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 After more than 15 years of research and writing, the Landsat Legacy 
Project Team published, in collaboration with the American Society for 
Photogrammetry and Remote Sensing (ASPRS), a seminal work on the 
nearly half-century of monitoring the Earth’s lands with Landsat. Born of 
technologies that evolved from the Second World War, Landsat not only 
pioneered global land monitoring but in the process drove innovation in 
digital imaging technologies and encouraged development of global 
imagery archives. Access to this imagery led to early breakthroughs in 
natural resources assessments, particularly for agriculture, forestry, and 
geology. The technical Landsat remote sensing revolution was not 
simple or straightforward. Early conflicts between civilian and defense 
satellite remote sensing users gave way to disagreements over whether 
the Landsat system should be a public service or a private enterprise. 
The failed attempts to privatize Landsat nearly led to its demise. Only 
the combined engagement of civilian and defense organizations 
ultimately saved this pioneer satellite land monitoring program. 
With the emergence of 21st century Earth system science research, 
the full value of the Landsat concept and its continuous 45-year 
global archive has been recognized and embraced. Discussion of 
Landsat’s future continues but its heritage will not be forgotten. 

The pioneering satellite system’s vital history is captured in this 
notable volume on Landsat’s Enduring Legacy.  

Landsat Legacy Project Team
Samuel N. Goward
Darrel L. Williams
Terry Arvidson
Laura E. P. Rocchio
James R. Irons
Carol A. Russell
Shaida S. Johnston

Landsat’s Enduring Legacy
Hardback. 2017,  ISBN 1-57083-101-7   
Student  $36*
Member  $48*
Non-member  $60*

* Plus shipping

LANDSAT’S ENDURING LEGACY

Pioneering Global Land Observations from Space

Landsat Legacy Project Team

Landsat’s Enduring LEgacy
Pioneering global land observations from sPace

Order online at 
www.asprs.org/landsat
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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

URISA’s GIS Hall of Fame Honors persons and organizations 
that have made significant and original contributions to the 
development and application of GIS concepts, tools, and/or re-
sources, or the GIS profession.

Their contributions have had a significant and enduring im-
pact on the GIS field or profession, and their work has bene-
fited society as a whole.

Persons inducted into the GIS Hall of Fame have, in their 
work and professional conduct, exemplified vision, leadership, 
perseverance, community-mindedness, professional involve-
ment, and ethical behavior.

 URISA’s Hall of Fame laureates include:
• 2005 Inductees: Edgar Horwood, Ian McHarg, Roger 

Tomlinson, Jack Dangermond, Nancy Tosta, and the 
Harvard Lab

• 2006 Inductee: Gary Hunter
• 2007 Inductees: Don Cooke and Michael Goodchild
• 2009 Inductees: Will Craig and Carl Reed
• 2010 Inductee: C. Dana Tomlin
• 2011 Inductees: William Huxhold and Barry Wellar
• 2012 Inductees: National Aeronautics and Space Admin-

istration, Natural Resources Canada, Statistics Canada, 
United States Census Bureau, and United States Geolog-
ical Survey

• 2014 Inductee: Charles Croner
• 2016 Inductees: Alex Miller, Mark Monmonier, and Wal-

do Tobler
• 2018 Inductees: Peter Burrough and the National Ocean-

ic and Atmospheric Administration 
• 2021 Inductee: URISA’s GISCorps

Anyone may nominate a person or organization for induction 
to URISA’s GIS Hall of Fame. Nominations are due on or be-
fore May 31, 2022. 

Visit https://www.urisa.org/awards/urisa-gis-hall-of-fame-eligi-
bility-criteria-and-nominations/  to learn about URISA GIS Hall 
of Fame eligibility criteria, nominations, and review process.  

¼½¼½ 

Phase One has named Globe Flight GmbH as its reseller of 
unmanned aerial vehicle (UAV) solutions in Germany and 
Austria. Based in Barbing, Germany, Globe Flight plans to 
make the Phase One P3 DJI M300 payload a centerpiece in its 
comprehensive drone offerings for inspection, surveying, and 
other geospatial applications.

The Phase One P3 payload addresses the previously unmet 
commercial need for high-resolution drone imaging while cov-
ering large surface areas quickly and safely. The P3 enables 

Globe Flight to offer its customers a complete fully integrated 
drone solution for the first.

“Our P3 DJI M300 payload is a perfect complement to Globe 
Flight’s existing products because it opens the door to milli-
meter-level imaging that was not available with other UAV 
camera systems,” said Carsten Wieser, Area Sales Manager 
for Central and Northern Europe at Phase One. “The P3 will 
appeal to Globe Flight’s current customers and attract addi-
tional users in inspection sectors requiring extremely detailed 
drone images to inspect their infrastructure.”

Globe Flight is an ideal business partner for Phase One in the 
region, and the two companies will collaborate in Germany 
and Austria to further cultivate the market for UAV applica-
tions. 

The German firm is an acknowledged UAV expert, offering a 
wealth of comprehensive solutions that include DJI sales and 
maintenance, product testing, regulatory advice, and pilot 
training. Globe Flight has traditionally equipped customers 
with DJI drones for use in inspection, surveying, agriculture, 
and others. The firm expects the P3 will expand these appli-
cations into the following specific areas:

• Inspection: Powerlines and power masts, wind turbine, 
bridges, railroad tracks, roads, building facades and 
roofs, oil and gas facilities (including flare towers), cell-
phone tower, solar panels, dams, digital twins.

• Surveying: High-accuracy and wide-area mapping.
• Agriculture: Phenotyping, precision agriculture. 

The P3 DJI M300 is a plug-and-play system ready to fly on a 
DJI Matrice 300 drone with a user-selected option of either the 
Phase One iXM 100MP or 50MP camera mounted on a new 
gimbal with integrated laser rangefinder. Phase One offers 
other drone payloads including versions for MAVlink support-
ed drones and the DJI M600 Pro. All are designed primarily 
for fast, efficient, and safe inspection of critical infrastructure, 
yet versatile enough to handle any end user application. 

The high-resolution medium-format metric Phase One iXM 
cameras have four RSM lens options and boast a dynamic 
range that guarantees sharp image collection in high-contrast 
or low-light environments. The variety of lens options ensures 
large surface areas can be captured with millimeter-level de-
tail – even at safe distances from the asset. The new gimbal 
with the integrated laser rangefinder ensures precise and fast 
focusing on every shot, eliminating blurry and out-of-focus 
images, so that large features can be covered in fewer images 
and shorter missions. 

Learn more at https://geospatial.phaseone.com

¼½¼½ 
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INDUSTRYNEWS
LatConnect 60 (LC60), an Earth observation and data fusion 
company based in Perth, Australia, has signed an agreement 
to work with Gilmour Space Technologies in Queensland to 
build and launch the first microsatellite in a planned high-res-
olution hyperspectral imaging constellation. The smart satel-
lites will be placed in 30-degree inclined orbits for frequent 
revisit data capture over the Earth’s equatorial and mid-lat-
itude regions. 

“HyperSight 60 will deliver geospatial insights for mid-lati-
tude areas at a level of detail and frequency not possible with 
other commercial remote sensing systems,” said Venkat Pil-
lay, LC60 CEO and Founder. “The addition of Gilmour Space 
to the LC60 team contributes significantly to the future suc-
cess of our ambitious plans.”

Under the agreement, Gilmour Space will develop the first 
100-kilogram HyperSight 60 satellite on its G-class satellite 
bus (G-Sat), which will be launched on Gilmour’s Eris rock-
et from the Bowen Orbital Spaceport in Queensland, ideally 
located to place satellites into equatorial and mid inclined or-
bits. The microsatellite and subsequent constellation will be 
owned and operated by LC60.

“This agreement would be our second G-class satellite mission 
on Eris, and we’re excited to be working with the pioneering 
team at LC60 to bring this significant capability to market,” 
said Gilmour Space CEO, Adam Gilmour.

The first HyperSight 60 microsatellite is planned for launch 
in Q4 2024. Once the entire eight-satellite constellation is op-
erational, an hourly revisit rate will be possible at mid-lati-
tude locations between 30 degrees north and south in Austra-

lia, Asia, South America, and Africa. This revisit, combined 
with the spectral bands collected in high- and medium-spa-
tial resolution, will deliver timely information-rich insights 
for Agriculture, Forestry, Environmental, Mineral/Oil & Gas, 
Climate Change, Maritime, and Defence applications. 

