an input vector (Breiman 1999).The number of features 
used at each node to generate a tree and the number of trees to be 
grown are two user-defined parameters that are required to generate 
a random forest classifier. The Random Forest classification model 
was controlled for overfitting by performing five-fold cross-validation 
repeated twice on the training data. In the cross-validation process, 
about 25% of the training data were kept aside as a test-data set, while 
the remaining 75% training data set was divided into five equal sets 
and used in the five-fold cross validation. The first set was kept as the 
hold out (testing) set and the remaining k – 1 sets were used to train 
the Random Forest classification prediction of urban land cover and 
land use classes. The five-fold cross-validation was performed with a 
changing hold out (testing) set. The mean accuracy of the land cover 
and land use classification generated from the five-fold cross-valida-
tion process was estimated. The training data was then used to classify 
the urban land cover and land use categories and the kept aside 25% 
test-data set was used to validate the classification. The test-data set 
and the training data set accuracies were then evaluated (Costa et al. 
2018; Elmaz et al. 2020; Sharma et al. 2017). Furthermore, the number 
of trees and training samples in the Random Forest classification 
prediction model were selected through a resampling-based procedure 
to search for optimal tuning parameters. The optimal settings were 
selected based on the mean overall accuracy across five-fold cross 
validation, repeated twice (Costa et al. 2018; Sharma et al. 2017). The 
default number of training samples was set at 5000 and the number 
of trees was set at 10. The visible and infrared spectral reflectance 
bands in combination with lidar-DEM and derived TPI were used in the 
supervised classification. The urban land cover and land use maps gen-
erated for the years 2020, 2016, and 2013 were validated to examine 
how well the classified maps represented the various land cover and 
land use categories on the ground. The validation/accuracy assessment 
was conducted by randomly selecting about 1200 polygons from each 
classified land cover and land use map and comparing them to Google 
Earth Pro information representing land cover and land use classes on 
the ground. The validation data (1200 polygons) was distinct from the 
training data (320 polygons) used in the Random Forest classification 
of urban land cover and land use categories. The 1200 polygons were 
randomly distributed throughout the area of study. Furthermore, site 
visitations were also carried out to compare polygons on the classified 
maps to land cover information on the ground.

The overall classification accuracy was computed for each classified 
urban land cover and land use map by dividing the total correct (i.e., 
the sum of the major diagonal in the error matrix table) by the total 
number of pixels in the error matrix table (Mather and Koch 2011). The 
producer’s accuracy was calculated by dividing the number of correctly 
identified in reference plots of a given class by the number actually in 
that reference class (Mather and Koch 2011). The user’s accuracy was 
computed by dividing the number correctly identified of a given class 
by number claimed to be in that map class (Mather and Koch 2011).

The kappa coefficient was computed using Equation 5 (Mather and 
Koch 2011).
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(5)

where r = number of rows, columns in the error matrix; N = number of 
observations (pixels) in the error matrix; Xii = major diagonal element 
for class i; Xi+ = total number of observations in row i (right margin); 
and X+i = total number of observations in column i (bottom margin).

The urban land cover and land use classification maps were later 
exported into GIS for change detection analyses. Post classification 
comparison change detection approach was carried out between the 
generated urban land cover and land use categories. The detection of 
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areas where change occurred and areas where no change occurred was 
performed through image differencing in ArcGIS version 10.4.1. The 
image difference tool in Spatial Analyst was used to detect areas where 
change occurred and areas where no change occurred in the years 
2020, 2016, and 2013. The image difference tool assigns the land cover 
and land use category values to the most recent image where change 
occurred and assigns a value of zero to the image where no change oc-
curred (Environmental Systems Research Institute 2021). Furthermore, 
the classified maps were overlaid, and their attributes’ tables were 
exported into Microsoft Excel to develop a transition matrix table of 
change progression among land cover and land use classes.

Results and Discussion
Urban Land Cover and Land Use Distribution
The classified urban land cover and land use classes included agricul-
ture, bareland, developed/built-up, forest, grassland, shrubland, water, 
and wetland (Figures 3–5). The classes were distributed throughout 
Davidson County in the years 2020, 2016, and 2013. Developed/built-
up areas occurred mostly in the central part of the county with the city 
Nashville. The major open water called the Cumberland River was found 
to cut across the county with agriculture areas distributed around the ma-
jor river and streams. This is because agricultural activities require water 
for irrigation and farmers prefer close access to water for irrigation. The 
wetland, bareland, and grassland were sparsely distributed in the study 
area relative to agriculture, developed/built-up, forest, and shrubland in 
the years 2020, 2016, and 2013. The construction and expansion of wet-
lands in the study area will be valuable to provide habitats to a variety 
of species and regulate pollution and hydrological processes (Cohen et 
al. 2016). Although forest occupied a significant part of the study area, 
it was concentrated in the western portion of the region relative to the 
eastern section in the years 2020, 2016, and 2013 (Figures 3–5).

Figure 3. Urban land cover and land use classes in 2020 derived 
using Landsat Operational Land Imager (OLI) alone and with Light 
Detection and Ranging-Digital Elevation Model (lidar-DEM) and 
derived Topographic Position Index (TPI).

Figure 4. Urban land cover and land use classes in 2016 derived 
using Landsat Operational Land Imager (OLI) alone and with Light 
Detection and Ranging-Digital Elevation Model (lidar-DEM) and 
derived Topographic Position Index (TPI).

Figure 5. Urban land cover and land use classes in 2013 derived 
using Landsat Operational Land Imager (OLI) alone and with Light 
Detection and Ranging-Digital Elevation Model (lidar-DEM) and 
derived Topographic Position Index (TPI).
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The area covered by forest and wetland was about 40 003 ha and 
545 ha, respectively, in 2013 when standalone Landsat OLI satellite 
data was used to classify and map the urban land cover and land use 
types (Table 1). The area covered by forest and wetland increased to 
around 41 480 ha and 817 ha, respectively, in 2013 when Landsat OLI 
satellite data was integrated with lidar-DEM and derived TPI in the clas-
sification (Table 1). Similarly, in the year 2016 the area covered by for-
est and wetland was approximately 36 818 ha and 196 ha, respectively, 
when Landsat OLI satellite data was used alone to classify and map the 
urban land cover and land use categories. The area covered by forest 
and wetland increased to about 37 689 ha and 592 ha, respectively, in 
2016 when Landsat OLI satellite data was combined with lidar-DEM and 
derived TPI in the classification (Table 1). Likewise, in the year 2020, 
the area covered by forest and wetland was around 39 491 ha and 605 
ha, respectively, when standalone Landsat OLI satellite data was used 
to classify and map urban land cover and land use types. The area 
covered by forest and wetland increased to about 40 389 ha and 804 
ha, respectively, in 2020 when Landsat OLI satellite data was integrated 
with lidar-DEM and derived TPI in the classification (Table 1). This im-
plies elevation and topographic position are likely contributing factors 
in the detection of wetland and forest areas in urban environments.

The percent cover of land cover and land use types varied among 
classes, classification methods and years of satellite data acquisition 
(Figure 6). For example, when Landsat OLI satellite data alone was 
used in the classification of urban land cover and land use types, forest 
had the highest percent cover (29%), whereas wetland had the lowest 
percent cover (0.4%) in the year 2013. Similarly, when Landsat OLI 
satellite data was integrated with lidar-DEM and derived TPI in the 
classification, forest had the maximum percent cover of about 31%, 

whereas wetland had the minimum percent cover of about 0.6% in 
2013 (Figure 6). In the year 2016, shrubland had the most percent 
cover of around 31%, whereas wetland had the least percent cover of 
about 0.1% when standalone Landsat OLI satellite data was used in the 
classification. Likewise, in the year 2016, shrubland had the maxi-
mum percent cover of approximately 30%, whereas wetland had the 
minimum percent cover of about 0.4% when lidar-DEM and derived TPI 
were added to Landsat OLI satellite data in the classification (Figure 6). 
The percent cover was also highest for shrubland (29%) and lowest for 
wetland (0.4%) in the year 2020 when standalone Landsat OLI satellite 
data was used in the classification of urban land cover and land use 
types. However, when Landsat OLI satellite data was combined with 
lidar-DEM and derived TPI, the percent cover was maximum for forest 
(30%) and minimum for wetland (0.6%) in the year 2020 (Figure 
6). The high amount of forest cover detected in the study area will 
contribute to climate change mitigation through carbon sequestration 
(Bellassen and Luyssaert 2014; Buotte et al. 2019; Favero et al. 2020).

Accuracy Assessments of Urban Land Cover and Land Use Classifications
The urban land cover and land use classifications were successfully per-
formed with average overall accuracies of about 87% in 2020, and 85% 
in 2016 and 2013 (Tables 2–4). When Landsat OLI was integrated with 
lidar-DEM and derived TPI in the 2020 classification, the overall accuracy 
increased by around 8% relative to Landsat OLI satellite data alone. 
Similarly, when lidar-DEM and derived TPI were added to Landsat OLI in 
the 2016 and 2013 classifications, the overall accuracies increased by ap-
proximately 9% and 6%, respectively, relative to Landsat OLI alone. This 
implies topographic attributes such as DEM and TPI were likely important 
variables in improving the urban land cover and land use classification.

Table 1. Urban land cover and land use areas (in hectares) in the years 2020, 2016, and 2013 derived using Landsat Operational Land Imager (OLI) 
alone and in combination with Light Detection and Ranging-Digital Elevation Model (lidar-DEM) and derived Topographic Position Index (TPI).
Urban Land Cover and 

Land Use Classes
2013 Landsat OLI 
with DEM and TPI

2013 Landsat 
OLI Alone

2016 Landsat OLI 
with DEM and TPI

2016 Landsat 
OLI Alone

2020 Landsat OLI 
with DEM and TPI

2020 Landsat 
OLI Alone

Agriculture 23 599 25 607 26 380 27 786 21 866 20 629
Bareland 4585 4864 2841 3383 5678 5821

Developed/Built-up 18 655 17 729 18 670 17 974 19 090 19 571
Forest 41 480 40 003 37 689 36 818 40 389 39 491

Grassland 1365 1346 2102 1944 3090 3225
Shrubland 39 531 39 853 41 280 42 062 38 825 39 749

Water 5976 6061 6454 5845 6266 6917
Wetland 817 545 592 196 804 605

Figure 6. Percent cover of land cover and land use classes in Davidson County in the years 2020, 2016, and 2013 derived using Landsat Operational 
Land Imager (OLI) alone, with Light Detection and Ranging-Digital Elevation Model (lidar-DEM) and derived Topographic Position Index (TPI).
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In the 2020 urban land cover and land use classification, the 
producer’s accuracy that represented the ability of the Random Forest 
classification algorithm to generate land cover and land use categories 
was highest (100%) for water and lowest (81.7%) for wetlands when 
Landsat OLI was integrated with lidar-DEM and TPI in the classifica-
tion (Table 2). Likewise, water and wetlands had the most (100%) and 
least (66.4%) producer’s accuracies, respectively, when standalone 
Landsat OLI was used in the 2020 classification (Table 2). This implies 
the Random Forest classification algorithm likely detected water easily 
relative to wetland in the 2020 classification. In contrast, the user’s 
accuracy that demonstrated how well the classified urban land cover 
and land use categories on the map represented land cover and land 
use on the ground was maximum (98%) for water and minimum (71%) 
for grassland when Landsat OLI was used alone in the 2020 classifica-
tion. Similarly, water and wetland classes had the most user’s accu-
racy (98%) and grassland had the least user’s accuracy (84%) when 
lidar-DEM and TPI were added to Landsat OLI in the 2020 classifica-
tion (Table 2). Furthermore, when Landsat OLI was combined with 
lidar-DEM and derived TPI in the 2020 urban land cover and land use 
classification, wetland had the most gain in both producer’s and user’s 
accuracies, whereas water had the least gain in accuracy. The average 
user’s and producer’s accuracies in the 2020 urban land cover and land 
use classification were about 87% and 86%, respectively. The kappa 

value that indicated the correlation between the classified urban land 
cover and land use classes to the reference data (Google Earth data) in-
creased from 0.8 to 0.89 when lidar-DEM and derived TPI were added to 
Landsat OLI in the 2020 classification relative standalone Landsat OLI.

In the 2016 urban land cover and land use classification, the 
producer’s accuracy was maximum (100%) for water and minimum 
(76.3%) for grassland when Landsat OLI was integrated with lidar-DEM 
and derived TPI (Table3). However, when Landsat OLI was used alone 
in the classification, the producer’s accuracy was highest (100%) for 
water and lowest (66.4%) for wetland (Table 3). In contrast, water had 
the most user’s accuracy (98%) and grassland had the least user’s accu-
racy (74%) in the 2016 classification when Landsat OLI was combined 
with lidar-DEM and derived TPI (Table 3). Likewise, the user’s accuracy 
was maximum for water (98%) and minimum for grassland (69%) 
when standalone Landsat OLI was used in the 2016 classification. 
Furthermore, when Landsat OLI was integrated with lidar-DEM and de-
rived TPI in the 2016 classification, shrubland had the most gain in both 
producer’s and user’s accuracies, whereas water had the least gain in 
accuracy. The mean user’s and producer’s accuracies in the 2016 urban 
land cover and land use classification increased by around 7% and 9%, 
respectively when lidar-DEM and TPI were added to Landsat OLI in the 
2016 classification relative to standalone Landsat OLI satellite data. 
Similarly, the Kappa value increased from 0.78 to 0.86 when lidar-DEM 

Table 2. Accuracy assessment of urban land cover and land use classification of 2020.
User’s Accuracy (%)

Year 2020
Producer’s Accuracy (%)

Year 2020

Land Cover and 
Land Use Classes

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI Change in Accuracy

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI Change in Accuracy

Agriculture 88.5 91.0 2.5 85.5 92.4 6.9

Bare land 81.0 87.0 6.0 86.2 91.6 5.4
Developed/Built-up 95.0 95.0 0.0 96.0 97.4 1.5
Forest 74.0 87.0 13.0 85.1 91.1 6.0
Grassland 71.0 84.0 13.0 76.3 82.4 6.0
Shrubland 74.5 85.0 10.5 70.6 84.2 13.5
Water 98.0 98.0 0.0 100.0 100.0 0.0
Wetland 83.0 98.0 15.0 66.4 81.7 15.3

Overall Accuracy (%)
Year 2020

Kappa Value
Year 2020

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI Change in Accuracy

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI

Change in Kappa 
Value

83.00 90.00 7.00 0.80 0.89 0.09
Landsat OLI = Landsat Operational Land Imager (OLI); Light Detection and Ranging-Digital Elevation Model = lidar-DEM; Topographic Position Index = TPI.