Established in 2019, LC60 currently owns exclusive rights 
to 80-centimeter imagery captured over Australia, with glob-
al access from a high-resolution multispectral satellite. The 
Perth-based company has leveraged this imagery along with 
other geospatial data sets to develop advanced artificial intel-
ligence and machine learning-based data fusion and analysis 
algorithms for a variety of applications. Most notably, LC60 
is now delivering insights to assist Southeast Asian palm and 
rubber plantations in improving productivity while enhancing 
environmental sustainability. 

LC60 is also focused on designing ‘smart’ satellites equipped 
with onboard AI-based computing technology. For the Hy-
perSight 60 constellation, this will enable ‘tip-and-cue’ capa-
bilities among satellites within the constellation and allow 
pre-processing of data, including radiometric and geometric 
correction, to occur in orbit before the data is downlinked to 
the ground.

“For HyperSight 60 and other planned LC60 constellations, 
our unique approach to onboard AI sensors, combined with 
advanced data fusion on the ground, will fill gaps in the in-
sights that can be gleaned from current remote sensing sys-
tems,” said Pillay. 

For more information, contact info@latconnect60.com.

CALENDAR

• 27 May, ASPRS GeoByte—Deep Fake Geography? A Humanistic GIS Reflection upon Geospatial Artificial In-
telligence. For more information, visit https://www.asprs.org/geobytes.html.

• 23 September, ASPRS GeoByte— Allen Coral Atlas: A New Technology for Coral Reef Conservation. For more 
information, visit https://www.asprs.org/geobytes.html.

• 3-6 October, GIS-PRO 2022, Boise, Idaho. For more information, visit https://www.urisa.org/gis-pro.

• 23-27 October, Pecora 22, Denver, Colorado. For more information, visit https://pecora22.org/.

https://www.urisa.org/gis-pro
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303 Smartphone Digital Photography for Fractional Vegetation Cover Estimation
Gaofei Yin, Yonghua Qu, Aleixandre Verger, Jing Li, Kun Jia, Qiaoyun Xie, and Guoxiang Liu

Accurate ground measurements of fractional vegetation cover (FVC) are key for characterizing 
ecosystem functions and evaluating remote sensing products. The increasing performance of 
cameras equipped in smartphones opens new opportunities for extensive FVC measurement 
through citizen science initiatives. However, the wide field of view (FOV) of smartphone cameras 
constitutes a key source of uncertainty in the estimation of vegetation parameters, which has 
been largely ignored. We designed a practical method to characterize the FOV of smartphones and 
improve the FVC estimation.

311 A Low-Cost and Portable Indoor 3D Mapping Approach Using Biaxial Line 
Laser Scanners and a  One-Dimension Laser Range Finder Integrated with 
Microelectromechanical Systems
Xuzhe Duan, Qingwu Hu, Pengcheng Zhao, and Shaohua Wang

Existing indoor 3D mapping solutions suffer from high cost and poor portability. In this article, a 
low-cost and portable indoor 3D mapping approach using biaxial line laser scanners and a one-
dimension laser range finder integrated with microelectromechanical systems is proposed.

323 Alternative Procedure to Improve the Positioning Accuracy of Orthomosaic 
Images Acquired with Agisoft Metashape and DJI P4 Multispectral for Crop 
Growth Observation
Toshihiro Sakamoto, Daisuke Ogawa, Satoko Hiura, and Nobusuke Iwasaki

Vegetation indices (VIs), such as the green chlorophyll index and normalized difference vegetation 
index, are calculated from visible and near-infrared band images for plant diagnosis in crop 
breeding and field management. The DJI P4 Multispectral drone combined with the Agisoft 
Metashape Structure from Motion/Multi View Stereo software is some of the most cost-effective 
equipment for creating high-resolution orthomosaic VI images. However, the manufacturer’s 
procedure results in remarkable location estimation inaccuracy (average error: 3.27–3.45 cm) and 
alignment errors between spectral bands (average error: 2.80–2.84 cm). We developed alternative 
processing procedures to overcome these issues.

333 Robust Dynamic Indoor Visible Light Positioning Method Based on CMOS 
Image Sensor
Senzhen Sun, Guangyun Li, Yangjun Gao, and Li Wang

A real-time imaging recognition and positioning method based on visible light communication flat 
light source is proposed. 

343 Comparing the Sensitivity of Pixel-Based and  Sub-Watershed-Based Analytic 
Hierarchy Process to Weighting Criteria for Flood Hazard Estimation
Hongping Zhang, Zhenfeng Shao, Wenfu Wu, Xiao Huang, Jisong Sun, Jinqi Zhao, and Yewen Fan

In flood hazard estimation via the analytic hierarchy process (AHP), using the pixel as the basic 
unit might lead to accuracy relying on the optimal weighting criteria. To this end, considering the 
sub-watershed as the basic unit is new. In this article, taking the Chaohu Basin in Anhui Province, 
China, as a study case, the accuracy of the sensitivity of the pixel-based and sub-watershed-based 
AHP models influenced by weighting criteria was compared. 
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In summer 2019, a rift that began 
to accelerate across the Brunt Ice 
Shelf threatened to release an 
iceberg about twice the size of New 
York City. But as another Antarctic 
summer comes to an end, the ice 
shelf stubbornly continues to hold 
together. It has even escaped—so 
far—collisions with numerous 
icebergs that drifted nearby and 
threatened to pummel the shelf 
like an icy wrecking ball.

Throughout the austral summer 
of 2021-22, bergs in the eastern 
Weddell Sea drifted south with the 
Antarctic Coastal Current. Iceberg 
A-23A—currently the world’s largest iceberg—floated freely after wiggling loose 
from the seafloor where it had been “grounded” (stuck) for decades. And in January 
2022, Iceberg D-28 rounded the Stancomb-Wills Glacier Tongue, floating roughly 4,300 
kilometers (2,600 miles) from where it broke free of the Amery Ice Shelf in 2019.

The drift of the icebergs has slowed as daylight hours have waned and temperatures 
have dropped, allowing sea ice to start growing in earnest on the Weddell Sea. The 
bergs will eventually become fully encased in seasonal sea ice for the austral winter. 
But for now, their enormous size makes them effective bulldozers, still capable of 
plowing through the sea ice and leaving paths of open water behind them. Notice also 
the striking cloud bands near the sides of icebergs D-30A and D-28. These are likely 
the result of vortices in the air produced by the edges of the thick, table-like bergs.

More bands of clouds are visible north of the bergs. Clouds like these, known as 
cloud streets or convective roll clouds, often line up when strong, cold winds blow 
over comparatively warm ocean water. In this instance, the air blowing off Antarctica 
was “quite cold,” according to Bart Geerts, an atmospheric scientist at University of 
Wyoming. Geerts inferred from the ERA5, a reanalysis product from the European 
Centre for Medium-Range Weather Forecasts (ECMWF), that the winds that day 
were blowing from the southwest and would have been about -20°C (-4°F).

The relative warmth of seawater behind the icebergs and within leads in the 
sea ice is apparent in this month’s cover image, acquired on March 9 by the 
Landsat 8 satellite. The image is false-color, created by blending data from 
the satellite’s Operational Land Imager (for detail and texture) and its Thermal 
Infrared Sensor (TIRS). The warmest areas (yellow, orange, and red) depict open 
water and thin, newly formed sea ice. The coldest areas (blue and white) are 
older, thicker ice, including the icebergs and broken ice rubble in their paths.

https://landsat.visibleearth.nasa.gov/view.php?id=149592

NASA Earth Observatory images by Joshua Stevens, using Landsat data from 
the U.S. Geological Survey, and MODIS data from NASA EOSDIS LANCE 
and GIBS/Worldview. Story by Kathryn Hansen with image interpretation by 
Christopher Shuman, NASA/UMBC, and Bart Geerts, University of Wyoming.

Landsat imagery courtesy of NASA Goddard Space 
Flight Center and U.S. Geological Survey

www.facebook.com/ASPRS.org
www.twitter.com/ASPRSorg
www.youtube.com/user/ASPRS


PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2022 285

GIS &Tips     Tricks By Dave Maune, Ph.D., CP, GS, PS, 
and Al Karlin, Ph.D, CMS-L, GISP

Photogrammetric Engineering & Remote Sensing
Vol. 88, No. 5, May 2022, pp. 285-286.

0099-1112/22/285-286
© 2022 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.88.5.285

While writing GIS software is a big business and no laugh-
ing (or trivial) matter, ever since the early days of com-
puter software programs, the authors have displayed their 
sense of humor, and creativity, by placing little “hidden 
features or Easter eggs” in their coding. Sometimes these 
hidden features would display the coders names when a 
special key sequence or click-pattern was detected. Other 
times, hidden features, likened to Easter eggs, would be 
revealed with key combinations. In this month’s column, I 
highlight two GIS Tips & Tricks that are hard-to-find and/
or hard-to-remember.