Table 3. Accuracy assessment of urban land cover and land use classification of 2016.
User’s Accuracy (%)

Year 2016
Producer’s Accuracy (%)

Year 2016

Land Cover and 
Land Use Classes

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI Change in Accuracy

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI Change in Accuracy

Agriculture 87.0 88.5 1.5 83.3 86.3 3
Bare land 81.0 84.0 3.0 86.2 91.3 5.1

Developed/Built-up 92.5 95.0 2.5 95.9 97.4 1.5
Forest 74.0 87.0 13.0 79.1 86.6 7.5

Grassland 69.0 74.0 5.0 71.9 76.3 4.4
Shrubland 68.0 81.0 13.0 68.7 83.5 14.8

Water 98.0 98.0 0.0 100 100 0
Wetland 83.0 94.0 11.0 66.4 79.7 13.3

Overall Accuracy (%)
Year 2016

Kappa Value
Year 2016

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI Change in Accuracy

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI

Change in Kappa 
Value

81.00 88.00 7.00 0.78 0.86 0.08
Landsat OLI = Landsat Operational Land Imager (OLI); Light Detection and Ranging-Digital Elevation Model = lidar-DEM; Topographic Position Index = TPI.

248	 Apr i l  2022	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



and derived TPI were integrated with Landsat OLI in the classification 
relative Landsat OLI alone.

In the 2013 urban land cover and land use classification, the 
producer’s accuracy was highest (100%) for water and lowest (74%) 
for grassland when Landsat OLI was combined with lidar-DEM and 
derived TPI (Table 4). However, when Landsat OLI was used alone in 
the classification, water had the most producer’s accuracy of about 
100% and wetland had the least producer’s accuracy of approximately 
66.4% (Table 4). In contrast, the user’s accuracy was maximum (98%) 
for water and minimum (71.5%) for shrubland when Landsat OLI was 
used alone in the 2013 classification. Nonetheless, when lidar-DEM 
and TPI were added to Landsat OLI in the classification, water had the 
most user’s accuracy of about 98% and grassland had the least user’s 
accuracy of around 74% (Table 4). In addition, when Landsat OLI was 
integrated with lidar-DEM and TPI in the 2013 classification, wetland 
had the most gain in both producer’s and user’s accuracies, whereas 
water and agriculture had the least gain in accuracies. Both the user’s 
and producer’s accuracies in the 2013 urban land cover and land use 
classification increased on average by around 5% when lidar-DEM and 
TPI were added to Landsat OLI in the classification relative to stand-
alone Landsat OLI. Likewise, the Kappa value increased from 0.8 to 
0.85 when lidar-DEM and derived TPI were combined with Landsat OLI 
in the 2013 classification relative Landsat OLI alone (Table 4).

The lowest user’s accuracy of grassland was consistent in the 2020, 
2016, and 2013 urban land cover and land use classifications. The low-
est user’s accuracy of grassland indicated greater confusion between 
grassland and other urban land cover and land use types such as agri-
culture and wetland. This is possibly because wetland and agriculture 
environments consist of a significant amount of grasses. Furthermore, 
the range in kappa values (0.78–0.89) in the 2020, 2016, and 2013 
urban land cover and land use classifications indicated a very good 
correlation between the classified land cover and land use categories 
to the reference data assuming the data are randomly sampled from 

a multinomial distribution with a large sample size (Montserud and 
Leamans 1992).

Urban Land Cover and Land Use Change Analysis
This study found a significant change in urban land cover and land use 
classes in Davidson County, Tennessee in the periods of 2013, 2016, 
and 2020 (Table 5). On average, the area covered by agriculture in-
creased by about 10% between 2013 and 2016 and decreased by about 
22% between 2016 and 2020 (Table 5). The net gain in agriculture 
between 2013 and 2016 was about 2700 ha and was predominantly due 
to the conversion of bareland and shrubland to agricultural land (Tables 
6 and 7). The net loss in agriculture between 2016 and 2020 was about 
4500 ha and was primarily due to the conversion of agriculture to 
bareland and shrubland (Tables 8 and 9). The conversion of agriculture 
to bareland and shrubland and vice versa is likely due to normal crop 
cycling (Li et al. 2019; Rondhi et al. 2018).

The bareland cover decreased by about 34% between 2013 and 
2016 and increased by about 85% between 2016 and 2020 (Table 5). 
The net loss in bareland between 2013 and 2016 was about 1500 ha 
and was mostly due to the conversion of bareland to agriculture (Tables 
6 and 7). In contrast, the net gain in bareland between 2016 and 2020 
was around 2600 ha and was mainly as a result of the conversion of 
agriculture to bareland (Tables 8 and 9). Other environmental factors 
including but not limited to the clearing of grasses, shrubs and forests 
for residential development also contributed to increase in bareland. 
Furthermore, the tornado event that occurred in Davidson County in 
March of 2020 (National Weather Service 2020) a few months before 
the Landsat OLI satellite data was acquired likely also contributed to 
the gains in bareland between 2016 and 2020 relative to 2013 and 
2016. In addition, the fluctuation in rivers and lakes’ shorelines likely 
also contributed to the gains and losses in bareland.

On average, the area covered by developed/built-up areas increased 
by about 1% between 2013 and 2016. Furthermore, it increased by ap-
proximately 6% between the periods of 2016 and 2020 (Table 5). The 

Table 4. Accuracy assessment of urban land cover and land use classification of 2013.
User’s Accuracy (%)

Year 2013
Producer’s Accuracy (%)

Year 2013

Land Cover and  
Land Use Classes

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI

Change in  
Accuracy

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI

Change in  
Accuracy

Agriculture 87 87 0 86.1 86.1 0.0
Bare land 81 84 3 86.2 91.3 5.1
Developed/Built-up 92.5 95 2.5 95.9 97.4 1.6
Forest 74 87 13 82.2 84.9 2.7
Grassland 76 74 -2 73.8 74.0 0.2
Shrubland 71.5 79 7.5 69.8 83.2 13.4
Water 98 98 0 100.0 100.0 0.0
Wetland 83 94 11 66.4 79.7 13.3

Overall Accuracy (%)
Year 2013

Kappa Value
Year 2013

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI

Change in  
Accuracy

Landsat OLI 
Alone 

Landsat OLI with 
DEM and TPI

Change in  
Kappa Value

82.00 87.00 5.00 0.80 0.85 0.05
Landsat OLI = Landsat Operational Land Imager (OLI); Light Detection and Ranging-Digital Elevation Model = lidar-DEM; Topographic Position Index = TPI.

Table 5. Change in urban land cover and land use classes in Davidson County, Tennessee.
Urban Land Cover 

and Land Use Classes
Mean Area (ha) 

Cover 2013
Mean Area (ha) 

Cover 2016
Mean Area (ha) 

Cover 2020
% Change 2013  

& 2016
% Change 2013  

& 2020
% Change 2016  

& 2020
Agriculture 24 603 27 083 21 247.5 10.1 −13.6 −21.5
Bareland 4724.5 3112 5749.5 −34.1 21.7 84.8

Developed/Built-up 18 192 18 322 19 330.5 0.7 6.3 5.5
Forest 40 741.5 37 253.5 39 940 −8.6 −2.0 7.2

Grassland 1355.5 2023 3157.5 49.2 132.9 56.1
Shrubland 39 692 41 671 39 287 5.0 −1.0 −5.7

Water 6018.5 6149.5 6591.5 2.2 9.5 7.2
Wetland 681 394 704.5 −42.1 3.5 78.8
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Table 6. Area (ha) transition matrix for the period 2013–2016, Davidson County (land cover and land use map derived using Landsat Operational 
Land Imager (OLI) with Digital Elevation Model (DEM) and Topographic Position Index (TPI). 

Land Cover and Land Use Classes in 2016
Land Cover and Land  
Use Classes in 2013 Agriculture Bareland Developed Forest Grassland Shrubland Water Wetland Total 2013 Losses
Agriculture 13 102 894 1186 646 216 7378 177 0 23 599 10 497
Bareland 1564 974 876 130 61 952 28 0 4585 3611
Developed 742 303 14 411 53 40 2693 413 0 18 655 4244
Forest 1204 599 930 31 289 9 6940 447 62 41 480 10 191
Grassland 63 10 16 1 1077 197 2 0 1365 288
Shrubland 9453 0 841 5453 694 22 687 241 162 39 531 16 844
Water 203 29 316 66 2 433 4928 0 5976 1048
Wetland 49 32 95 52 3 0 218 368 817 449
Total 2016 26 380 2841 18 670 37 689 2102 41 280 6454 592 136 008
Gains 13 278 1867 4259 6400 1025 18 593 1526 224

Table 7. Area (ha) transition matrix for the period 2013–2016, Davidson County (land cover and land use map derived using standalone Landsat 
Operational Land Imager (OLI)).

Land Cover and Land Use Classes in 2016
Land Cover and Land  
Use Classes in 2013 Agriculture Bareland Developed Forest Grassland Shrubland Water Wetland Total 2013 Losses
Agriculture 13 750 2191 1603 254 359 7368 82 0 25 607 11 857
Bareland 1691 529 827 403 139 1249 27 0 4864 4335
Developed 500 311 14 084 41 54 2623 116 0 17 729 3645
Forest 800 265 600 31374 42 6620 302 0 40 003 8629
Grassland 146 26 20 1 1052 100 1 0 1346 294
Shrubland 10 745 26 540 4652 269 23 471 150 0 39 853 16 382
Water 154 10 203 40 30 481 5138 5 6061 923
Wetland 0 25 96 53 0 150 30 191 545 354
Total 2016 27 786 3383 17 973 36 818 1944 42 062 5845 196 136 008
Gains 14 036 2854 3889 5444 892 18 591 707 5

Table 8. Area (ha) transition matrix for the period 2016–2020, Davidson County (land cover and land use map derived using Landsat Operational 
Land Imager (OLI) with Digital Elevation Model (DEM) and Topographic Position Index (TPI). 

Land Cover and Land Use Classes in 2020

Land Cover and Land 
Use Classes in 2016 Agriculture Bareland Developed Forest Grassland Shrubland Water Wetland

Total 
2016 Losses

Agriculture 12 334 3552 1679 3910 464 4306 0 135 26 380 14 046
Bareland 839 800 725 78 54 325 10 10 2841 2041
Developed 770 399 14 542 158 76 2233 391 101 18 670 4128
Forest 590 338 279 32 485 19 3909 69 0 37 689 5204
Grassland 161 40 41 26 1740 90 1 1 2102 362
Shrubland 7061 500 1675 3251 730 27 421 300 342 41 280 13 859
Water 47 9 70 397 2 459 5436 34 6454 1018
Wetland 63 40 80 83 4 82 59 181 592 411
Total 2020 21 866 5678 19 090 40 389 3090 38 825 6266 804 136 008
Gains 9532 4878 4548 7904 1350 11 404 830 623

Table 9. Area (ha) transition matrix for the period 2016–2020, Davidson County (land cover and land use map derived using standalone Landsat 
Operational Land Imager (OLI)).

Land Cover and Land Use Classes in 2020
Land Cover and Land  
Use Classes in 2016 Agriculture Bareland Developed Forest Grassland Shrubland Water Wetland

Total 
2016 Losses

Agriculture 13 510 2551 1682 2542 856 6420 100 125 27 786 14 276
Bareland 820 924 705 424 39 350 69 52 3383 2459
Developed 476 598 14 259 98 82 2014 349 98 17 974 3715
Forest 474 229 225 31 131 22 4480 93 164 36 818 5687
Grassland 206 47 40 51 1499 93 4 4 1944 445
Shrubland 5094 1454 2650 5114 718 26 290 742 0 42 062 15 772
Water 49 18 10 93 5 102 5508 60 5845 337
Wetland 0 0 0 38 4 0 52 102 196 94
Total 2020 20 629 5821 19 571 39 491 3225 39 749 6917 605 136 008
Gains 7119 4897 5312 8360 1726 13 459 1409 503
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net gain in developed/built-up area between 2013 and 2016 was about 
130 ha, whereas the net gain between 2016 and 2020 was approximate-
ly 1000 ha. The net gain in developed/built-up area was mostly from 
the conversion of agriculture and shrubland to built-up area (Tables 
6–9). The net gain in developed/built-up areas was to accommodate 
the rise in population in Davidson County. The increasing trend in 
developed/built-up areas is consistent with the findings of Homer et al. 
(2020) where they found a net gain in developed areas especially in the 
southern United States.

The forest area decreased by about 9% between 2013 and 2016 and 
in the periods of 2016 and 2020, forest increased by about 7% on aver-
age (Table 5). The net loss in forest cover between 2013 and 2016 was 
about 3500 ha and was mostly due to the conversion of forest to agricul-
ture, developed/built-up, and shrubland (Tables 6 and 7). In contrast, the 
net gain in forest between 2016 and 2020 was around 2700 ha and was 
primarily due to the conversion of shrubland to forest (Tables 8 and 9). 
Furthermore, the losses and gains in forest cover are likely due to forest 
harvest and regrowth that is common in the southeastern United States.

Grassland was found to increase by about 49% and 56% in the 
periods between 2013 and 2016, and between 2016 and 2020, respec-
tively (Table 5). The net gain in grassland between 2013 and 2016 
was around 700 ha, whereas the net gain between 2016 and 2020 was 
about 1200 ha. The net gain in grassland was mostly from the conver-
sion of agriculture and shrubland to grassland (Tables 6–9). The net 
gain in grassland from 2013 to 2020 is also likely due to urbanization. 
This is because newly constructed residential buildings are usually 
designed with grassland lawns for aesthetic and recreational purposes. 
Furthermore, the increase in grassland can also be attributed to shru-
bland and forest losses (Homer et al. 2020).