Hard-to-Find Tip #1—You want to change 
the way your mouse wheel works 
In ArcGIS-Desktop the default mouse wheel direction is to 
Zoom-OUT when rolling the mouse wheel forward, but in 
ArcGIS-Pro, the default is just the opposite; rotating the 
mouse wheel forward Zooms IN. Global Mapper’s default 
works like ArcGIS Pro. This can get very confusing and frus-
trating when switching between GIS programs, but there are 
options, albeit hidden, i.e., hard-to-find, in different menus.

For ArcGIS Desktop (10.X) 
Use the Customize | ArcMap Options… from the Main 
Toolbar (Figure 1) and select the General Tab from the 
ArcMap Options dialog (Figure 2). Toward the bottom of the 
dialog are the options for the Mouse Wheel and Continuous 
Zoom/Pan graphic. Use the radio buttons to customize to 
your preferences.

Extra Hint for ArcGIS Desktop
On this same dialog box, if you are planning on sharing your 
map document with others in your organization, it might be 
a good idea to check the:

“Make relative paths the default for new map 
documents” in the General portion of the dialog box.

Using GIS to Hunt for Easter Eggs – Part 21

Al Karlin, Ph.D. CMS-L, GISP

Figure 1.  The Customize | ArcMap Options window in ArcGIS Desktop.

Figure 2.  Change the behavior of the mouse wheel using the radio buttons

1Using GIS to Hunt for Easter Eggs – Part 1 was published in the 
April 2021 issue of PE&RS. 
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Figure 3. Use the Options | Navigation menu in ArcGIS Pro to modify the mouse 
wheel behavior. 

Figure 4. The Global Mapper Tools | Configu-
ration options from the main menu bar.

Figure 5. The “Swap zoom direction using mouse wheel or hot keys” 
checkbox in Global Mapper.

Figure 6. Opening the Table of Contents Window from 
the Main Menu bar.

For ArcGIS Pro (2.x)
Use the Project | Options and go to the Navigation Tab (Fig-
ure 3). On the top dialog, use the radio button to select your 
preference for the mouse wheel behavior. 

In Global 
Mapper
The default is to 
Zoom-IN when 
rotating the mouse 
wheel forward. To 
change the behav-
ior, use the Tools 
| Configuration 
Menu (Figure 4) and 
select the General 
tab. Midway on the 
General Tab is a 
checkbox to alter the 
mouse wheel direc-
tion (Figure 5).

Bonus Mouse 
Wheel Tip
While editing vector files, holding the <CTRL> key while 
“wheeling” may provide finer control over the zoom increment 
(thanks to Todd Waldorf of Dewberry for this one.)

Hard-to-Remember Tip #2—Accidentally 
closing the Table of Contents window in 
ArcGIS Desktop
This is one of those newbee things that I allow my students 
to ask me 5 times before I start deducting points from their 
grade. And every semester, I have at least 20% of the class 
repeatedly ask… What happened to my Table of Contents? 
While the solution is actually not technically hidden, it is 
easy to forget.

In ArcGIS-Desktop
To recover a 
closed Table 
of Contents, 
use the Win-
dows | Table 
of Contents 
from the 
main menu 
(Figure 6). 
You can also 
open the Arc 
Catalog window and a Search window from this dropdown.

And that is all there is to a few simple, sometimes hard to 
find, GIS tricks.

Easter eggs and other hard-to-find tricks can be found in all 
software packages. Please feel free to share yours with us. Send 
your questions, comments, and tips to GISTT@ASPRS.org.

Al Karlin, Ph.D., CMS-L, GISP is with Dewberry’s Geospatial and Technology Services group in Tampa, FL. As a senior 
geospatial scientist, Al works with all aspects of Lidar, remote sensing, photogrammetry, and GIS-related projects. 
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BOOKREVIEW

Math for Map Makers
by Arthur L. Allan. Second Edition, 2011 reprint, Whittles 
Publishing, Scotland, UK. Orginally published 1997.

Reviewed by Melissa J. Rura-Porterfield, Ph.D. 
Memphis, Tennessee.

As some folks who know me know, I tend to gravitate to 
indices, I might even start reading a book in the appendices 
and seem to as I age to find that harder and harder to abstain 
from. I suppose years of work on updating a glossary that has 
yet to see the light of day may have played a part in driving 
me to that but in truth often savvy authors hide their best 
gems in the safety of an appendix. 

My first impression of “Maths for Mapmakers” came many 
years ago, being published first in 1997 while I was still 
a student. This impression might have been a groan or a 
comment something like, “Maths, what is that!?” but being 
so long ago I don’t rightly recall. Needless to say since that 
time, reissued, twice this text has brought Maths to a large 
swath of mapmakers for nearly a generation. 

The book consists of 394 pages, divided into 13 chapters and 
a reference section including 4 appendices, a summary of 
formulae and an index. The author encourages all readers 
to pause for the “How to Read this Book” section and this 
reviewer concurs wholeheartedly. Here the author sections 
his book, placing chapters 1-5, which include (1) Numbers 
and Calculation, (2) Plane Geometry, (3) Trigonometry, (4) 
Plane Coordinates, (5) Problems in Three Dimensions, into 
a group that should be read and the problems worked in 
order as if one was building or reinforcing the foundation 
of mathematical understanding in mapping. Whereas the 
later chapters 6-13, which include (6) Areas and Volumes, (7) 
Matrices, (8) Vectors, (9) Calculus, (10) Conic Sections, (11) 
Spatial Trigonometry, (12) Solutions of Equations, (13) Least 
Squares Estimation, can be worked more like case studies on 
these foundations and not necessarily in the order they are 
found in the book. Essentially splitting the book into lower-
level and upper-level courses in mapping mathematics. 

Each chapter has a list of both formulae and “key words” or 
vocabulary words that should have been defined within its 
pages. I remember as a student the frustration and relief 
when I finally understood the chapter 6 key word “Hero’s 
Formula” was in the chapter 6 formula list as “Δ = ½ bc sin 
A” and that was the same as the area of a triangle I already 
knew from Chapter 3, Δ = , where 2s = 
a + b + c [see, Equation (3.31) and Equation (6.2)]. Of course, 
had I not started my homework before reading the chapter, I 
probably would have had less frustration. Nevertheless, I did 
get an opportunity to fumble around in chapter 3 to refresh 
my acquaintance with triangles and their areas which did me 
no harm in the end.  

Another anecdote of floundering around in Chapter 3 comes 
from Section (3.6) Coordinate Axes and Bearings. The 
complete anecdote is too lengthy for this book review, but 

suffice to say in using Peter Dale’s book1 “Introduction to 
Mathematical Techniques Used in GIS,” I came across his 
clarification of the difference between how a mathematician 
and a surveyor measure an angle [see, page 67, Figure 
(5.9) in Dale’s book] and although, this may sound like the 
beginning of a bad science joke; if you want to know the 
difference between how a mathematician, a surveyor, a 
cartographer, and a geographer measure an angle that is on 
page 63 in Figure (4.1) of Allan’s book. Dale’s explanation of 
just the mathematician and the surveyor is better equated 
to Section (3.6) in Allan’s book, but don’t start there, go to 
Figure (4.1) first and use it like the Rosetta Stone for angle 
measurements. 

Although each chapter is the source of many useful exercises 
used to learn mathematics in mapping, one of the chief 
complaints of this text is there is no answer key printed in 
the book for these exercises. And subsequent printings have 
pages with ink shortage running down the left side margin. 
Generally, it is the margin calculator symbol to indicate 
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an exercise problem that is obscured but in some places 
also words in a paragraph are also obscured. Moreover, the 
formulae and “key word” lists are in every chapter but as this 
reviewer looked for a list of figures for reference to her great 
disappointment there is none. The strength and usefulness 
of the many figures warranted a list that could be referenced. 
This reviewer understands the unnecessary extra work of 
naming each figure but indexing a Figure’s or Table’s chapter 
and section could have been very helpful. 