In the years 2013 and 2016, shrubland increased by about 5% and de-
creased by around 6% between 2016 and 2020 on average (Table 5). The 
net gain in shrubland between 2013 and 2016 was about 2000 ha and 
was typically due to the conversion of agriculture and forest to shrubland 
(Tables 6 and 7). In contrast, the net loss in shrubland between 2016 and 
2020 was around 2400 ha and was primarily due to the conversion of 
shrubland to forest and agriculture (Tables 8 and 9). The fluctuation in 
shrubland is heavily influenced by forest cutting and regeneration.

On average, the area covered by open water increased by about 2% 
between 2013 and 2016 and increased by approximately 7% between 
2016 and 2020 (Table 5). The net gain in open water between 2013 and 
2016 was around 130 ha, whereas the net gain between 2016 and 2020 
was about 400 ha (Tables 6–9). In contrast, the area covered by wet-
land decreased by about 42% between 2013 and 2016 and increased by 
around 79% between 2016 and 2020 (Table 5). The net loss in wetland 
between 2013 and 2016 was about 285 ha and was mostly due to the 
conversion of wetland to open water (Tables 6 and 7). In contrast, the 
net gain in wetland between 2016 and 2020 was around 300 ha and 
was primarily due to the conversion of shrubland to wetland (Tables 8 
and 9). Furthermore, the fluctuation in wetland and open water can also 
be attributed to weather and climate conditions such as precipitation, 
land use intensity, and other external disturbances. For example, the 
total precipitation in the month of August 2020 in Nashville was about 
5.9 inches, whereas the total precipitation in the months of June 2016 
and September 2013 was approximately 4.5 inches (National Oceanic 
and Atmospheric Administration 2021). The high precipitation in 
August of 2020 likely contributed to the net gain in water and wetlands 
between 2016 and 2020, relative to 2013 and 2016.

In the years of 2013 and 2016, the losses in urban land cover and 
land use change occurred in all land cover and land use types with 
significant losses in agriculture and shrubland especially in the central 
and eastern parts of the study area (Figure 7).

Similarly, urban land cover, and land use gains also occurred in all 
land cover and land use types with significant gains in agriculture and 
shrubland especially in the central and eastern portions of the study 
area (Figure 7).

In the years of 2016 and 2020, losses occurred all urban land cover 
and land use types with significant losses in agriculture and shrubland 
especially in the central and eastern parts of the study area (Figure 8). 
Likewise, gains occurred in all urban land cover and land use types 

with significant gains in agriculture and shrubland especially in the 
central and eastern parts of the study area (Figure 8).

In the years 2013 and 2016, total change in urban land cover and 
land use was detected in about 94 344 ha of the study area when 
Landsat OLI was integrated with lidar-DEM and derived TPI in the clas-
sification. However, total change was detected in around 92 838 ha of 
the study area when Landsat OLI was used alone in the classification. 
On average, total urban land cover and land use change occurred in 
about 70% of the study area between 2013 and 2016. The urban land 
cover and land use change occurred predominantly in the central, east-
ern, and southern parts of Davidson County (Figure 9).

In the periods of 2016 and 2020, total change in urban land cover 
and land use was detected in about 82 138 ha of the study area when 
Landsat OLI was combined with lidar-DEM and derived TPI in the 
classification. In contrast, when Landsat OLI was used alone in the 
classification, total urban land cover and land use change was detected 
in approximately 85 570 ha of the study area. On average, total urban 
land cover and land use change occurred in about 63% of the study 
area between 2016 and 2020. The urban land cover and land use 
change occurred largely in the central, eastern, and southern portions 
of Davidson County in the periods of 2016 and 2020 (Figure 10).

No change in urban land cover and land use in Davidson County 
occurred mostly in the western parts of the study area between 2013–
2016 and 2016–2020. The no change areas consisted of all land cover 
and land use types. However, forest covered most of the area with no 
change detection relative to agriculture. The large undisturbed forest is 
therefore contributing to climate change mitigation (Buotte et al. 2019; 
Woodbury et al. 2007).

Conclusion
This study has classified, mapped, and monitored urban land cover 
and land use categories in Davidson County, Tennessee for the years 
of 2013, 2016, and 2020. Landsat OLI was integrated with lidar-DEM 
and derived TPI to classify urban land cover and land use classes. The 

Figure 7. The gains (below) and losses (above) of specific land 
cover and land use types in Davidson County from 2013–2016 
derived from Landsat Operational Land Imager (OLI) with 
Topographic Position Index (TPI) and Light Detection and Ranging-
Digital Elevation Model (lidar-DEM); and standalone Landsat OLI 
classification maps.
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addition of lidar-DEM and derived TPI to Landsat OLI satellite data 
improved the overall accuracy of the 2020 classification from 83% to 
90% relative to Landsat OLI alone. Furthermore, the overall accuracy 
of the 2016 classification also increased from 81% to 88% and the 
2013 classification improved from 82% to 87% when lidar-DEM and 
derived TPI were added to Landsat OLI in the classifications. Wetland 
and shrubland had the most gain in both producer’s and user’s accura-
cies, whereas water had the least gain in accuracies when Landsat OLI 
was integrated with lidar-DEM and derived TPI in the classifications. 
This study found a very good correlation between the classified urban 
land cover and land use categories and the reference data with kappa 
values in the range of 0.78 to 0.89.

Furthermore, this study found a significant change in urban land 
cover and land use classes in Davidson County in the years of 2013, 
2016, and 2020. On average between 2013 and 2016, total urban land 
cover and land use change occurred in about 70% of the study area, 
whereas between 2016 and 2020, total change occurred in about 63% 
of Davidson County. In the years 2013 and 2016, agriculture had the 
highest net gain, whereas developed /built-up had the lowest net gain. 
In contrast, forest had the maximum net loss while wetland had the 
minimum net lost. In the periods between 2016 and 2020, forest had 
the maximum net gain, whereas wetland had the minimum net gain. 
Furthermore, agriculture was the land cover type that had the most net 
loss and shrubland had the least net loss between 2016 and 2020.

The gains and losses in urban land cover and land use are due to 
several factors included but not limited to urbanization, forest harvest 
and regrowth, conversion of shrubland to forest, weather, and climatic 
conditions such as precipitation and tornado. This study improves our 
understanding of the recent urban land cover and land use change in 

Figure 8. The gains (below) and losses (above) of specific land 
cover and land use types in Davidson County from 2016–2020 
derived from Landsat Operational Land Imager (OLI) with 
Topographic Position Index (TPI) and Light Detection and Ranging-
Digital Elevation Model (lidar-DEM); and standalone Landsat OLI 
classification maps.

Figure 9. 2013–2016 binary change detection of urban land cover 
and land use types derived from Landsat Operational Land Imager 
(OLI) with Topographic Position Index (TPI) and Light Detection 
and Ranging-Digital Elevation Model (lidar-DEM); and standalone 
Landsat OLI classification maps.

Figure 10. 2016–2020 binary change detection of urban land cover 
and land use types derived from Landsat Operational Land Imager 
(OLI) with Topographic Position Index (TPI) and Light Detection 
and Ranging-Digital Elevation Model (lidar-DEM); and standalone 
Landsat OLI classification maps.
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Davidson County, Tennessee, United States. Furthermore, it quantita-
tively classified, mapped, and monitored urban land cover and land use 
change relevant for urban development and planning.
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Monitoring Earth Hazard with Remote Sensing Techniques

Natural and human disasters are increasingly affecting 
global communities worldwide in recent decades. With 
the increasing human population and urbanization, the 
earth is inevitably more susceptible to manmade hazards. 
Global warming and its associated environmental instability 
increase the frequency and severity of the disaster. Rapid 
Climate change is linked with meteorological events with 
a high degree of risk probability causing flood disasters. 
Implementation of proper hazard management such as 
disaster prevention, disaster preparedness, and adequate 
disaster relief would reduce the impact of natural disasters. 
Usage of the convectional earth observation model helps 
hazard management with a reliable solution but cannot 
provide early prediction of disaster occurrence, saving peo-
ple’s lives. However, using remote sensing techniques would 
enable warning systems by building futuristic codes that 
predict the hazards and warn people on time with greater 
accuracy. Remote sensing imagery provides a quick method 
for assessing the variation of hazard impacts, coastal inun-
dation, erosion, and majority affected flood plains using 
intelligent, visionary technology. The data gathered from 
sensors provide valuable insights about the spatial phenom-
ena that aid scientists in making accurate decisions about 
the forecast patterns. Above all satellites, remote sensing 
is used to detect global environmental problems, explore 
resources, and monitor disasters by capturing the earth’s 
surface during altered weather conditions. This helps in the 
early detection of disaster patterns with futuristic mitigation 
procedures. 

The sensors technology captures images of fires, flooding, 
and volcanic eruption can create a visual impact during the 
response phase that aids in readiness actions when people 
are viable to disaster risk. Earth observation systems and 
GIS helps professionals to make effective project planning 
with a more accurate analysis. The utilization of various 
spectral bands such as Visible, infrared, thermal infrared, 
and synthetic aperture radar provides adequate coverage 
of environmental patterns and allows technology en-
hancement to analyze data. Meteorological satellites use 
High-resolution transmission sensors for cyclone monitor-
ing, intensity assessment, and storm surges. Geo-stationary 
satellites use global coverage sensors for flood and drought 
management by collections of multi-date imaginary data for 
rainfall and river stages. Using its unique spectral signature, 
it identifies the water standing areas, the sand casting of 
agricultural lands, and marooned villages to enable hazard 
recovery plans. SAR sensing system is used to detect forest 
fires and forest monitoring using microwave techniques to 
acquire sensory images. There are some challenges about 
using sensors for hazard prediction where research pros-
pects are needed. As smart sensors use advanced technolo-
gies and complex data for prediction, data breaches would 
lead to misinterpretation of results, increasing the risk to 

human lives. An adequate skilled workforce is required to 
analyze the collected sensor data. In the future, integrating 
IoT and artificial intelligence would create autonomous 
drones that aid in inspecting the geographical patterns 
in multi-dimensional views to accelerate high definitions 
imagery for efficient prediction of results. This special 
issue enumerates the role of remote sensors for earth 
hazard predictions and future advancements. We welcome 
scholars and practitioners of this platform to emphasize this 
topic and present submissions that fall within the scope of 
remote sensing techniques for the accurate prediction of 
environmental hazards.

The topics of interest include:
	y Role of Artificial intelligence in generating patterns in 

sensor data
	y Disaster management cycle and it’s important in hazard 

mitigation
	y Advantages of geometrics in disaster risk management
	y Usage and applications o GIS in flood forecasting
	y Advanced Earth observation system tools for project 

planning
	y RadarSat and use cases in detecting oil seeps
	y Big data and its uses for accurate data collection in 

sensors
	y Role of climate change in creating environmental risk
	y Advancement in satellite sensors for earth’s behavioral 

prediction
	y Role of autonomous drones in capturing multispectral 

images  
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Use of Commercial Satellite Imagery to Monitor 
Changing Arctic Polygonal Tundra

Amit Hasan, Mahendra Udawalpola, Anna Liljedahl, and Chandi Witharana

Abstract
Commercial satellite sensors offer the luxury of mapping of indi-
vidual permafrost features and their change over time. Deep learning 
convolutional neural nets (CNNs) demonstrate a remarkable success 
in automated image analysis. Inferential strengths of CNN models are 
driven primarily by the quality and volume of hand-labeled train-
ing samples. Production of hand-annotated samples is a daunting 
task. This is particularly true for regional-scale mapping applica-
tions, such as permafrost feature detection across the Arctic. Image 
augmentation is a strategic “data-space” solution to synthetically 
inflate the size and quality of training samples by transforming the 
color space or geometric shape or by injecting noise. In this study, 
we systematically investigate the effectiveness of a spectrum of 
augmentation methods when applied to CNN algorithms to recognize 
ice-wedge polygons from commercial satellite imagery. Our findings 
suggest that a list of augmentation methods (such as hue, saturation, 
and salt and pepper noise) can increase the model performance.

Introduction
A network of polygonal patterns appears in the tundra due to the crack-
ing and subsequent development of ice wedges. Ice-wedge polygons 
(IWPs) are one of the most common landforms across the Arctic tundra 
lowlands. Early studies (Leffingwell 1919) described two major types 
of IWPs: (1) polygons with elevated blocks or high-centered polygons 
and (2) polygons with depressed blocks or low-centered polygons. The 
microtopography associated with IWP controls a multitude of functions 
of the Arctic ecosystem (Kutzbach et al. 2004), such as permafrost 
and hydrologic dynamics from local to regional scales, due to the 
linkages between microtopography and the flow and storage of water 
(Liljedahl et al. 2016), vegetation succession (Magnússon et al. 2020), 
and permafrost dynamics (Lara et al. 2020). Widespread ice-wedge 
degradation is transforming low-centered polygons into high-centered 
polygons in a rapid phase (Steedman et al. 2016).

The entire Arctic has been imaged by high-spatial-resolution com-
mercial satellite sensors, producing sheer volumes of data. Imagery 
archives are quickly morphing to petabyte scale. While studies have 
been conducted on vegetation dynamics (Verdonen et al. 2020), phe-
nology (Zheng et al. 2020), vegetation classification (Davidson et al. 
2016), and spectral and seasonal variation of leaf area index (Juutinen 
et al. 2017), imagery-derived products lag behind. We are in the pro-
cess of translating these big imagery resources to Arctic science–ready 
products. Our ongoing research investigates the automated detection of 
IWPs from commercial satellite imagery.

The successful implementation of deep learning (DL) convolu-
tional neural nets (CNNs) in computer vision applications has received 
a great deal of interest from the remote sensing community (Ma et 
al. 2019). There has been an upsurge of recent research that exhibits 
DLCNN applications in a multitude of remote sensing classification 
problems, such as land use and land cover types of detection (Paoletti 
et al. 2019; Zhang et al. 2019), agricultural crop mapping (Zhong et al. 

2019), feature extraction from remote sensing images (Romero et al. 
2016), object localization (Long et al. 2017), cloud detection (Xie et 
al. 2017), and disaster recognition (Liu & Wu 2016). DLCNNs perform 
well in terms of object detection (Zhao et al. 2019), image segmenta-
tion (Rizwan I Haque and Neubert 2020), and semantic object instance 
segmentation (Lateef and Ruichek 2019). An array of DLCNN architec-
tures have been developed, trained, and tested with different types of 
imagery. Each of these architectures has its own advantages and disad-
vantages with respect to computation time and resources. Among many 
others, Mask R-CNN, U-Net, and Deeplab V3+ stand out as superior 
methods in semantic object instance segmentation. Researchers used 
Deeplab V3+ with the Pascal VOC data set and achieved 89% intersec-
tion over union (IoU). In a separate biological image segmentation 
data set, the U-Net model achieved a total of 85.5% IoU (Karimov et 
al. 2019). There is an increasing interest in the application of the Mask 
R-CNN model for Earth science applications (Su et al. 2019; Bhuiyan 
et al. 2020; Carvalho et al. 2021; Mahmoud et al. 2020; Zabawa et al. 
2020; Zuo et al. 2020). Previous studies have shown promising results 
found by the implementation of DLCNN with commercial satellite im-
agery (Zhang et al. 2018; Bhuiyan et al. 2020; Witharana et al. 2020). 
By design, inferential strengths of CNN models are fueled largely by 
the quality and volume of hand-labeled training data. Production of 
hand-annotated samples is a daunting task. This is particularly true for 
regional-scale mapping applications, such as permafrost feature detec-
tion across the Arctic, where landscape complexity would spontane-
ously inflate the semantic complexity of submeter-resolution imagery. 
Additionally, image dimensions, multispectral channels, imaging 
conditions, and seasonality, coupled with multi-scale organization of 
geo-objects, pose extra challenges on the generalizability of DLCNN 
models. Image augmentation is a strategic “data-space” solution to 
synthetically inflate the size and quality of training samples without 
additional investments on hand annotations. A plethora of augmenta-
tion methods have been proposed under the auspices of two general 
categories: data warping and oversampling (Shorten and Khoshgoftaar 
2019). The performance of image augmentation methods depends 
largely on the image recognition problem on hand and the characteris-
tics of the underlying data. Researchers have used color augmentation 
techniques for skin lesion segmentation and classification (Galdran et 
al. 2017), geometric transformation with chest X-ray for the screening 
of COVID-19 (Elgendi et al. 2021), and noise injection techniques for 
plant leaf disease detection (Arun Pandian et al. 2019).

In this study, we have investigated the efficacy of 17 augmentation 
methods in relation to IWP detection. We relied on the Mask R-CNN 
algorithm as the base model in the training and the prediction of IWPs. 
The Mask R-CNN model itself has a lot of room to modify and tweak 
the default parameters (He et al. 2017). The backbone of the model is 
a convolutional neural network. This can be changed to different types 
of CNN models; we used the ResNet-50 structure (He et al. 2015) as the 
backbone. To initialize the model, we have practiced the transfer learn-
ing approach. In this approach, the model is already trained based on 
another hand-labeled data set. Our backbone was pretrained based on 

Amit Hasan, Mahendra Udawalpola, and Chandi Witharana are with the 
University of Connecticut, Storrs, CT 06269 (amit.hasan@uconn.edu).

Anna Liljedahl is with the Woodwell Climate Research Center, 
Falmouth, MA 02540.

Contributed by Alper Yilmaz, August 30, 2021 (sent for review August 30, 2021).

Photogrammetric Engineering & Remote Sensing
Vol. 88, No. 4, April 2022, pp. 255–262.

0099-1112/22/255–262
© 2022 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.21-00061R2

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 April 2022	 255



the ImageNet data set. We retrained the Mask R-CNN model with differ-
ent augmentation methods using our data set so that the model could 
be used for the detection and segmentation of the IWPs. One of the 
major weaknesses of the DLCNNs is that spectral and spatial variations 
in the training data set affect the model performance (Grm et al. 2018). 
In our data, the spectral, spatial, and textural characteristics of IWPs 
vary based on the tundra vegetation types (Stow et al. 1993; Sturtevant 
et al. 2013; Mikola et al. 2018). Thus, separate Mask R-CNN models are 
trained for different tundra types.

The main goal of this study is to explore the potential of augmenta-
tion methods on top of a state-of-the-art DLCNN method (Mask R-CNN) 
to characterize the tundra IWP landscape as well as to assess the change 
in the model performance when trained with separate tundra types. We 
conducted a multi-step quantitative assessment to assess the precision, 
recall, F1 score, and overall accuracy of the prediction results from 
each of the augmentation scenarios.

Methods
Study Area
We extracted a total of 696 image tiles of varying dimensions (such 
as 292 × 292, 345 × 345, 507 × 507, and 199 × 199 pixels) out of 
seven satellite imagery scenes from the Norths Slope of Alaska, Prince 
Patrick Island, Banks Island, Inuvik in Canada, and Nizhnekolymskiy 
Ulus in Russia (Figure 1). These areas are covered mostly by tussock 
and non–tussock sedge tundra, sedge/grass, moss wetland, and other 
types of tundra. We hand annotated a total of 25,509 polygons (15,989 
low-centered and 9520 high-centered polygons) from the satellite im-
age scenes.

We prepared three sets of images out of all annotated patches as the 
training (487 images), test (106 images), and validation (103 images) 
data sets. The training data set was used for training the model, and the 
validation data set was used to check model performance while train-
ing the model. The test data set was used to calculate the performance 
of the trained model.

Model Architecture
Our experimental design was centered on the Mask R-CNN model archi-
tecture (He et al. 2017) (Figure 2). This model is specialized in object 
detection as well as instance segmentation at the same time.

We built the work flow based on an open-source package, built 
on Keras and TensorFlow developed by the Mask R-CNN team, that is 
available on Github (Waleed Abdulla 2017). The Mask R-CNN model 
consists of a CNN backbone, a region proposal network, and neural 
networks for predicting classes, bounding boxes, and masks (Figure 
2). We  used ResNet-50 (He et al. 2016) pretrained with the ImageNet 
data set as the backbone of the Mask R-CNN network. The final outputs 
of the model consist of the polygons detected inside the bounding 
boxes as well as in the form of masks and the class names (high-
centered or low-centered polygons) corresponding to each of those 
detected polygons.

Augmentation Methods
Image augmentation is a process that modifies training images in a 
variety of ways and acts like additional training images to the model. 
Image augmentation, thus, can boost the performance of DL models 
by introducing additional training data. In the Mask R-CNN model, it 
is possible to implement augmentation methods. Table 1 exhibits the 
augmentation methods that we used in our study.

Some augmentation methods (e.g., flipping) do not change the 
spectral distribution of the input images, whereas other methods (e.g., 
Gaussian noise) change the spectral distribution of the input images. 
Also, all the augmentation methods do not essentially improve the 
model performance, as we will see in the “Results” section.

Other than the single augmented methods, we have implemented 
combined augmented methods. For example, we have combined the 
salt and pepper noise and hue augmentation, saturation augmentation, 
and hue-saturation augmentation methods into a single pipeline and 
named it spectral augmentation to get the benefits of all the individual 
augmentation methods. We also used a sequential combination of 
the salt and pepper noise augmentation and the FlipLR augmentation 
method. The last augmentation method, named top 7, includes seven 
augmentation methods that appeared at the top when ranked by their 
performance. The performance assessment process is discussed in the 
section “Accuracy Assessment.” Figure 3 lists some of the sample im-
ages, showing the effects of augmentation methods with respect to the 
original image.

Figure 1. Geographical distribution of study sites: (A) 
Nizhnekolymskiy Ulus, Russia. (B) Barrow, Alaska, USA. (C) 
Atqasuk, Alaska, USA. (D) Prudhoe Bay, Alaska, USA. € Inuvik, 
Canada. (F) Banks Island, Canada. (G) Prince Patrick Island, Canada.

Figure 2. Simplified block diagram of the Mask R-CNN model.
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Model Dependency
Different tundra vegetation types exhibit distinct spectral, spatial, 
textural characteristics, which in turn decide the semantics of overlying 
IWPs (Liu et al. 2017). Landscape complexity translates to the image 
complexity, affecting DL model performances. Our idea was to imple-
ment separate models for separate tundra types and to study the model 
performance. To achieve this, we selected the best augmentation meth-
ods based on their performance and then trained separate models with 
separate training data sets, each of which will contain only one type 
of tundra. When the distribution of tundra types in our annotated data 
is compared to the entire Arctic, we see that our data have different 
distributions than the original Arctic (Figure 4). However, three of the 
major tundra types cover more than 70% of our sampled data set. Thus, 
we have prepared four tundra types named non–tussock sedge (G3) , 
tussock sedge (G4), sedge/grass (W1), and other tundra types (Others).

Model Training
We used transfer learning approach to retrain the Mask R-CNN model. 
While doing so, we have taken the ResNet-50 as the CNN backbone 
of the model. The model was initially trained with the ImageNet data 
set. The training process was completed in a local machine with an 
Intel Core i9 CPU with NVIDIA GeForce RTX 2070 SUPER with 8 GB of 
GPU memory. The training time was not measured, as multiple training 
processes were run on the local machine at the same time, and based 
on the GPU load, the training time was varied.

After deciding the augmentation methods and the tundra types, 
we trained the Mask R-CNN model with minibatches (we changed the 
step size and batch size based on the memory available in the GPU), 

Table 1. Augmentation methods used in this study.
Augmentation 
Type

Augmentation 
Methods Description

Color space 
transformation

Hue Multiplies the hue of images by 
random values 

Saturation Multiplies the saturation of images 
by random values 

Hue saturation Multiplies the hue and saturation of 
images by random values 

Invert Subtracts all pixel values from 255

Geometric 
transformation

Crop Generates smaller subimages from 
given full-sized input images

Flip left to right 
(FlipLR)

Flips the image horizontally

Flip up and down 
(FlipUD)

Flips the image vertically

Flip left to right and up 
and down (FlipLRUD)

Combination of FlipLR and FlipUD

Rotation (x) Apply affine rotation of x degrees on 
the y-axis to input data

Noise injection Gaussian noise Adds noise sampled from Gaussian 
distributions

Salt and pepper noise Adds salt and pepper noise (noisy 
white-ish and black-ish pixels) to 
rectangular areas within the image

Mixed Salt and pepper and 
FlipLR

A combination of salt and pepper 
noise and FlipLR method

Spectral A sequential combination of salt and 
pepper noise, hue, saturation, and 
hue-saturation augmentation methods

Top 7 augmentations A sequential combination of the top 7 
augmentation methods based on their 
mean average precision score on the 
test data set (Figure 7d),  including 
FlipLR, FlipUD, FlipLRUD, hue 
saturation, hue, saturation, and salt 
and pepper noise.

Figure 3. Zoomed-in views of an example original image and 
corresponding augmented images. (a) Original image. (b) Crop. (c) 
FlipLRUD (flip left to right and up and down). (d) FlipLR flip left 
to right). (e) FlipUD (flip up and down). (f) Gaussian noise. (g) Hue 
saturation. (h) Hue. (i) Saturation. (j) Invert. (k) Rotation (30). (l) 
Rotation (60). (m) Rotation (120). (n) Rotation (150). (o) Spectral. 
(p) Salt and pepper noise. (q) Salt and pepper and FlipLR. (r) Top 7 
augmentations.
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learning rate of 0.001, learning momentum of 0.9, and weight decay of 
0.0001. We had a total of 487 training image tiles (11,151 low-centered 
polygons and 6404 high-centered polygons), 103 validation image 
tiles (2108 low-centered polygons and 1584 high-centered polygons), 
and 106 test image tiles (2108 low-centered polygons and 1584 high-
centered polygons).

To optimize the model, we calculated different losses, such as (1) 
L1 loss (this defines box regression on object detection systems, which 
is less sensitive to outliers than other regression loss), (2) Mask R-CNN 
bounding box loss (this loss indicates the difference between predicted 
bounding box correction and true bounding box), (3) Mask R-CNN 
classifier loss (this loss estimates the difference of class labels between 
prediction and ground truth), (4) mask binary cross-entropy loss (this 
loss measures the performance of a classification model by observ-
ing predicted class and actual class), (5) RPN bounding box loss (this 
loss identifies the regression loss of bounding boxes only when there 
is object), and (6) RPN anchor classifier loss (this loss indicates the 
difference between the predicted RPN and actual closest ground-truth 
box to the anchor box). The total loss consists of the summation of all 
these loss values. We prepared the training and validation loss graphs 
for each of the augmentation methods (Figure 5, see next page) and for 
each of the tundra types (Figure 6). Based on these graphs, we have se-
lected the best models for each of the augmentation methods or tundra 
types. In Figure 5, all the models converge at a point, but in Figure 6, 
the G3 tundra type seems to converge when trained for 200 epochs.

Accuracy Assessment
We conducted a multistep accuracy assessment for the outputs. The 
outputs are in the form of class names and binary masks. We calcu-
lated the IoU for each of the polygons in the outputs that matched with 
the polygon classes in the test data set. We set a threshold of the IoU 
values as 0.5 and considered the polygons above this threshold as cor-
rectly classified.

We calculated precision, recall, and F1 score for each of the classes 
and for each of the images based on Equations 1–3:
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 We then calculated the average precision, recall, and F1 score for 
low-centered and high-centered polygons. Finally, we calculated mean 
average precision and overall accuracy for each of the models based on 
Equations 4 and 5. Here, N is the number of total classes:
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Results and Discussion
Models with Different Augmentation Methods
After the model training step was completed, we calculated assessment 
values for each of the models (Figure 7). Some augmentation methods 
outperformed the model without any augmentation. However, some 
augmentation methods did not perform well, as expected. Choosing the 
best seven methods, we trained another model named the top 7 model 
and then calculated the assessment values for that model. Figure 7 
shows that the top 7 model outperformed the individual models with a 
79.6% mAP and 79.3% overall accuracy.

The rotation augmentation methods and the crop method did not 
perform well compared to other augmentation methods. When the im-
ages are cropped, the corners of the images are filled with zero values 
to match the input image size, and thus the image distribution is very 
much changed. This could be a reason why rotation methods did not 
improve the performance. Figure 8 depicts sample outputs from differ-
ent augmentation methods. Detected polygons are marked in different 
colors. As we observed in the accuracy plots, certain augmentation 
methods outperformed in detecting the polygon boundaries. 