List of Figures/Tables Name Chapter Section

Figure (2.5 – 2.7) Reference Grid  2 4

Figure (2.8) Parallelogram, rectangle, 
square, and rhombus 2 5

Figure (2.9 - 2.10) Pythagoras’s theorem for a 
right angled triangles 2 6

My take-home jewel from this text is in Appendix 3, page 
368, another Rosette Stone, this time for Least Squares 
Estimation. How many times have I heard someone say, “He 
uses the Ohio State least squares notation, I don’t get it.” 
Or “He must have learned that notation from Purdue, I am 
lost?!” Here, we are all reminded that we may speak using 
many different notations, to solve many similar problems 
using similar assumptions to find and adjust for error. We 
must learn to communicate. Don’t give up, look-up! The 
answer is to be found!  

Appendix A3: Notation for Least Squares

Author Observation 
Matrix

Weight 
Matrix

Normal 
Equations Matrix

Dispersion 
Matrix

Allan7 Ax + L = v
Ax + Cv + L = 0

W Nx = b D

Cooper1, 6 Ax = B + V
Ax + Bv = b

W AtWx = Atb
Note the lower case t

Q

American 
Manuel of 
Photogrammetry2

BΔ – l= v
BΔ – l = Av

P BTPΔ = BTPl Q

Mikhail3
A(l + v) = d
Av + BΔ = f

CΔ = g

W N Q

Wolf4 AX = L + V W Nx = ATL Q

Koch5 Xß = y + e P XTXß = XTy D
1M.A.R. Cooper, 1987, Control Surveys in Civil Engineering, Collins (ISBN 

0-00-383183-3,381Pages)
2American Society of Photogrammetry, 1966, Manual of Photogrammetry, Library of 

Congress Catalog No 65-20813 Vol 1
3E. M. Mikhail, 1976, Observations and Least Squares, Dun-Donnelley, (ISBN 

0-7002-2481-5, 497 Pages)
4P.R. Wolf and C.D. Ghilani, 1997, Adjustment Computations, Wiley (ISBN 0-471-

16833-5, 564 pages)
5K.R. Koch, 1997, Parameter Estimation and Hypothesis Testing in Linear Models, 

Springer (ISBN 3-540-65257-4 325 pages)
6M.A.R. Cooper and P.A. Cross, 1988, Statistical Concepts and the Application in 

Photogrammetry and Surveying, Photogrammetric Record, Vol XIII, No 73, 645-678 
7A.L. Allan and N. Atkinson, “Back to Basics’ Series Nos 14 to 24 – Least Squares 

Statistics and all that, Survey Review, Vols 35 and 36 Nos 272 to 282

This reviewer does recommend this text to a large swath 
“of geomatics including surveying, cartography and 
photogrammetry, geography and civil engineering and for 
the use in industry or academia” as the book’s back cover 
suggests, but I suppose many of us have known that for 
years. 

Too young to drive the car? Perhaps!

But not too young to be curious about geospatial sciences.
The ASPRS Foundation was established to advance the understanding and use of spatial data for the 
betterment of humankind. The Foundation provides grants, scholarships, loans and other forms of aid to 
individuals or organizations pursuing knowledge of imaging and geospatial information science and 
technology, and their applications across the scientific, governmental, and commercial sectors.

Support the Foundation, because when he is ready so will we.

asprsfoundation.org/donate
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by Clifford J. Mugnier, CP, CMS, FASPRS

Inhabited during the Stone Age, several 
independent tribes lived in Sweden by the 
9th century A.D. During that time, those 

adventurous tribes were among the Scandinavians 
known as the Vikings. Loosely united and 
converted to Christianity a couple centuries later, 
the Swedes conquered the Finns; they joined 
Norway and Denmark, and finally broke away 
in 1537 under Gustav I Vasa. Sweden became a 
constitutional monarchy in 1809.
Sweden is mostly flat with gently rolling lowlands; there are 
mountains in the west along the Norwegian border, and the 
kingdom is slightly larger than California. The lowest point 
is the reclaimed bay of Lake Hammarsjon, near Kristians-
tad (–2.41 m); the highest point is Kebnekaise (2,111 m).

According to the Lantmäteriet, “The ‘geometriska jor-
deböcker’ are the oldest large-scale maps in Sweden. One of 
the main tasks of the Land Survey following its establish-
ment in 1628 was to carry out the mapping of villages and 
individual farms and their lands. It was primarily Crown 
farms that were the focus of interest. Cultivated fields and 
meadowland were mapped and information concerning 
yields and other information related to income and economic 
matters was collected. It is not clear whether the original 
purpose of the mapping was, in fact, to form the basis for 
taxation, but it can definitely be seen as the predecessor to 
the Swedish land use maps (Ekonomiska kartan). The maps 
are unevenly distributed across Sweden. They are collected 
in large volumes sorted according to parish and district. The 
‘geometriska jordeböcker’ should not be confused with the 
Crown’s standard ‘jordeböcker’ which cover landed proper-
ties and contain fiscal information about them. The Crown’s 
‘jordeböcker’ can be looked upon as being the first Swedish 
real property register and the ‘geometriska jordeböcker’ 
as the first cadastral index maps. There are around sixty 

volumes for the period between 1630 and 1650. Most of the 
maps are at a scale of 1:5000. We have only included in this 
series the volumes that have been scanned and are in digital 
format. To find older ‘geometriska jordeböcker’ which are not 
yet scanned, you should go to the series Cadastral Maps. 
In The Land Survey map archives there are more than a 
hundred volumes of maps titled ‘geometriska jordeböcker’ 
dating from the latter half of the 1600s and the early part 
of the 1700s. The maps are at varying scales, although most 
of them are large-scale maps. They mainly comprise farm 
maps that were produced for taxation purposes, maps to 
be used as the basis for the recruitment of and provision of 
material support of soldiers, and maps needed for the orga-
nization of the return of land by the Church to the Crown.”

During the early 18th century, the French scientist, Mau-
pertuis joined with the Swedish astronomer, Celsius on the 
French expedition to Lapland for the determination of the 
length of a degree of the meridian arc. This was considered 

The Grids & Datums column has completed an exploration of 
every country on the Earth. For those who did not get to enjoy 
this world tour the first time, PE&RS is reprinting prior articles 
from the column. This month’s article on the Kingdom of 
Sweden was originally printed in 2004 but contains updates to 
their coordinate system since then.

THE KINGDOM OF 

SWEDEN

Photogrammetric Engineering & Remote Sensing
Vol. 88, No. 5, May 2022, pp. 289-291.

0099-1112/22/289-291
© 2022 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.88.5.289



290 May 2022 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

an expedition for insurance in case the sister trip to South 
America (Ecuador, PE&RS May 1999), was not conclusive 
in proving the shape of the Earth. The area chosen for the 
chain of north-south triangles is now the southern land bor-
der between Sweden and Finland. Starting at the Lutheran 
church steeple in the city of Torneå (Torne) on the Gulf of 
Bothnia, the chain extended northwards along the Torne 
River to the (now) Finnish town of Pello. Maupertuis pub-
lished his book on the Lapland expedition in 1737.

Soon after the commencement of the constitutional monar-
chy, the military survey of the kingdom was begun in 1811. 
Sweden gave up Swedish Pomerania in return for Norway, 
which entered into a personal union with Sweden (1814-
1905). A civilian mapping authority for the compilation of an 
economic map was formed in 1859. The military and civilian 
mapping agencies were consolidated in 1894 and was known 
as the Rikets Allmänna Kartverk (RAK). After a series of 
consolidations and mergers, the current national mapping 
organization of the National Land Survey (Statens Lant-
mäteriet) was formed in 1985.

According to a personal communication from Dr. Lars 
Sjöberg of 7 November 1980, “The first systematic triangu-
lation of Sweden started in 1805. All calculations were made 
on the ellipsoid, for Northern Sweden on Svanberg’s ellipsoid 
and for Southern Sweden on Clarke 1880. For official maps 
(in general scale 1:100,000) Spens’ projection, was used for 
Southern Sweden (up to Lat 61° 30´) and a conform conic 
projection for Northern Sweden. In 1903 a new triangulation 
started in Southern Sweden. The calculations were made in 
plane coordinates (x, y) (Gauss-Hannover’s projection and 
Bessel’s ellipsoid). The scale in the net was determined from 
a Danish baseline, which was measured in 1838. A new mea-
surement of the baseline was made in 1911 and that mea-
surement differed significantly from the earlier one. In 1938, 
when 5 Swedish baselines and 6 azimuths had been mea-
sured, the scale and orientation of the nets (obtained from 
the above measurements) were compared. The measure-
ments of the Swedish baselines agreed better with the 1911 
measurements than with the observations of 1838. It was 
then decided to enlarge the net with a factor 1.00002 and 
turn it clockwise 0.00005 radians around a point in Southern 
Sweden. Up till then all calculations had been made in 6 dif-
ferent zones with the longitude of origin referring to ‘Stock-
holms gamla observatorium’ (The Old observatory of Stock-
holm), which is 18º 03´ 29.8˝ E of Greenwich. The longitude 
of origin for each zone was 6º 45´ W, 4º 30´ W, 2º 15´ W, 0º, 
2º 15´ E, and 4º 30´ E of Stockholm’s gamla observatorium. 
This system is still in use for large scale maps. [Ed’s. note: 
this letter from Dr. Sjöberg was dated 1980.] In 1938, Rikets 
Allmänna Kartverk decided to reduce the number of projec-
tion zones to 3, namely 2º 15´ W, 0º, and 4º 30´ E for official 
maps with FE 1,500,000 m, 2,500,000 m and 3,500,000 m, 
respectively. In 1945, RAK decided to use only one projection 
zone for official maps namely 2º 15´ W with FE 1,500,000 m. 