Among the single augmentation methods, the FlipLR method per-
formed the best; this method does not change the distribution of the in-
put images. However, the salt and pepper noise method also performed 
well. Salt and pepper noise adds some black and white pixels randomly 
in the data. The amount of these pixels is not enough to change the 
distribution widely but is able to mimic digital noise in the image 
and makes the model robust against noise. As seen on the probability 
density function and the cumulative distribution function plots (Figure 
9), the contributions of the salt and pepper noise in the higher and the 
lower ends of the possible pixel values are evident.

Models with Separate Tundra Types
We used our trained models on different tundra types and predicted 
for different tundra types. Table 2 shows the mean average precision 
for models trained on and predicted for different tundra types. These 
models performed better when trained and tested on the same tundra 
types. However, for the model trained on non–tussock sedge (G3) actu-
ally performed better on the sedge/grass (W1) tundra type. The reason 

Figure 6. Loss plots for different tundra types: (a) Non–tussock 
sedge or G3. (b) Tussock sedge or G4. (c) Sedge/grass or W1. (d) 
Other tundra types.

Figure 4. Percent distribution of tundra types, such as  tussock 
sedge (G4), non–tussock sedge (G3), sedge/grass (W1), and other 
tundra types (Others) on the ground and in the training data. 
Percent distribution of tundra types on the ground was based on the 
Circumpolar Arctic Vegetation Map (Raynolds et al. 2019).
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Figure 5. Loss and accuracy plots for different augmentation methods. 
(a) No augmentation. (b) Crop. (c) FlipLRUD (flip left to right and 
up and down). (d) FlipLR (flip left to right). (e) FlipUD (flip up and 
down). (f) Gaussian noise. (g) Hue saturation. (h) Hue. (i) Saturation. 
(j) Invert. (k) Rotation (30). (l) Rotation (60). (m) Rotation (120). (n) 
Rotation (150). (o) Spectral. (p) salt and pepper noise. (q) Salt and 
pepper and FlipLR. (r) Top 7 augmentations.
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Figure 7. Performance analysis of augmentation methods. (a) 
Precision values for low-centered polygons (LCP) and high-centered 
polygons (HCP). (b) Recall values for LCP and HCP. (c) F1 score 
for LCP and HCP. (d) Mean average precision. (e) Accuracy. FlipLR 
= flip left to right; FlipUD = flip up and down; FlipLRUD = flip left 
to right and up and down).

Figure 8. Sample outputs with different augmentation methods. (a) 
No augmentation. (b) Crop. (c) FlipLRUD (flip left to right and up 
and down). (d) FlipLR (flip left to right). (e) FlipUD (flip up and 
down). (f) Gaussian noise. (g) Hue saturation. (h) Hue. (i) Saturation. 
(j) Invert. (k) Rotation (30). (l) Rotation (60). (m) Rotation (120). (n) 
Rotation (150). (o) Spectral. (p) Salt and pepper noise. (q) Salt and 
pepper and FlipLR. (r) Top 7 augmentations.
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could be the similarity between these two types and the inadequate 
numbers of polygons of these tundra types.

Table 2. Mean average precision values for models trained on different 
tundra types: non–tussock sedge (G3), tussock sedge (G4), other 
tundra types, and sedge/grass (W1).

Mean Average 
Precision G3 G4 Other Tundra Types W1 

G3 0.58 0.32 0.47 0.57

G4 0.08 0.79 0.18 0.05

Other tundra types 0.35 0.69 0.62 0.22

W1 0.75 0.35 0.54 0.8

We also predicted the overall accuracy values for the models 
trained and tested with different tundra types (Table 3). We observed 
that the models trained and tested on the same tundra types performed 
better. However, exceptions were found. For example, the model 
trained with the G3 tundra type performed the best with the W1 tundra 
type, and the model trained with the G4 tundra type performed the 
best with other tundra types. This calls for further analysis to better 
understand the underlying reasons linking the tundra types and model 
performances.

Table 3. Overall accuracy values for models trained on different tundra 
types: non–tussock sedge (G3), tussock sedge (G4), other tundra types, 
and sedge/grass (W1).

Overall Accuracy G3 G4 Other Tundra Types W1

G3 0.66 0.13 0.13 0.62

G4 0.08 0.66 0.66 0.05

Other tundra types 0.35 0.79 0.79 0.22

W1 0.75 0.36 0.36 0.8

Conclusion
Mapping IWPs from large satellite imagery requires a huge amount of 
computational resources as well as large volume of annotated images. 
We implemented the Mask R-CNN model for segmentation and clas-
sification of IWPs from commercially available satellite imagery. We 
have improved the model performance and found promising results 
by applying augmentation methods on top of the regular Mask R-CNN 
model. We explored an array of augmentation methods in the training 
process. Our results suggested that not all augmentation methods stand 
as favorable for improving prediction performance. We also trained 
separate Mask R-CNN models for separate tundra types. The lack of 
annotated data seems to be visible in the model performance when 
trained with separate tundra types. Our future research will further 
investigate the impact of augmentations methods on permafrost feature 
modeling efforts.
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An Evaluation of Pan-Sharpening Methods for 
SuperView-1 Satellite Imagery

Lei Zhang, Bowen Wen, Ming Zhang, Qiongqiong Lan, and Qian Wang

Abstract
At present, little research focuses on the application of pan-sharpening 
methods to SuperView-1 satellite imagery. There is a lack of suit-
ability assessment for existing pan-sharpening methods applied to 
SuperView-1 images. This study proposes an evaluation method that 
integrates visual evaluation, spectral analysis of typical objects, and 
quantitative indicators to evaluate the advantages of different pan-
sharpening methods in different scenes of SuperView-1 imagery. Four 
scenes (urban areas, farmland, sparse vegetation, mixed surfaces) are 
selected to evaluate eight typical pan-sharpening methods (Brovey, 
principal component analysis (PCA), Gram-Schmidt (GS), band-
dependent spatial-detail (BDSD), high-pass filtering (HPF), smooth-
ing filter-based intensity modulation (SFIM), modulation transfer 
function-generalized Laplacian pyramid (MTF-GLP), MTF-GLP-high 
pass modulation (MTF-GLP-HPM). The results show that the suitabil-
ity of each pan-sharpening method is different in various scenes. 
PCA, Brovey, and GS distort the spectral information greatly, and the 
stability of the pan-sharpening results in different scenes which are 
poor. BDSD has strong stability and can better balance the relation-
ship between spectral distortion and spatial distortion in different 
scenes. The multi-resolution analysis method has better applicabil-
ity and stability for SuperView-1 imagery, among which MTF-GLP 
and MTF-GLP-HPM perform better in the pan-sharpening results. 
This study provides a reference for the selection of pan-sharpening 
methods for SuperView-1 imagery in different application fields.

Introduction
The rapid development of optical sensing technology has brought 
abundant remote sensing data with increasing resolution. Due to the 
constraint between spatial resolution and spectral resolution, the spatial 
resolution of multispectral images (MS) in satellite data is lower than 
that of panchromatic images (PAN). Pan-sharpening technology can 
fuse multispectral and panchromatic images in the same scene to 
generate high-resolution multispectral images. The fused image not 
only retains rich spectral information, but also highlights more spatial 
details. Vivone et al. (2021) analyzed in detail the latest develop-
ments in MS pan-sharpening (Vivone et al. 2021). Javan et al. (2021) 
reviewed 41 pan-sharpening methods and applied them to high-resolu-
tion images for testing and comparison (Javan et al. 2021). Meng et al. 
(2019) provided a comprehensive review of pan-sharpening methods, 
and evaluated existing methods based on meta-analysis (Meng et al. 
2019). Vivone et al. (2015) described and extensively compared some 
of the most advanced pan-sharpening methods (Vivone et al. 2015). 

Ghassemian (2016) reviewed pixel-level pan-sharpening methods and 
discussed the assessment of fused results (Ghassemian 2016). Pan-
sharpening methods realize the complementary advantages of different 
imagery, satisfy the ever-evolving application requirements, and play 
an important role in application fields such as image recognition and 
classification (Yuhendra et al. 2011).

Currently, pan-sharpening methods can be classified into three 
categories: component substitution (CS), multi-resolution analysis 
(MRA), and model-based methods (Vivone et al. 2021). The CS meth-
ods extract the component that determines the spatial resolution of the 
multispectral image and improve the resolution of the multispectral 
image by replacing this component with the panchromatic image. The 
classic CS methods include Brovey (Dong et al. 2021; Mandhare et al. 
2013; Sarp 2014), Principal Component Analysis (PCA) (Ghadjati et 
al. 2019; Tambe et al. 2021; Wang et al. 2016), Gram-Schmidt (GS) 
(Candra 2013; Tabib Mahmoudi and Karami 2020; Yilmaz et al. 2020), 
Band-Dependent Spatial-Detail (BDSD) (Imani 2018; Vivone 2019; 
Zhong et al. 2017), etc. The CS methods are easy to implement, but 
the fusion results have the problem of spectral distortion. Wang et al. 
(2014) used the particle swarm optimization model to propose a new 
pan-sharpening method based on adaptive component substitution 
(Wang et al. 2014). Li et al. (2020) improved the component substitu-
tion pan-sharpening method by refining the spatial detail (Li et al. 
2020). The MRA methods perform image transformation on the multi-
source images, extract the spatial detail from the panchromatic image, 
and add it to the multispectral image to obtain the fused image. The 
classic MRA methods include High-Pass Filtering (HPF) (Gangkofner et 
al. 2007; Metwalli et al. 2010; Pushparaj and Hedge 2017), Smoothing 
Filter-Based Intensity Modulation (SFIM) (Alcaras et al. 2021; Liu 
2000), modulation transfer function -generalized Laplacian pyramid 
(MTF-GLP) (Aiazzi et al. 2006), MTF-GLP with high pass modulation 
(MTF-GLP-HPM) (Lee and Lee 2009), etc. The MRA methods can better 
control the spectral distortion. The model-based methods assume that 
the low-resolution multispectral image is obtained from high-resolu-
tion multispectral image through down-sampling or other operations. 
They establish the relationship model between high-resolution multi-
spectral image and low-resolution multispectral image and panchro-
matic image, express the model with energy functional, and then obtain 
the fused image by optimizing the model. Wang et al. (2019) proposed 
a regularized model-based pan-sharpening method to reduce the impact 
of local dissimilarities (Wang et al. 2019). Guo et al. (2020) developed 
a new model-based pan-sharpening method based on Bayesian theory 
(Guo et al. 2020). The model-based methods have high spectral fidel-
ity, but their computational complexity leads to unsatisfactory time 
efficiency.

Most scholars used quantitative indicators to evaluate the fusion 
results of pan-sharpening methods. Commonly used quantitative 
indicators include Spectral Angle Mapper (SAM) (Alparone et al. 2008; 
Pandit and Bhiwani 2015), Erreur Relative Globale Adimensionnelle 
de Synthese (ERGAS) (Alparone et al. 2008; Pandit and Bhiwani 2015), 
Spatial Correlation Coefficient (SCC) (Pushparaj and Hegde 2017), 
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average gradient (AG) (Haddadpour et al. 2017), Quality with No 
Reference (QNR) (Alparone et al. 2008; Pandit and Bhiwani 2015), 
etc. However, the existing evaluation methods ignore the importance 
of typical objects recognition in different scenes of satellite images. 
Due to different spectral and spatial characteristics of objects, the 
performances of the same pan-sharpening method in different scenes 
are different. Thus it is necessary to analyze the applicability of the 
pan-sharpening method for various scenes in specific satellite images. 
This study proposes an evaluation method that integrates visual evalu-
ation, spectral analysis of typical objects, and quantitative indicators to 
evaluate the advantages of different pan-sharpening methods in differ-
ent scenes of satellite imagery.

SuperView-1 satellite launched in 2016 is currently the commercial 
remote sensing satellite with the highest resolution in China (Liu et al. 
2020). It provides imaging products with 0.5 m panchromatic and 2 
m multispectral bands. The imagery shows fine details of the ground 
objects, which is of great significance for applications in surveying and 
mapping, natural resources, environmental monitoring, etc. However, 
little research has studied the applicability of the pan-sharpening meth-
ods for this satellite imagery. Using SuperView-1 imagery as the data 
source, this study analyzes and evaluates the performances of eight 
typical pan-sharpening methods in different scenes of the SuperView-1 
images. The purpose of this paper is to explore the applicability dif-
ferences of typical fusion methods in different scenes of SuperView-1 
images, and to provide a scientific reference for the remote sensing 
application of SuperView-1 data.

Methodology
Fusion Methods
This paper selects the classical CS methods of Brovey, PCA, GS, BDSD, 
and the MRA methods of HPF, SFIM, MTF-GLP, and MTF-GLP-HPM for 
comparative analysis. Model-based pan-sharpening methods are not 
involved in this study.

The Brovey method treats multispectral image as chrominance 
components, and panchromatic image as luminance components. After 
the two images are normalized, the fused image is obtained through 
arithmetic operation.

PCA performs forward PCA on the multispectral image to obtain 
several principal components. The panchromatic image undergoes 
histogram equalization and replaces the first principal component. The 

inverse PCA is applied to all components to obtain the fused image 
(Naidu and Raol 2008).

Gram–Schmidt orthogonalization transformation is applied on the 
multispectral image and a panchromatic band that is simulated from 
multispectral image. Here, the simulated band is regarded as the first 
band. Then the panchromatic image replaces the first Gram–Schmidt 
band. The inverse Gram–Schmidt transform is applied to obtain the 
fused image (Karathanassi et al. 2007).

BDSD assumes that there is a linear relationship between the various 
bands of the multispectral image and the panchromatic image. BDSD 
uses the modulation transfer function (MTF) to perform low-pass filter-
ing on bands to solve the coefficient matrix. Based on the assumption 
of coefficient invariance, the relationship coefficient is applied to the 
original resolution image and the fused image (Garzelli et al. 2007; 
Vivone 2019).

HPF first obtains the spatial information of the panchromatic image 
through a high-pass filter operator, and then superimposes the spatial 
information on the multispectral image to achieve the fused image.

SFIM matches the panchromatic image with each band of the 
multispectral image. Mean filtering is applied to the matched panchro-
matic image, and then ratio operation is performed on the filtered and 
unfiltered image to obtain the spatial information of the image. Finally, 
the spatial information is injected into the multispectral image by the 
multiplication model to obtain the fused image.

MTF-GLP first matches the bands of panchromatic and multispectral 
images, determines the low-pass filter according to the MTF, and builds 
the Generalized Laplacian Pyramid (GLP) to extract high frequency 
information of panchromatic image. Finally, the high frequency infor-
mation is directly added to the multispectral image to obtain the fused 
image. Based on the MTF-GLP method, MTF-GLP-HPM injects spatial 
information into the multispectral image by multiplicative injection 
model to obtain the fused image. The comparison of these eight meth-
ods is shown in Table 1.

Evaluation Methods
This study proposes an evaluation method that includes three aspects: 
visual evaluation, spectral analysis of typical objects, and quantitative 
indicators.

Visual Evaluation
Since image quality cannot be separated from the intuitive experi-
ence of the human visual system, visual evaluation can quickly and 

Table 1. The comparison of eight pan-sharpening methods.
Fusion Methods Advantages Disadvantages Application

Brovey Simple and efficient for fast interactive 
processing (Liu 2000).

Spectral distortion is uncontrolled and hard 
to quantify (Liu 2000).

urban and suburban area

Principal component analysis (PCA) Simple to operate, merge all the bands at 
the same time (Chavez et al. 1991).

Rely on the spectral overlap of panchromatic 
and multispectral images, which is prone to 
spectral distortion (Aiazzi et al. 2006).

urban and suburban area, 
farmland area

Gram-Schmidt (GS) Maintain the spectral information of the 
original multispectral image, no limitation 
on the number of bands.

Performance degradation when the number 
of bands increases (Vivone et al. 2015).

urban and suburban area

Band-dependent spatial-detail (BDSD) Optimal at full scale, minimizes the squared 
error between the multispectral image and 
the fusion result (Garzelli et al. 2007).

Typically show a higher spectral distortion 
than the MTF-based method (Vivone et al. 
2015).

urban and suburban area

High-pass filtering (HPF) Maintain the spectral characteristics 
of the multispectral image, simple and 
computationally small (Chavez et al. 1991).

Ringing effect caused by the spatial filter 
at high contrast boundaries (Chavez et al. 
1991).

farmland area, urban area

Smoothing filter-based intensity 
modulation (SFIM) 

Retain the spectral properties and contrast 
of multispectral image (Liu 2000).

Sensitive to image co-registration accuracy 
(Liu 2000).

mountainous area, urban 
area

Modulation transfer function-generalized 
Laplacian pyramid (MTF-GLP) 

Yield sharper and cleaner geometrical 
structures (Aiazzi et al. 2006).

Not suitable for critically subsampled 
multispectral images (Aiazzi et al. 2006).

urban and suburban area

MTF-GLP-high pass modulation 
(MTF-GLP-HPM)

Retain spatial details and use a 
postprocessing technique to correct color 
distortion (Lee and Lee 2009).

The filtering phase significantly slows down 
the algorithms (Vivone et al. 2015).

urban and suburban area
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effectively evaluate the clarity, texture details, and color changes of the 
fused image. Visual evaluation is based on the sensitivity of the human 
eye to the visual perception of the image and the professional knowl-
edge of the evaluator to make a judgment on the quality of the image. 
In this paper, the criteria for visual evaluation are shown in Table 2.

This study selects four different scenes (urban areas, farmland, 
sparse vegetation, mixed surfaces) in multispectral images for visual 
assessment of fusion results. The urban areas scene is mostly regular-
shaped buildings, as well as a small part of rivers and roads. The 
farmland scene contains lots of neatly arranged farmland and a few 
buildings. The sparse vegetation scene is a vegetation area with fewer 
types of land covers. Mixed surfaces scene includes buildings, roads, 
vegetation, and water bodies, and their shapes are not uniform and 
relatively irregular.

Table 2. The criteria for visual evaluation.

Content Explanation
Evaluation 
Standard

Quality 
Scale

Color 
characteristics

The difference between 
the color of the fused 
image and the color of 
the original multispectral 
image

Basically no color 
change in the image

Good

Slight difference  
in image color

Fair

Severely distorted 
image color

Bad

Edge feature The sharpness of object 
contours and edges in the 
fused image

Clear contours  
and edges

Good

Slight double shadow 
phenomenon

Fair

Severe false contour 
phenomenon

Bad

Spectral Analysis of Typical Objects
Different scenes contain various objects with different spectral charac-
teristics. The degree of spectral distortion caused by the pan-sharpen-
ing method for different objects is also different. Specific applications 
such as target recognition and classification often rely on the accurate 
spectral information of the objects, which requires the fused image 
to maintain the spectral characteristics of the original multispectral 
image as much as possible. Therefore, the spectral distortion of typical 
objects in different scenes in the fused image can be used to evaluate 
the fusion result.

In this study, four types of objects are selected for spectral analysis 
of typical objects, including vegetation, buildings, water bodies, and 
roads. 30 pure pixels are selected for each object, and the average 
value of pure pixels is used as the spectral feature of the object. The 
spectral distortion of the object is defined as root-mean-square error 
(RMSE) between the fused image and the original multispectral image.

Quantitative Indicators
This study selects five quantitative indicators for the assessment of fu-
sion results, including SAM, ERGAS, SCC, AG, and QNR.

SAM calculates the angle of the corresponding pixels between the 
fused image and the reference image. The smaller the value, the lower 
the spectral distortion rate and the higher the quality of the fused image.
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where, Pf represents the resolution of the panchromatic image, Ps 
represents the resolution of the multispectral image, B represents the 
number of multispectral image bands, MEANi represents the mean 
value of the ith band, and RMSEi represents the root-mean-square error 
of the ith band between the fused image and the reference image.

SCC is determined by the correlation coefficient between the refer-
ence MS image and the fused image. Specifically, the Laplacian filter is 
used to perform high-pass filtering on the reference MS image, and then 
the correlation coefficient between high frequencies is calculated. The 
higher the value, the higher the degree of correlation, that is, the more 
spatial information is added to the fused image.

AG reflects the sharpening effect and spatial details of the image; 
that is, the ability of the image to express the contrast of small details. 
The larger the value, the clearer the image.
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where, M and N are the length and width of the image, and ΔxF(x, y) 
and ΔyF(x, y) are the difference of the image F(x, y) along the x and  y 
directions, respectively.

QNR is a nonreference image evaluation index that directly calcu-
lates the covariance between different bands. It is used to describe the 
difference in image similarity, mean and contrast. The higher the QNR 
index, the better the quality of the fused product.

The application of quantitative indicators is shown in Table 3.

Table 3. The application of quantitative indicators.
Quantitative Indicators Application

Spectral Angle Mapper (SAM) Measure the spectral distortion

Erreur Relative Globale 
Adimensionnelle de Synthese (ERGAS)

Represent the overall quality

Spatial Correlation Coefficient (SCC) Represent the degree of correlation

average gradient (AG) Reflect the clarity of the image

Quality with No Reference (QNR) Account for both spectral distortion 
and spatial distortion

Experiments and Results
Data Sets
The SuperView-1 satellite is a high-resolution commercial remote 
sensing satellite independently developed by China. The SuperView-1 
01/02 satellite was successfully launched at the Taiyuan Satellite 
Launch Center on 28 December 2016. The SuperView-1 03/04 satellite 
was successfully launched on 9 January 2018. The four-star network of 
SuperView-1 can realize one-day revisit for any point on Earth, mark-
ing the first step of China’s fully autonomous commercial operation 
of remote sensing satellite. The SuperView-1 has a panchromatic band 
with a spatial resolution of 0.5 m, four multi-spectral bands of blue, 
green, red, and near-infrared at 2.0 m spatial resolution, with orbital 
altitude of 530 km and width of 12 km. The experimental data sets 
come from the SuperView-1 satellite. The size of the multispectral im-
age (MS) is 512 pixels × 512 pixels, and the PAN is 2048 pixels × 2048 
pixels. This study selected multispectral images of four different scenes 
(urban areas, farmland, sparse vegetation, mixed surfaces), as shown in 
Figure 1. Among them, the sparse vegetation is a false-color compos-
ite image with fewer types of land covers. Red represents vegetation 
and the background is mountainous. In order to better show the scene 
details, the white box area is selected to display the fusion results. 
This study selects SuperView-1 images with appropriate temporal 
information according to the image quality of the four scenes. Since 
image quality is one of the important factors affecting pan-sharpening, 
the temporal information of each selected image is determined by the 
image quality of the scene. The temporal information and geographic 
location of each scene in this paper is shown in the Table 4.
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Figure 1. Multispectral images of SuperView-1.

Table 4. The temporal information and geographic location of four scenes.
Scenes Satellite Temporal Information Geographic Location

Urban Areas SuperView-1 02 2019.5.03 Fengxian District, Shanghai

Farmland SuperView-1 01 2019.7.30 Pudong New Area, Shanghai

Sparse Vegetation SuperView-1 02 2017.6.27 Xiwuzhumuqin Banner, Xilingol League, Inner Mongolia Autonomous Region

Mixed Surfaces SuperView-1 02 2019.8.16 Ebian Yi Autonomous County, Leshan, Sichuan

Figure 2. Comparison of fusion results in urban areas. MS = multispectral images; PAN = panchromatic images; PCA = principal component 
analysis; GS = Gram-Schmidt; BDSD = band-dependent spatial-detail; HPF = high-pass filtering; SFIM = smoothing filter-based intensity 
modulation; MTF-GLP = modulation transfer function-generalized Laplacian pyramid; MTF-GLP-HPM: MTF-GLP-high pass modulation.

Figure 3. Comparison of fusion results in farmland. MS = multispectral images; PAN = panchromatic images; PCA = principal component 
analysis; GS = Gram-Schmidt; BDSD = band-dependent spatial-detail; HPF = high-pass filtering; SFIM = smoothing filter-based intensity 
modulation; MTF-GLP = modulation transfer function-generalized Laplacian pyramid; MTF-GLP-HPM: MTF-GLP-high pass modulation.
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Visual Evaluation
Figure 2 shows the comparison of MS, PAN, and fused images obtained 
by eight fusion algorithms in urban areas. Figure 3 shows the compari-
son of MS, PAN, and fused images obtained by eight fusion algorithms 
in farmland. Figure 4 shows the comparison of MS, PAN, and fused im-
ages obtained by eight fusion algorithms in sparse vegetation. Figure 5 
shows the comparison of MS, PAN, and fused images obtained by eight 
fusion algorithms in mixed surfaces.

It can be seen that the fused images based on Brovey and GS greatly 
improve the spatial quality of MS, and can clearly retain the edge 
details of the ground objects and the high-frequency information of 
the images. However, the fused images based on Brovey have spectral 
distortion, which is mainly manifested as blueish green farmland and 
purplish sparse vegetation. The PCA-based fusion images have more 
spectral distortion and blurry edges, and the sharpening effect is not 
obvious. The fused images based on BDSD have spectral fidelity equiv-
alent to that of MRA algorithms, but they are not as good as Brovey and 
GS for the enhancement of spatial quality because the fused images 
are slightly blurred. Fused images based on HPF, SFIM, MTF-GLP, and 
MTF-GLP-HPM have roughly the same performance in maintaining the 
spectral information of ground objects, and the spectral distortion 
is relatively small. In urban areas, MTF-GLP and MTF-GLP-HPM can 

enhance spatial quality of images better than HPF and SFIM algorithms. 
In mixed surfaces, the fusion results based on HPF and MTF-GLP are bet-
ter, and green noise appears on the edges of the ground objects in the 
fused images based on SFIM and MTF-GLP-HPM.

Spectral Distortion of Typical Objects
A SuperView-1 image has a high spatial resolution and a large number 
of pure pixels, which is suitable for spectral analysis of typical objects 
in different scenes. Figure 6 shows the degree of spectral distortion of 
different objects. The colored solid dots represent the lowest degree of 
spectral distortion in each scene.

PCA algorithm basically causes the largest spectral distortion in 
all scenes, and the distortion mainly comes from the near-infrared 
band, while the visible light band has a smaller degree of distortion. 
Therefore, the color effect of the fused image based on PCA is visually 
the same as the original multispectral image. However, when compar-
ing the road in the urban area with the road in the mixed surfaces in 
the fused image, it is not difficult to find that the spectral distortion 
caused by PCA in the urban area is much smaller than that in the mixed 
surfaces. The results of Brovey and GS algorithms in different scenes 
are more different. The spectral distortions of other algorithms on the 
buildings in the urban areas and mixed surfaces are increased, while 

Figure 4. Comparison of fusion results in sparse vegetation. MS = multispectral images; PAN = panchromatic images; PCA = principal component 
analysis; GS = Gram-Schmidt; BDSD = band-dependent spatial-detail; HPF = high-pass filtering; SFIM = smoothing filter-based intensity 
modulation; MTF-GLP = modulation transfer function-generalized Laplacian pyramid; MTF-GLP-HPM: MTF-GLP-high pass modulation.

Figure 5. Comparison of fusion results in mixed surfaces. MS = multispectral images; PAN = panchromatic images; PCA = principal component 
analysis; GS = Gram-Schmidt; BDSD = band-dependent spatial-detail; HPF = high-pass filtering; SFIM = smoothing filter-based intensity 
modulation; MTF-GLP = modulation transfer function-generalized Laplacian pyramid; MTF-GLP-HPM: MTF-GLP-high pass modulation.
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the Brovey and GS algorithms appear to be significantly reduced. The 
BDSD algorithm has little change in the spectral distortion of ground 
objects in different scenes, and the spectral distortion is always at an 
intermediate level. Compared with the component substitution meth-
ods, the other four multi-resolution analysis algorithms have a lower 
degree of spectral distortion, which is consistent with the visual evalu-
ation. However, in each scene, HPF and SFIM are slightly better than 
MTF-GLP and MTF-GLP-HPM in maintaining the spectral characteristics 
of typical objects.