Common for all zones are that latitude of origin is 0º and FN 
is 0. The scale factor along the central meridian mo is 1.0000. 
For some official maps there is also a grid net in the UTM 
projection. This net is based upon the European Datum 1950 
with mo = 0.9996 and FE 500,000 m.”

I later wrote back to Dr. Sjöberg in July of the following year 
and inquired about the Spens projection. In Dr. Sjöberg’s 
reply of 7 August 1981, “The Spens projection differs some-
what from the Lambert conic projection. Spens’ projection 
satisfied the following conditions:

1. The scale factor (mo) along the parallels j1 = 65º 50´ 
20.4˝ and j2 = 55º 21´ 19.4˝ are equal.

2. The minimum scale factor between j1 and j2 equals 
mo–1. The first condition yields log n = 9.9407276–10 and 
jo = 60º 44´ 29.6˝ 

(These are Spens’ results from 1817 used in the tables of 
Spens projection. The correct values are log n = 9.94072828–
10 and jo = 60º 44´ 30.2˝.) From the second condition one 
obtains mo = 0.997903542. The x-axis of the Spens projection 
is the meridian 5º W of the Old Observatory of Stockholm, 
directed southward. The origin is located at the parallel 
circle 72º. The Spens projection was described by P.G. Rosen 
(1876) in Den vid Svenska Topografiska Kartverket använder 
projektionsmetoden, 32 pp. As far as I know there is no word 
‘Gradblätterkarten.’ ‘Karten’ means maps and ‘Gradblätter’ 
‘degree maps.’ However I think you refer to the polyconic 
projection used for the old ‘Generalstabskarten’ in the north 
of Sweden. This means that the conic projection is used 
repeatedly at each ½º parallel. Each map is made as a ‘Grad-
blatt’ limited by parallel circles of every ½º and meridian of 
equidistance 1½º. Clarke’s ellipsoidal parameters were used. 
The arctriangulation in Lappland (Tornedalen) carried out 
in 1730-1736 under the supervision of the Paris Academy 
was repeated in 1801-1803. From these latter measurements 
Svanberg computed the Earth dimensions (published 1805).”

According to a paper published (in German) by Professor 
im Generalstabe Karl D. P. Rosén, Stockholm 1933, the 
Svandberg ellipsoid parameters used were a = 6,376,797 
m and 1/f = 304.2506. Similarly, the published parameters 
for the Clarke 1880 ellipsoid as used for the Northland 
projection were a = 6,378,249.2 m and 1/f = 293.465. The 
specific formulae used in Sweden were discussed in 1951 by 
G.A. Rune in Tabeller Till Gauss Hannoverska Projektion, 
Tables for Gauss’s Hanoverian Projection where he states (in 
English) in the Preface, “For facilitating the computation of 
the modern triangulation of Sweden, begun in 1903, the Gen-
eral Staff professor of that time Dr. Karl D. P. Rosén intro-
duced the Gauss’s Hanoverian projection, often called the 
Gauss-Krüger or, briefly, the Gauss’s projection, a projection 
well fitting Sweden with it marked extension in the merid-
ian.” Note that the defining parameters of the Bessel 1841 
ellipsoid are: a = 6,377,397.155 m and 1/f = 299.1528128. All 
of the Swedish classical datums have the same origin at the 
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Old Stockholm Gamla Observatory where: Φ = 59º 20´ 32.7˝ 
N and Λ = 18º 03´ 29.8˝ E. The triangulation of Sweden from 
1903-1938 consisted of 170 triangles and was observed with 
Wanschaff and Hildebrand instruments achieved an average 
Ferrero’s formula accuracy of 0.41˝. The later Swedish tri-
angulation of 1939-1953 consisted of 222 triangles and was 
observed with Wild T-3 theodolites and achieved an average 
Ferrero’s formula accuracy of 0.40˝. That classical triangula-
tion is defined as the RT 38 (rikstrianguleringen 1903-1950) 
datum. It has been replaced with RT 90 also called Rikets 
Koordinatsystem 1990, which is a local geodetic datum based 
on the Swedish third national triangulation (1967-1982), 
and is also referenced to the Bessel 1841 ellipsoid. The 
corresponding plane coordinate system is denoted NT 90 2.5 
gon V 0:–15 and is obtained by a Gauss-Krüger Transverse 
Mercator projection of the RT 90 latitudes and longitudes. 
The Central Meridian is lo = 15º 48´ 29.8˝ E, the scale factor 
at origin mo = 1.0, and FE = 1,500 km. The Central Merid-
ian was originally interpreted as “2.5 Gon West of the Old 
Observatory of Stockholm,” but is now defined as relative to 
Greenwich (1 Gon = 0.9 degrees).

According to the Lantmäteriet, “The original map sheet 
system in Sweden is based on a grid in RT 90 2.5 gon V 0:–15 
with the SW corner at (North. = 6100 000 m, East. = 1200 
000 m), and NE corner at (North. = 7700 000 m, East. = 1900 
000 m). This area is divided into 50 km squares, which are 
enumerated with 0 – 32 in South-North direction, and lettered 
with A - N in West-East direction. Each 50 km square can be 
subdivided into four 25 km topographic map sheet squares, or 
subdivided into 100 5×5 km cadastral map sheets, which are 
enumerated from South to North by 0 - 9. and lettered from 
West to East by a - j. This original basic map sheet system has 
been modified in several ways for the modern series of maps, 
but the basic grid square notation is still frequently used, 
for instance in the numbering of geodetic control points. For 
larger scale mapping (>1:10000) there are six different zones 
of Transverse Mercator projections used in Sweden, in order 
to reduce the map projection errors. The other 5 zones apart 
from ‘2.5 gon V’ differ only in the longitude of the central 
meridians, which are spaced by 2° 15’. The boundaries of the 
projection zones are adjusted to follow administrative borders 
if possible. The coordinate system ’RT 90 5 gon V 61:-1’ has 
the map projection parameters: Central meridian: 13° 33´ 
29˝.8 East Greenwich, False Easting: 100 000 m, False North-
ing: –6,100,000 m. Example of a point’s coordinates in differ-
ent coordinate systems: x (Northing) = 6,200,000.000; y (East-
ing) = 1,300,000.000 in ’RT 90 2.5 gon V 0:–15’ x (Northing) = 
6,195,783.588; y (Easting) = 1,440,736.999 in ’R T 90 5 gon V 
0:–15’ x (Northing) = 95,783.588; y (Easting) = 40,736.999 in 
’RT 90 5 gon V 61:–1’.”

“SWEREF 99 is a Swedish realization of ETRS 89. The 
processing of the GPS data was performed according to the 
EUREF guidelines and was based on observations made on 
permanent reference stations in Sweden (SWEPOS), Den-

mark, Finland (FinnRef), and Norway (SATREF) during the 
GPS-weeks 1014-1019 (June-July 1999).

SWEREF 99 coincides with WGS 84[G730] and WGS 
84[G873] within some decimeters. Coordinates can be 
transformed from the Swedish coordinate datum RT 90, 
to SWEREF 99 through a 7-parameter transformation 
given below (estimated accuracy of 7 cm, 1 sigma, 2D). The 
ellipsoid used with SWEREF 99 is GRS 80: a = 6378137 1/f 
= 298.257222101. SWEREF 99 replaces SWEREF 93 (the 
former realization of ETRS 89). If one prefers to define a 
transformation in the direction RT 90 to SWEREF 99, use 
the following parameters: ∆X= +414.1 m, Rx = +0.855 arc 
seconds, ∆Y = +41.3 m Ry = – 2.141 arc seconds, ∆Z = +603.1 
m Rz = +7.022 arc seconds, and δ = 0.0 ppm (scale = 1.0).”

For example latitude, longitude and height above the Bessel 
1841 ellipsoid in RT 90: j = 58° 00´ 01.213296˝ l = 17° 00´ 
11.683659˝ h = –5.397 m, latitude, longitude and height above 
the GRS 80 ellipsoid in SWEREF 99: j = 58° 00´ 00.0˝, l = 17° 
00´ 00.0˝ h = 30.000 m. Much to my surprise, when I carefully 
examined the published parameters, I realized that the rota-
tion convention is the same as that used by the United States 
and by Australia. Thanks to Professor Lars Sjöberg now of the 
Geodesy Group at the Royal Institute of Technology in Stock-
holm for his patient help many years ago.

The Kingdom of Sweden Update
Sweden operates the Nordic Geodetic Commission 
(NKG) Analysis Center and currently operates 90 GNSS 
station sites in cooperation with the EUREF permanent 
network. As of 2018, there were over 3900 current sub-
scriptions to the SWEPOS (Swedish National network of 
permanent GNSS stations operated by Lantmäteriet). Of 
interest is that SWEPOS offers not only dual-frequency 
correction services, but a single frequency DGNSS ser-
vice has been offered since 2016, something not offered 
by the U.S. National Geodetic Survey. The new national 
height system RH2000 was implemented in 2005 and 
consists of about 50,000 passive benchmarks. So far 
247 municipalities have implemented the replacement 
of RH2000 for their legacy height systems. Sweden had 
upgraded its FG-5 Absolute Gravity Meter to an FG-5X 
(Like LSU currently uses), and has observed at 14 sites 
as well as at 96 sites with A-10 Absolute Gravity Meters 
and at 200 sites with Relative Gravity Meters. Fur-
thermore, the superconducting gravity meter at Onsala 
Space Observatory installed in 2009 has been regularly 
calibrated by Lantmäteriet’s FG-5/FG-5X in June 2018 
which was the seventh performed calibration. 

The contents of this column reflect the views of the author, who is 
responsible for the facts and accuracy of the data presented herein. 
The contents do not necessarily reflect the official views or policies of 
the American Society for Photogrammetry and Remote Sensing and/or 
the Louisiana State University Center for GeoInformatics (C4G).

This column was previously published in PE&RS.
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STAND OUT FROM THE REST
earn aSprS certification
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Effective February 3, 2022, expires February 3, 2025

Tracy Ray, Certification #GST311
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Paul Badr, Certification #R1011CP
Effective May 20, 2022, expires May 20, 2027

Qassim Abdullah, Certification #R900CP
Effective February 12, 2022, expires February 12, 2027

Jeffrey L. Padgett, Certification #R760CP
Effective February 20, 2021, expires February 20, 2026

Robert H. Tuck, Certification #R907CP
Effective February 12, 2022, expires February 12, 2027

Gerard J. Gouldson, Certification #R1058CP
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John F. Schuenemann, Certification #R1614CP
Effective January 30, 2022, expires January 30, 2027

Douglas Johnson, Certification #R1512CP
Effective November 7, 2021, expires November 7, 2026

Barbora Ubar, Certification #R1611CP
Effective January 12, 2022, expires January 12, 2027

Joshua Persson, Certification #R1316CP
Effective December 26, 2021, expires December 26, 2026    

Cody Condron, Certification #R1616CP
Effective April 11, 2022, expires April 11, 2027 

Sagar Shriram Deshpande, Certification #R1527CP
Effective March 14, 2022, expires March 14, 2027  

Thomas Jeff Young, Certification #R1010CP
Effective March 21, 2022, expires March 21, 2027 

RECERTIFIED MAPPING SCIENTISTS GIS/LIS

Peter Cormish, Certification #R250GS
Effective February 7, 2022, expires February 7, 2027

Connie Li Krampf, Certification #R247GS
Effective December 27. 2021, expires December 27, 2026

Jason Zilka, Certification #R286GS
Effective July 15, 2021, expires July 16, 2026

RECERTIFIED MAPPING SCIENTIST – 
REMOTE SENSING
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Effective November 5, 2020, expires November 5, 2025
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Srinivasan S. Dharmapuri, Certification #R012L
Effective April 30, 2022, expires April 30, 2027  

ASPRS Certification validates your professional practice and experience. 
It differentiates you from others in the profession. For more information 
on the ASPRS Certification program: contact certification@asprs.org, 
visit https://www.asprs.org/general/asprs-certification-program.html.
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ASPRS STUDENT ADVISORY COUNCIL

LAUREN MCKINNEY-WISE
COUNCIL CHAIR

OSCAR DURAN 
DEPUTY COUNCIL CHAIR

CHUKWUMA JOHN OKOLIE
COMMUNICATIONS COUNCIL MEMBER

TBD
EDUCATION & PROFESSIONAL NETWORKING CHAIR

ALI ALRUZUQ
DEPUTY EDUCATION & PROFESSIONAL NETWORKING CHAIR

TESINI PRECIOUS DOMBO 
COMMUNICATIONS COUNCIL MEMBER

RABIA MUNSAF KHAN
COMMUNICATIONS COUNCIL CHAIR

KENNETH EKPETERE
CHAPTERS COMMITTEE CHAIR

FREDA ELIKEM DORBU
COMMUNICATIONS COUNCIL MEMBER

INTRODUCING THE MURRAY STATE  
ASPRS STUDENT CHAPTER!
Student chapters represent an important part of our ASPRS 
community. The Student Advisor Council uses this column 
to shine the light on these hard-working students to honor 
their work and to introduce them to our larger geospatial 
community! This month we are highlighting the Murray 
State student chapter, based in Murray State University, 
Kentucky. This chapter is in the ASPRS Mid-South region.

The Murray State chapter consists of members majoring 
in various backgrounds, but who all are working diligently 
to inspire students of how awe-inspiring and powerful 
the subject photogrammetry and remote sensing can be. 
As of right now, since the chapter is relatively new, there 
are roughly seven members including Pamela Rodriguez 
(President), Logan McGowan (Vice President), Haley Stiles 
(Secretary), Atherton Milford (Treasurer), Melanie Johnson 
(Public Relations), Marshall Thompson, and Steven Collett. 
Together, this chapter is collectively working towards 
planning educational events around campus about the 
everyday usage of remote sensors, promoting ASPRS through 
upcoming workshops that can be available to others to learn 
GIS software, and encouraging others to become ASPRS 
members to learn about career opportunities and connect 
with mentors in the workforce.

Although COVID has made it difficult for this chapter 
to plan events, the Murray State Chapter is optimistic 

about planning new events and activities in the future 
and is committed to sharing any opportunities to students 
in the meantime. To learn more, email Pamela Rodriguez 
prodriguez2@murraystate.edu.

If you are interested in participating in SAC activities:
• Join us every other Thursday from 10-11 am PST!
• Join us via this zoom link: https://tinyurl.com/

SACASPRSMeeting

Murray State University
Student Chapter Members

Pamela Rodriguez 
President

Logan McGowan 
Vice President

Atherton Milford 
Treasurer

Melanie Johnson 
Public Relations

Haley Stiles 
Secretary



294 May 2022 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2022 295

In Memoriam

J. Ronald Eyton J. Ronald Eyton 
1942-2022

It is with a heavy heart that we announce the passing of 
our faculty colleague, Ron Eyton, on March 14, 2022.  His 
death, in a hospital in Vancouver, BC, following a sudden 
illness was unexpected.

Ron was raised in Atikokan near present Thunder 
Bay, Ontario.  Ron’s father was a chemist at a local 
iron mine and helped  Ron develop his life-long love of 
experimentation, photography, and cartography.  Summer 
jobs in and around the mines convinced Ron to pursue a 
career in academic cartography.  In a span of ten years, 
Ron completed degrees from Rochester Institute of 
Technology (AAS photographic science), the University of 
North Dakota (PhB, MS physical geography and geology), 
and the University of Illinois (PhD physical geography and 
photogrammetry). Ron’s dissertation fitting first-degree 
trend surfaces to the flood plain and two terrace surfaces 
along a section of the Ohio River to determine if the 
terraces were of fluvial or lacustrine origin was published 
in the Geological Society of America Bulletin.

In the ten years following his doctorate, Ron held a variety 
of academic appointments at the Assistant (University 
of Illinois, University of South Carolina) and Associate 
(Penn State University, University of Alberta) Professor 
level. He was promoted to Professor of Earth and 
Atmospheric Sciences at Alberta however an institutional 
reorganization brought Ron to Texas State University in 
the Fall of 1995.