Quantitative Evaluation
The SAM and SCC of Brovey and GS in the mixed surfaces have 
improved greatly, but the effects in the other three scenes are not 
outstanding. The BDSD always has the highest QNR index in scenes 
outside of sparse vegetation, indicating that it can find a better balance 
between spectral distortion and spatial distortion.

In the sparse vegetation, due to the lack of high-frequency informa-
tion in the image and the inability of the CS method to enhance the spa-
tial details, the indicators of the MRA algorithm are always better than 
the CS algorithms, and the results of the HPF algorithm are the best.

In most cases, MTF-GLP and MTF-GLP-HPM have better performance 
in SAM, ERGAS, SCC, and AG indicators. While maintaining the original 
image spectral information, they significantly improve the spatial qual-
ity of the fused image.

Conclusions
In this paper, eight pan-sharpening methods are used to conduct fusion 
experiments on SuperView-1 satellite imagery in four different scenes, 
and subjective and objective evaluation methods are used to evaluate 
the fusion results. The main conclusions are as follows:
(1)	 These eight fusion algorithms have different degrees of improve-

ment in the quality of SuperView-1 images, and each has its own 
advantages and disadvantages. Among them, the Brovey and GS 
algorithms can significantly enhance the spatial characteristics and 
clarity of the images, but they damage the spectral information 
of the objects. BDSD algorithm has strong stability and can better 
balance spectral distortion and spatial distortion, but the sharp-
ness of the images is weaker than other algorithms. The four MRA 
algorithms can maintain the spectral information of objects, and 
the MTF-GLP and MTF-GLP-HPM algorithms are generally better than 
HPF and SFIM algorithms.

(2)	 The MRA method has basically the same applicability in different 
scenes and can better retain the spectral information of the image. 
The CS method is sensitive to the composition of objects in the 
scene. Therefore, the MRA methods have better applicability and 
stability for the pan-sharpening of SuperView-1 images, and the 
MTF-GLP and MTF-GLP-HPM algorithms have the best performance.

(3)	 PCA, Brovey, and GS algorithms have different performances in 
different scenes, which are mainly reflected in the different degrees 
of spectral distortion of typical objects. When using a SuperView-1 
image to perform pan-sharpening, the algorithm with the best 

Figure 6. The degree of spectral distortion of different objects. PCA 
= principal component analysis; GS = Gram-Schmidt; BDSD = band-
dependent spatial-detail; HPF = high-pass filtering; SFIM = smoothing 
filter-based intensity modulation; MTF-GLP = modulation transfer 
function-generalized Laplacian pyramid; MTF-GLP-HPM = MTF-GLP-
high pass modulation.

Figure 7. Quantitative evaluation in different scenes. PCA: principal 
component analysis; GS: Gram-Schmidt; BDSD: band-dependent 
spatial-detail; HPF: high-pass filtering; SFIM: smoothing filter-based 
intensity modulation; MTF-GLP: modulation transfer function-
generalized Laplacian pyramid; MTF-GLP-HPM: MTF-GLP-high pass 
modulation.
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suitability for the scene can be selected according to the character-
istics of the scene.
Although this study only focused on the SuperView satellite, the 

results provided in this study could be extended to other satellite with 
similar spatial and spectral characteristics.
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Floating Solar Park Impacts Urban Land Surface 
Temperature Distribution Pattern

Bo Yingjie, Li Guoqing, Zeng Yelong, and Liu Zhe

Abstract
In recent years, the global photovoltaic industry has developed rapidly. 
It is significant for evaluating the impact of large-scale solar parks on 
the environment for the sustainable development of the photovoltaic 
industry. At present, researchers have paid attention to changes in the 
local thermal environment caused by solar parks. As a new type of 
solar park, the influence of floating solar parks on urban land surface 
temperature distribution patterns is still unclear. In this article, we 
(1) take the floating solar parks in Huainan City, China, as the study 
area; (2) calculate the land surface temperature (LST) of the study 
area and its adjacent areas by using Landsat 8 remote sensing data 
and the radiation transfer equation method; and (3) judge the influ-
ence of solar parks on the distribution pattern of LST. On this basis, 
we analyzed the influence range and seasonal differences of floating 
solar parks on LST. Our results revealed that, first, the floating solar 
park has a warming effect in the summer and winter, and the warm-
ing area is concentrated mainly within 200 m of the photovoltaic 
panels’ coverage area. Second, during the construction phase and 
after the completion of the floating solar parks, the average monthly 
LST of the solar panels is generally higher than the water, and the 
average annual temperature increase in the above two stages is 
3.26°C and 4.50°C, respectively. The change of floating solar parks 
on urban LST distribution patterns may impact the local ecosystem. 
In the future, it is necessary to consider the impact of floating solar 
parks on local LST during the construction of floating solar parks.

Introduction
Unlike fossil energy sources, such as coal, oil, and natural gas, solar 
energy has the advantages of cleanness, safety, sustainable regenera-
tion, and convenient access (Parida et al. 2011). The global develop-
ment of photovoltaic power generation has been expected to change 
energy production and consumption based on fossil energy since the 
industrial revolution and effectively alleviate the energy crisis, global 
carbon emissions, and environmental pollution (Kerr 2010; Schmela 
et al. 2016; Forstner et al. 2018; Raturi 2019). In recent years, China’s 
photovoltaic power generation has developed rapidly under the encour-
agement of diversified policies. In 2013 and 2015, China successively 
surpassed Italy and Germany to become the country with the largest 
installed capacity of photovoltaic power generation worldwide and has 
been leading up to now (Li et al. 2016; Li and Liu 2020; Raturi 2020). 
By the end of 2020, the cumulative installed capacity of photovoltaic 
power generation in China reached 253 GW, an increase of 23.5% year 
on year (Wong 2021).

However, the construction of large-scale solar park projects will 
inevitably impact the region’s local land, ecology, and energy cycle 
(Tawalbeh et al. 2021). The impact of large-scale solar parks on the 

environment during construction is similar to that of other industrial 
manufacturing processes. For example, engineering activities, such as 
land leveling and installing solar panels, directly change the original 
soil, vegetation, topography, and land use status. These activities fur-
ther change their original form and even destroy the stable structure of 
the original environmental elements, resulting in land disturbance, veg-
etation destruction, and soil erosion (Li et al. 2017; Choi et al. 2020; 
Tawalbeh et al. 2021; Yue et al. 2021). After the solar parks are built, 
solar panels will absorb short-wave radiation to convert solar energy 
into electric energy and at the same time radiate long-wave radiation 
outward. This will change the energy flow mode of the local surface 
and affect the power generation efficiency of solar panels, local cli-
mate, and energy cycle of the ecosystem (Yang et al. 2015, 2017; Fan 
and Wang 2020; Pimentel Da Silva et al. 2020). Using remote sensing 
to analyze land surface temperature (LST) change can effectively judge 
the influence of large-scale solar parks on the energy cycle (Liou et 
al. 2017; Shao et al. 2019a; Wang et al. 2021). Studies have shown 
that the daily average LST around the solar park is reduced by 0.53°C 
(Zhang and Xu 2020). However, in the desert and Gobi, the cooling ef-
fect of the solar park is more obvious, and the average annual decrease 
of LST can reach 4°C with an influence range of about 100–600 m 
(Chang et al. 2018; Liu et al. 2019; Li and Liu 2020).

In recent years, with the continuous expansion of the scale of the 
photovoltaic industry, the water surface in cities and towns has become 
one of the available areas for building solar parks, which has explored 
a new model for the development of global new energy and cleaner 
production (Sahu et al. 2016). However, there is no effective analysis 
to judge the influence range and variation range of the floating solar 
parks on the local temperature due to the significant difference between 
the underlying surface of the floating solar parks and the solar land 
parks. Because of this, we take the floating solar parks in Huainan City, 
Anhui Province, China, as the research area and use remote sensing 
data to judge the influence of the floating solar parks on the surround-
ing LST. Our research objectives are as follows:
1.	 Based on Google Earth Engine and Landsat 8 remote sensing im-

ages, the radiation transfer equation method constructed LST data 
sets of floating solar parks and their adjacent areas.

2.	 Using LST data sets, we can judge the influence of solar parks on 
the spatial distribution pattern of LST.

3.	 On this basis, the spatial range and warming or cooling range of 
the solar parks on the LST is obtained.

Data and Methods
Study Area
The study area is located in Huainan City, Anhui Province. The climate 
in this area is warm temperate semi-humid monsoon, with high-tem-
perature and rainy summers and cold and dry winters. The annual sun-
shine hours are 2000 hours, and the annual solar radiation is 4,800 MJ/
m2 (1990–2020, data from Bengbu and Lu’an meteorological stations). 
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The sunshine time is long, and the solar energy resources are abundant. 
In recent years, relying on the advantages of resources and policies, the 
local government has built large-scale floating solar parks on the water 
surface in the coal mining subsidence area. The location of the floating 
solar park in this study is shown in Figure 1. It is located on the water 
surface of the coal mining subsidence area and adopts the mode of 

solar power generation on water and aquaculture underwater. The total 
installed capacity is 20 MWp, one of the largest floating solar parks in 
the world at present. The construction of the floating solar park started 
in November 2015 and was officially completed in October 2016. The 
construction period of the floating solar park ranged from November 
2015 to October 2016.

Figure 1. (a) Location of the study area. (b) Part of the Landsat 8 OLI true color image of the study area acquired on 12 January 2021 (the path-
row is 121-37).
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It is generally believed that the influence of solar park on LST is 
within 600 m (Liu et al. 2019; Li and Liu 2020). Therefore, we take the 
floating solar park as the center, and we take the buffer zone of 1 km 
around the solar park as the potential influence area, totaling 25 km2. 
According to the construction phases of the floating solar park and 
comparing them with the historical images of Landsat 8 and Google 
Earth, the typical types of land use are obtained by visual interpreta-
tion. Finally, we retrieve the distributions of the floating solar park, 
water, forests, crops, nudation, and buildings within 25 km2.

Remote Sensing and Climate Data
Landsat 8 remote sensing image data sets (USGS Landsat 8 surface 
reflectance Tier 1, image collection ID, Landsat/lc08/c01/t1_sr) with 
path-row numbers of 121-38 and 121-37 from March 2013 to February 
2019 were obtained on Google Earth Engine. This was done to obtain 
as many cloudless remote sensing images as possible and improve 
the continuity of data in this study. The spatial resolution of the data 
set is 30 m, including five visible light and near-infrared bands, two 
shortwave infrared bands and quality information bands (pixel_qa). A 
total of 292 images were collected in the study area, and their temporal 
distribution is shown in Figure 2.

Figure 2. Temporal distribution of Landsat 8 images.

The monthly air temperature of the Bengbu meteorological station 
and Lu’an meteorological station comes from the monthly surface 
climate data set of the China meteorological data network (http://data.
cma.cn). The locations of the meteorological stations are shown in 
Figure 1.

Calculation of LST
Because standard deviations about the mean bias are significantly 
higher for Landsat 8 band 11 (11.50–12.51 μm) (Cook et al. 2014), 
we chose band 10 (10.60–11.19 μm) and adopted the single-channel 
method proposed to calculate the LST (Jimenez-Munoz and Sobrino 
2003; Jimenez-Munoz et al. 2014). This method is suitable for the 
LST calculation of Landsat data in a long time series. It is also widely 
used in urban land surface environment assessment and human activity 
impact assessment (Eldesoky et al. 2021; Firozjaei et al. 2021; Wang et 
al. 2021). Its calculation formulas are as follows:
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where Ts is the land surface temperature, ε is surface emissivity, and Lsen 
is the radiance at the sensor (W·m−2·sr−1·μm−1). Further, Tsen is the sen-
sor brightness temperature, bγ equals 1324 K, and ψ1, ψ2, and ψ3 are at-
mospheric functions, which can be obtained by the following formula:
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where τ, Lu, and Ld are atmospheric transmittance, upwelling radiance 
(W·m−2·sr−1·μm−1), and downwelling radiance (W·m−2·sr−1·μm−1), 
respectively. These atmospheric profile parameters can be calculated 
at http://atmcorr.gsfc.nasa.gov (Sobrino et al. 2008; Jimenez-Munoz et 
al. 2014). The surface emissivity is calculated by the following:

	

P P

NDVI

ε
ε ε

=

<
≤ <

+ −( )

0 99 0 00

0 97 0 00 0 15

1 0

. ,

. , .NDVI

v v s v 115 0 45

0 985 0 45

≤ ≤










NDVI

NDVI>

.

. , 	

(4)

where the surface emissivity of water is 0.99, εs is 0.97, and εv is 0.985. 
Pv is the vegetation coverage, and its calculation formula is as follows 
(Sobrino et al. 2008; Jimenez-Munoz et al. 2014):
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where NDVIi  is the normalized difference vegetation index of pixels, 
and NDVIs is the NDVI value of bare soil with a value of 0.15. Further, 
NDVIv is the NDVI value of vegetation with a value of 0.45. The cal-
culation formula of NDVI is as follows (Sobrino et al. 2008):
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where ρNIR is the surface reflectance in the near-infrared band and ρR is 
the surface reflectance in the red band.

We use pixel_qa band and methods to filter pixels with clouds and 
get the cloudless LST of all images (Shao et al. 2019b) to reduce the 
influence of the cloud on the calculation results of LST. Then the LST of 
the remote sensing images in each month is averaged, and the monthly 
average LST from March 2013 to February 2019 is obtained. Because 
there are too many clouds in remote sensing images in April 2014, July 
2014, and May 2015, the LST of the above date is not calculated. In ad-
dition, our purpose is to compare the difference of LST in different con-
struction periods of floating solar parks. There is no strict requirement 
on the absolute accuracy of LST calculation. Therefore, the influence of 
the error of the LST algorithm on the results can be ignored basically.

Impact of Climate Change on LST
We constructed the calculation formula of the difference LSTs–a between 
LST and the air temperature in the corresponding month to eliminate the in-
fluence of climate change on LST as much as possible, which is as follows:

	 LSTs–a = LSTi – Tai	 (7)

where LSTi is the LST of the i month and Tai is the air temperature of 
the i month, which is the monthly average value of two meteorological 
stations in Figure 1.