Ron was an important member of the Geography team 
which resulted in the Department of Geography being 
awarded the first doctoral program at Texas State 
University.  Two sabbatical opportunities in his career 
resulted in visiting positions at the University of New 
South Wales and the University of Pittsburgh Semester at 
Sea program.

At the time of his retirement in 2006, Ron had supervised 
10 doctoral and almost 30 master’s students along with 
serving as a member of numerous doctoral and master’s 
research advisory committees.  Ron was best known to his 
students for his classes in cartography visualization and 
remote sensing.  Ron wrote most of the analysis software 
used in these classes and freely shared his code with 
students.  His photography hobby was made use of in the 

classroom as his students were encouraged to fly with him 
and use his digital multiband camera systems to acquire 
and process their own data.  His most popular class was 
“Digital Remote Sensing and Terrain Modeling” which he 
offered at both the undergraduate and graduate level.

Ron was committed to sharing the work of he and his 
students, publishing over 50 papers, and making over 30 
professional presentations, many with his students as 
co-authors.  Ron was in demand to share his expertise at 
invited lectures as well, making 46 presentation on digital 
terrain modeling and raster data processing to government 
and private sector groups in the US, Canada, and Australia.  
He also served as an instructor in short courses at annual 
meetings of the American Association of Geographers 
and the National Council on Geographic Education.  His 
expertise and commitment to sharing was recognized with 
teaching and service awards at the local level as well as 
from the Canadian Institute of Geomatics and the American 
Society for Photogrammetry and Remote Sensing (ASPRS).

Retirement did not slow Ron.  Accompanied by his spouse 
Lynne they traveled throughout the US and Canada, 
wherever Amtrack or VIA Rail would take them.  After 
brief stops in southwest MN and eastern WA , they finally 
settled in Pemberton in the Sea to Sky country of Western 
British Columbia.  We will all miss their annual Christmas 
calendar illustrated with images of their many travels. 
All of us send our best wishes to Lynne and their children 
Ben and Tammy.  Our memory of Ron will always include 
a short sleeve white shirt, khaki shorts, and if outside, a 
white Tilly hat.

Persons wishing to remember Ron are asked to contribute 
to the ASPRS International Educational Literature Award 
(IELA).  More information on the IELA  and the ASPRS 
Foundation may be found at https://www.asprs.org/
education/asprs-awards-and-scholarships and https://www.
asprsfoundation.org/.

~ Richard W. Dixon and David R. Butler
Department of Geography and Environmental Studies
Texas State University
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s Modelling, Representation, and Visualization of the 
Remote Sensing Data for Forestry Management

Remote sensing data includes aerial photography, videography data, multispectral scanner (MSS), Radar, and laser to map 
and understand various forest cover types and features. An accurate digital model of a selected forest type is developed 
using forest inventory data in educational and experimental forestry and extensive databases. It includes the formalization 
and compilation of methods for integrating forest inventory databases and remote sensing data with three-dimensional 
models for a dynamic display of forest changes. 

Big data technology employs vast amounts of forestry data for forestry applications that require real-time inquiry and 
calculation. The techniques and strategies of forestry data analysis are integrated into the big data forestry framework, 
enabling interfaces that other Programmes may call. Virtual Reality addresses constraints in forest management such as 
temporal dependence, irreversibility of decisions, spatial-quantitative change of characteristics, and numerous objectives. 
Virtual representations integrate various computer graphics systems with display and interface devices to create a spatial 
presence in an interactive 3 D environment. Visualization of plant species’ growth patterns, changes in species and their 
composition, and other morphological properties of forests are enhanced using machine learning and regression analysis 
methods as part of a digital model. In modelling, deep learning (DL) replicates expert observations on hundreds or thou-
sands of hectares of trees.

Remote sensing is being used to map the distribution of forest resources, global changes in flora with the seasonal vari-
ations, and the 3D structure of forests. Graphic Information System (GIS) based visualizations depict dynamics through 
animations and 3D geo model visualizations and allow advanced spatial analytics and modelling in geographical phenom-
ena for forest management.  Digital forest modelling includes integrating forest inventory data, forest inventory database 
formation, graphics objects of forest inventory allocations with a digital forest model, and technology for visualizing forest 
inventory data. It helps forecast changes and visualizes situational phenomena occurring in forests using data and models 
involving spatial-temporal linkages.

Standard aerial shots capture images that view unseen components to the naked eye, such as the Earth’s surface’s physical 
structure and chemical composition. The challenges in remote sensing models include insufficient Remote Sensing (RS), 
spatial, spectral, and temporal resolution to detect degradation accurately. High costs of RS, the gap between operational 
and scientific uses, and lack of information sharing are some of the challenges of RS for forest management. The list of 
topics of interest include but are not limited to the following:
	y Advancement of forest surveillance through Geographical Information Systems
	y State of the art and perspectives of modelling and visualization framework  for Forest type mapping and assessment of 

distribution 
	y Futuristic Satellite data analysis for stock maps and forest inventory analysis 
	y Big data-enabled GIS framework for forest management information 
	y AI-based Space Remote Sensing For Forest Ecosystem Assessment 
	y Enhanced visualization through deep learning for forest management solutions
	y Novel approaches of multi-temporal satellite data using digital image analysis for forest management
	y Advance representation of discrete objects and continuous fields in virtual environments through VR framework
	y Database framework for regional and plot-based forest allotment data for model representation  and visualization
	y Development of scalable models for area-based metrics from Light Detection and Ranging (lidar) devices and photo-

graphic structure-for-motion (SFM)

Deadline for Manuscript Submission—June 7, 2022

Submit your Manuscript to http://asprs-pers.edmgr.com

Guest Editors
Dr. Gai-Ge Wang, gai-gewang@outlook.com and wgg@ouc.edu.cn, Department of Computer Science and Technology, 
Ocean University of China, China

Dr. Xiao-Zhi Gao, xiao.z.gao@gmail.com and xiao-zhi.gao@uef.fi, Machine Vision and Pattern Recognition Laboratory, 
School of Engineering Science, Lappeenranta University of Technology, Finland.

Dr. Yan Pei, peiyan@u-aizu.ac.jp, Computer Science Division, The University of Aizu, Japan.

mailto:gai-gewang@outlook.com
mailto:wgg@ouc.edu.cn
mailto:xiao.z.gao@gmail.com
mailto:xiao-zhi.gao@uef.fi
mailto:peiyan@u-aizu.ac.jp
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ASPRSNEWS

Editor-In-Chief
Alper Yilmaz, Ph.D., PERSeditor@asprs.org

Associate Editors
Rongjun Qin, Ph.D., qin.324@osu.edu

Michael Yang, Ph.D., michael.yang@utwente.nl
Petra Helmholz, Ph.D., Petra.Helmholz@curtin.edu.au

Bo Wu, Ph.D., bo.wu@polyu.edu.hk
Clement Mallet, Ph.D., clemallet@gmail.com

Prasad Thenkabail, Ph.D., pthenkabail@usgs.gov
Ruisheng Wang, Ph.D., ruiswang@ucalgary.ca

Desheng Liu, Ph.D., liu.738@osu.edu 
Valérie Gouet-Brunet, Ph.D., valerie.gouet@ign.fr

Dorota Iwaszczuk, Ph.D., dorota.iwaszczuk@tum.de
Qunming Wang, Ph.D., wqm11111@126.com

Filiz Sunar, Ph.D., fsunar@itu.edu.tr
Norbert Pfeifer, np@ipf.tuwien.ac.at

Jan Dirk Wegner, jan.wegner@geod.baug.ethz.ch
Hongyan Zhang, zhanghongyan@whu.edu.cn
Dongdong Wang, P.h.D., ddwang@umd.edu

Zhenfeng Shao, Ph.D., shaozhenfeng@whu.edu.cn
Ribana Roscher, Ph.D., ribana.roscher@uni-bonn.de

Sidike Paheding, Ph.D., spahedin@mtu.edu

Contributing Editors

Highlight Editor
Jie Shan, Ph.D., jshan@ecn.purdue.edu

Feature Articles
Michael Joos, CP, GISP, featureeditor@asprs.org

Grids & Datums Column 
Clifford J. Mugnier, C.P., C.M.S, cjmce@lsu.edu

Book Reviews 
Sagar Deshpande, Ph.D., bookreview@asprs.org

Mapping Matters Column 
Qassim Abdullah, Ph.D., Mapping_Matters@asprs.org

Sector Insight
Lucia Lovison-Golob, Ph.D., lucia.lovison@sat-drones.com
Bob Ryerson, Ph.D., FASPRS, bryerson@kimgeomatics.com 

GIS Tips & Tricks
Alvan Karlin, Ph.D., CMS-L, GISP akarlin@Dewberry.com

ASPRS Staff

Assistant Director — Publications 
Rae Kelley, rkelley@asprs.org

Electronic Publications Manager/Graphic Artist 
Matthew Austin, maustin@asprs.org

Advertising Sales Representative 
Bill Spilman, bill@innovativemediasolutions.com

Journal Staff NEW ASPRS MEMBERS
ASPRS would like to welcome the following new members!