LST Distribution Pattern
We chose summer and winter as the two seasons with the most obvious 
temperature changes for comparative analysis to judge the influence of 
a floating solar park on the LST distribution pattern. Based on formula 
(7), the LSTs–a of the floating solar park construction area and its adja-
cent areas in summer (June–August) and winter (December–February 
of the following year) are extracted. Further, the LSTs–a difference be-
tween the completion and before the construction of the floating solar 
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park is calculated. On this basis, local Moran’s I is used to analyze 
the influence of the solar park on the surrounding area’s LST. Then the 
influence distance of the solar park on LST is judged.

The local Moran’s I that passed the significance test (p ≤ 0.05) has 
four output modes: high-value (HH) clustering; low-value (LL) cluster-
ing; abnormal value (HL), whose high value is surrounded mainly by a 
low value; and abnormal value (LH), whose low value is surrounded 
mainly by a high value (Anselin 1995; Kan et al. 2018; Bartesaghi-Koc 
et al. 2019; Chen et al. 2021). In this study, the HH mode represents a 
spatial agglomeration of LSTs–a with a high value as the center. The LL 
mode represents a spatial agglomeration of LSTs–a with a low value as 
the center. The HL mode represents an abnormal value of LSTs–a with 
a high value surrounded mainly by a low value. Finally, the LH mode 
represents LSTs–a with a low value surrounded mainly by a high value. 
Notably, the LST in the summer before construction and completion is 
the average value of the summer from 2013 to 2014 and 2017 to 2018, 
respectively, to eliminate the deviation of the analysis results caused 
by a single year. Further, the LST in the winter before construction and 
completion is the average value of the winter from 2013 to 2014 and 
2017 to 2018, respectively.

Phases of LST
According to the construction cycle of the floating solar park, the LST 
variation curves of the preconstruction phase (March 2013–October 
2015), construction phase (November 2015–October 2016), and 
completion phase (November 2016–February 2019) are obtained. 

Then ArcGIS 10.2 is used to extract the mean and standard deviation 
of monthly LST and LSTs–a of typical land use types around the floating 
solar park. By comparing the changes of the above indexes, the influ-
ence of different construction phases of the floating solar park on LST 
is analyzed.

Results and Analysis
Range and Seasonal Differences
Figure 3 shows that there is a warming effect of the floating solar 
park on LST in summer. In summer, the “cold island” formed by the 
original water before the construction of the solar park is cut off, and 
a warm area is formed (Figure 3a and 3b). The construction of a float-
ing solar park has increased the LST in its occupied area (Figure 3c), 
the maximum temperature increase of LSTs–a exceeding 7°C and the 
average temperature increase of LSTs–a reaching 4.9°C. The LST in the 
forest decreased, and LSTs–a decreased by 1.1°C on average, forming 
a local low-temperature center. The LST of crops near the edge of the 
floating solar park increased, and the LSTs–a increased by 3°C to 5°C. 
Meanwhile, the LST of crops far away from the warm area of the float-
ing solar park had no obvious changes. Nudation is blocked by forests, 
and its LST has no obvious change. According to local Moran’s I 
(Figure 3d), the LST of the floating solar park conforms to the HH mode 
in the summer, and the warming effect on adjacent areas is concentrat-
ed within 200 m. This is mainly in the waters of the construction area 

Figure 3. The influence of the floating solar park on the spatial distribution of LSTs–a in summer. (a) The spatial distribution of LSTs–a in the 
preconstruction phase in summer. (b) The spatial distribution of LSTs–a in the completion phase in summer. (c) The LSTs–a change range (Figure 
3b minus Figure 3a) in summer. (d) Local Moran’s I of the LSTs–a change range in summer.
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in the north, the crops in the west, and the water edge in the southeast 
adjacent to the floating solar park.

Figure 4c shows that in winter, the construction of a floating solar 
park increases the LST within the solar panels’ area, and the average 
temperature increase of LSTs–a is 3.5°C, smaller than that in summer. 
The cold island area formed by the water before the construction of 
the floating solar park is cut off, and a warm area is formed in the solar 
panels’ area (Figure 4a and 4b). The floating solar park forms a warm 
area with forests and crops. Nudation is blocked by forests, and its LST 
has no obvious change. The local Moran’s I (Figure 4d) shows that the 
warming effect of the floating solar park in the winter is weaker than 
that in the summer and concentrates on the solar panels’ area and the 
waters only within 200 m.

Different Construction Phases of LST
Figure 5 shows that before the construction phase of the floating solar 
park, the LST change curves of the proposed solar panels’ area and 
the waters are consistent, which are 20.2°C and 19.6°C, respectively. 
Further, the monthly average LST is lower than that of other areas. In 
the construction phase and completion phase of the floating solar park, 
the average monthly LST of the area where solar panels are located is 
generally higher than that of water, close to the LST of forests and the 
LST of buildings in some periods.

According to local Moran’s I results, the influence of the floating 
solar park on LST is concentrated mainly within 200 m of the solar pan-
els, and its warming effect on the surrounding typical land use types is 

very weak. We use the LSTs–a variation range to determine the warming 
level of the floating solar park in different construction phases. Figure 
6 shows that before the construction of the floating solar park, the 
difference of LSTs–a between the proposed solar panels and water was 
weak at only 0.06°C. The LSTs–a difference in the construction phase 
increases to 2.77°C. Further, the difference of LSTs–a between solar 
panels and water reached 3.96°C, indicating that the construction of 
the floating solar park had an obvious warming effect on LST.

The LSTs–a in the preconstruction phase is the average value from 
March 2013 to February 2015, the LSTs–a in the construction phase 
is the average value from November 2015 to October 2016, and the 
LSTs–a in the completion phase is the average value from March 2017 to 
February 2019. The shadow is the standard deviation of the LSTs–a.

Discussion and Conclusion
Discussion
Cloud coverage impacted the results. Cloud coverage impacts the 
calculation of LST using Landsat 8 and reduces LST accuracy, poten-
tially leading to deviation in judging the influence of the floating solar 
park on LST. We have also considered using MODIS LST products with a 
higher temporal resolution to analyze the influence of the floating solar 
park on the LST distribution pattern. However, the spatial details of LST 
cannot be displayed, and the influence range of solar park on the LST 
cannot be obtained due to the low spatial resolution (1 km) of MODIS. 

Figure 4. The influence of the floating solar park on the spatial distribution of LSTs–a in winter. (a) The spatial distribution of LSTs–a in the 
preconstruction phase in winter. (b) The spatial distribution of LSTs–a in the completion phase in winter. (c) The LSTs–a change range (Figure 4b 
minus Figure 4a) in winter. (d) Local Moran’s I of the LSTs–a change range in winter.
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Therefore, this article analyzes the influence of the floating solar park 
on the LST by using Landsat 8 data.

The influence range and extent of the solar park on the LST of dif-
ferent land use types are inconsistent (Li et al. 2021). The solar park 
in our study area is located on the water surface, which has a warming 
effect within 200 m of the construction area and its vicinity, but 23 of 
the largest solar land parks in the world show that the daily average 
LST around the solar parks decreases by 0.53°C (Zhang and Xu 2020). 
However, in the solar parks of the desert and Gobi, the average annual 
decrease of LST can reach 4°C (Chang et al. 2018). Therefore, it is 
necessary to make a comparative study on different types of solar parks 
to judge the influence of solar parks on LST. Even for the floating solar 
parks, the influence range and extent of floating solar parks on LST may 
differ due to the difference in water depth, local climate, and distribu-
tion range of solar parks. Therefore, we need to consider the above 
factors in future research.

The combination of actual measurement and unmanned aerial 
vehicle remote sensing is the key way to judge floating solar parks’ 
influence on LST. There are not only seasonal differences but also day 
and night differences in the influence of solar parks on LST distribution 
patterns (Li and Liu 2020). However, it is still impossible to judge the 
influence of floating solar parks on LST at night due to the limited data 
of Aster night remote sensing images and the low spatial resolution 
of MODIS night remote sensing images. While the measured data can 
obtain the change of LST at night, the measured data are only some 
representative "points", making it very difficult to judge the influence 
of floating solar parks on LST as a whole. Therefore, it is a reference 
method to acquire the LST changes around the solar parks by unmanned 
aerial vehicle in different seasons, days and nights, and then combine 
the measured LST data.Figure 6. Changes of LSTs–a in different construction phases of the 

floating solar park.

Figure 5. Monthly LST curve of the floating solar park and typical land use types in different construction phases. The LST change curves of (a) solar 
panels, (b) solar panels and water, (c) solar panels and forests, (d) solar panels and crops, (e) solar panels and nudation, and (f) solar panels and buildings.
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The change of LST distribution pattern may affect the local urban 
ecosystem (Shao et al. 2020). While the results of this study show that 
the floating solar park will not significantly affect the LST outside 200 
m, the coverage of the solar panels will significantly reduce the energy 
obtained by algae through photosynthesis in water, affecting the energy 
cycle of the ecosystem in water. In addition, the increase of LST will 
affect the material and energy flow of the local urban ecosystem and 
produce a series of ecological and environmental effects, such as the 
change of atmospheric environment and urban biological habits. No 
matter whether this effect is positive or negative, there is still a lack of 
further research.

Conclusion
Land take for solar parks has increased all over the world and is 
projected to continue. Despite this, the impacts on the ecosystem such 
as carbon sequestration and feedback to electricity carbon intensity are 
poorly understood in comparison to what is known for wind energy 
and other land use and land cover changes. This article analyzed the 
LST of floating solar parks in different construction phases and seasons. 
Our results showed that the floating solar park has a warming effect on 
the solar panels’ coverage area and their vicinity within 200 m. Further, 
its warming range in summer was greater than that in winter, providing 
a reference for judging the impact of the solar park on the local climate 
and environment. Moreover, the impact was evident in the field despite 
smaller measurement areas.

Given the projected deployment of photovoltaics, increasing land 
use pressures, and growing recognition of the importance of our eco-
systems, there is a critical need for a better understanding of the tem-
perature impacts of solar parks and associated cascading impacts on 
ecosystem function. This knowledge will inform energy and land use 
policies and enable better design, location, and surrounding land man-
agement use decisions. In the follow-up study, we should focus mainly 
on judging the impact of the floating solar park on LST at night. We 
should further consider combining ground observation and unmanned 
aerial vehicle remote sensing observation, which is very important to 
judge the overall impact of floating solar parks on the local ecosystem.
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Ayres Associates
Madison, Wisconsin
www.AyresAssociates.com
Member Since: 1/1953

Dewberry
Fairfax, Virginia
www.dewberry.com
Member Since: 1/1985

Environmental Research Incorporated
Linden, Virginia
www.eri.us.com
Member Since: 8/2008

Esri
Redlands, California
www.esri.com
Member Since: 1/1987

GeoCue Group
Madison, Alabama
http://www.geocue.com
Member Since: 10/2003

Geographic Imperatives LLC
Centennial, Colorado
Member Since: 12/2020

GeoWing Mapping, Inc.
Richmond, California
www.geowingmapping.com
Member Since: 12/2016

Halff Associates, Inc.
Richardson, Texas
www.halff.com
Member Since: 8/2021

Keystone Aerial Surveys, Inc.
Philadelphia, Pennsylvania
www.kasurveys.com
Member Since: 1/1985

Kucera International
Willoughby, Ohio
www.kucerainternational.com
Member Since: 1/1992

L3Harris Technologies
Broomfield, Colorado
www.l3harris.com
Member Since: 6/2008

Merrick & Company
Greenwood Village, Colorado
www.merrick.com/gis
Member Since: 4/1995

NV5 Geospatial
Sheboygan Falls, Wisconsin
www.quantumspatial.com
Member Since: 1/1974

Pickett and Associates, Inc.
Bartow, Florida
www.pickettusa.com
Member Since: 4/2007

Riegl USA, Inc.
Orlando, Florida
www.rieglusa.com
Member Since: 11/2004

Robinson Aerial Surveys, Inc.(RAS)
Hackettstown, New Jersey
www.robinsonaerial.com
Member Since: 1/1954

Sanborn Map Company
Colorado Springs, Colorado
www.sanborn.com
Member Since: 10/1984

Scorpius Imagery Inc.
Newark, Delaware
aerial@scorpiusimagery.com
Member Since: 6/2021

Surdex Corporation
Chesterfield, Missouri
www.surdex.com
Member Since: 12/2011

Surveying And Mapping, LLC (SAM)
Austin, Texas
www.sam.biz
Member Since: 12/2005

T3 Global Strategies, Inc.
Bridgeville, Pennsylvania
https://t3gs.com/
Member Since: 6/2020

Terra Remote Sensing (USA) Inc.
Bellevue, Washington
www.terraremote.com
Member Since: 11/2016

Towill, Inc.
San Francisco, California
www.towill.com
Member Since: 1/1952

Woolpert LLP
Dayton, Ohio
www.woolpert.com
Member Since: 1/1985

Membership
	9 Provides a means 

for dissemination 
of new 
information

	9 Encourages 
an exchange 
of ideas and 
communication 

	9 Offers prime 
exposure for 
companies

SUSTAININGMEMBERBENEFITS
Benefits of an ASPRS Membership
	– Complimentary and discounted Employee 
Membership*

	– E-mail blast to full ASPRS membership*
	– Professional Certification Application fee dis-
count for any employee 

	– Member price for ASPRS publications
	– Discount on group registration to ASPRS virtual 
conferences

	– Sustaining Member company listing in ASPRS 
directory/website

	– Hot link to company website from Sustaining 
Member company listing page on ASPRS 
website 

	– Press Release Priority Listing in PE&RS Industry 
News

	– Priority publishing of Highlight Articles in PE&RS 
plus, 20% discount off cover fee

	– Discount on PE&RS advertising
	– Exhibit discounts at ASPRS sponsored confer-
ences (exception ASPRS/ILMF)

	– Free training webinar registrations per year*
	– Discount on additional training webinar regis-
trations for employees

	– Discount for each new SMC member brought 
on board (Discount for first year only)

*quantity depends on membership level





A
SPRS

ASPRS Offers
	» Cutting-edge conference programs
	» Professional development workshops
	» Accredited professional certifications
	» Scholarships and awards
	» Career advancing mentoring programs
	» PE&RS, the scientific journal of ASPRS
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