Sara Akbarnejad Nesheli
Syeda Saleha Fatim Ali

Amanda Anderson
Tania Septi Anggraini
Braxton Lee Anzalone

Bahaa Awad
Andrew Logan Beckwith

Jhony Armando Benavides-Bolanos
Megan Blaskovich

Will Bordash
Pouyan Boreshnavard

Hannah Bowman
Carly Lynn Bradshaw

Robert Cahalan
Shelby Elaine Campbell

Zachary Canter
Ahmed Elamin
Abigail Faxon
Haidar Fazeli

Connor B. Firat
Reed P. Gallagher
Tewodros Gebre

Anish Giri
Jeff R. Green

Joshua Elliott Halsey
Yuci Han

Jeff Hand, PhD
Akula Harika

Brittany Herzberg

Xinhao Hu
Karin Ingwersen

Yufang Jin
Nicholas Johnson

Sean Michael Jones
James Arthur Kenney

Nicholas Kunz
Matthew Laird

Chen Liang
Yuan Qing Lie

Chintan Bimal Maniyar
Nancy Marek, PhD
Anjana K. Menon
Kavach Mishra

Matthew Mollica
Caleb Ohionije Ogbeta

John Agbo Ogbodo
Nicholas Gregory Orban

Maria Park
Jonathan Roeder

Sreenidhi S
Rajneesh Sharma

Kim Solomon
William Raymond Stuart

Aylin Tuzcu Kokal
Shilpi Verma

Robert Pat Wallace, PE
Caiwang Zheng

FOR MORE INFORMATION ON ASPRS MEMBERSHIP, VISIT 
HTTP://WWW.ASPRS.ORG/JOIN-NOW

Who at ASPRS Do I Contact for help with…
Membership/PE&RS Subscription

 office@asprs.org
Advertising/Exhibit Sales

Bill Spilman — bill@innovativemediasolutions.com
PE&RS Editor-in-Chief

Alper Yilmaz — PERSeditor@asprs.org
Calendar — calendar@asprs.org

ASPRS Bookstore — office@asprs.org
ASPRS Foundation — foundation@asprs.org

425 Barlow Place, Suite 210, Bethesda, MD 20814
301-493-0290, 225-408-4422 (fax), www.asprs.org

mailto:PERSeditor@asprs.org
mailto:jshan@ecn.purdue.edu
mailto:cjmce@lsu.edu
mailto:bookreview@asprs.org
mailto:Mapping_Matters@asprs.org
mailto:rkelley@asprs.org
mailto:maustin@asprs.org
http://
http://www.asprs.org/Join-Now
mailto:pweeks@asprs.org
bill@innovativemediasolutions.com
mailto:PERSeditor@asprs.org
mailto:calendar@asprs.org
www.asprs.org
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GEOBYTES
https://www.asprs.org/geobytes.html

Deep Fake geography? A humanistic GIS 
Reflection upon Geospatial Artificial Intelligence
Presenter: Dr. Bo Zhao
When: May 27, 2022, 12:00 PM – 1:00 PM EDT

The ongoing development of Geospatial Artificial Intelligence 
(GeoAI) has raised deep concerns about the emergence of deep 
fake geography and its potentials in transforming the human 
perception of the geographic world (Zhao et al 2021). This 
seminar presents a humanistic GIS reflection upon GeoAI 
(Zhao 2022) and its social implications using an empirical 
study that dissected the algorithmic mechanism of falsifying 
satellite images with non-existent landscape features. To 
demonstrate our pioneering attempt at deep fake detection, a 
robust approach is then proposed and evaluated. Our proactive 
study warns of the emergence and proliferation of deep fakes in 
geography just as “lies” in maps. We suggest timely detections 
of deep fakes in geospatial data and proper coping strategies 
when necessary. More importantly, it is encouraged to cultivate 
critical geospatial data literacy and thus to understand the 
multi-faceted impacts of deep fake geography on individuals 
and human society.

Bo Zhao is an Associate Professor in the Department of 
Geography at the University of Washington, Seattle. His recent 
research interests include GIScience, geographical misinfor-
mation, and social implications of emerging GIS technologies, 
especially in the context of the United States or China.

GeoBytes are online seminars presented by 
ASPRS and sponsored by the ASPRS GIS 
Division, in cooperation with CaGIS.
Attention those seeking ASPRS Certification: 
ASPRS Online Seminars are a great way to 
gain Professional Development Hours!

Registration Emails for upcoming 
seminars are sent to all members with the 
registration link. Just click on the clink in the 
email to get to the online registration for each 
seminar. After the live seminars have aired, a 
videotape of the seminar will be posted.

Allen Coral Atlas: A New Technology  
for Coral Reef Conservation
Presenter: Brianna Bambic
When: September 23, 2022, 12:00 PM – 1:00 PM EDT

Coral reef managers and decision makers at multiple scales 
need information, in near real time, to react to the increasing 
threats facing reefs. However, more than three quarters of the 
world’s coral reefs have never been mapped and lack monitor-
ing. To address this knowledge gap and to support, inform, and 
inspire critical actions to manage and protect coral reefs, the 
Allen Coral Atlas combines high resolution satellite imagery, 
machine learning, and field data to produce globally consistent 
benthic and geomorphic maps and monitoring systems of the 
world’s coral reefs. The initiative’s goal is to help stakeholders 
ranging from local communities to regional and national 
governments reach their conservation targets and improve 
their coastal resilience. The multi-disciplinary partnership is 
led by Arizona State University, in collaboration with Planet, 
University of Queensland, and the Coral Reef Alliance.

Baseline maps have multiple uses, including: sustainable 
coastal development, site selection of marine protected areas, 
planning of restoration activities, and reef fisheries manage-
ment. In this presentation, we will demonstrate how the Allen 
Coral Atlas supports data-driven management, conservation, 
and restoration of coral reefs at local, national, regional, and 
global scales. We have developed online courses to facilitate 
increased use and impact of the Atlas, and are collaborating 
with networks of individuals and institutions who can be 
alerted when changes are detected (e.g., large-scale bleaching 
or sedimentation events).

Brianna Bambic leads the Allen Coral Atlas Field Engagement 
team at the National Geographic Society and Arizona State 
University. With a coral reef biology and resource management 
background, she was an Independent Researcher for 7 years 
that culminated in a virtual reality experience of Half Moon 
Caye National Monument, Belize with a National Geographic 
Explorer Grant, helping communicate science to the public. 
Brianna received her MS in natural resource management 
from the University of Akureyri, Iceland in 2019. Her expertise 
includes coastal and marine management, global science com-
munication, and developing capacity around remote sensing 
and mapping. With countless hours underwater and >700 
logged dives, she loves spending time exploring the ocean.



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2022 299

WHO’S WHO IN ASPRS

BOARD OF DIRECTORS
BOARD OFFICERS

President
Christopher Parrish, Ph.D
Oregon State University

President-Elect
Lorraine B. Amenda, PLS, CP
Towill, Inc.

Vice President
Bandana Kar
Oak Ridge National Lab

Past President
Jason M. Stoker, Ph.D, 
U.S. Geological Survey

Treasurer
Stewart Walker, Ph.D.
photogrammetry4u

Secretary
Harold Rempel
ESP Associates, Inc.

COUNCIL OFFICERS
ASPRS has six councils. To learn more, visit https://www.asprs.org/Councils.html.

Sustaining Members Council 
Chair: Ryan Bowe
Deputy Chair: Melissa Martin

Technical Division Directors Council 
Chair: Bill Swope
Deputy Chair: Hope Morgan

Standing Committee Chairs Council 
Chair: David Stolarz
Deputy Chair: TBA

Early-Career Professionals Council 
Chair: Madeline Stewart
Deputy Chair: Kyle Knapp                

Region Officers Council 
Chair: Demetrio Zourarakis
Deputy Chair: Jason Krueger 

Student Advisory Council 
Chair: Lauren McKinney-Wise
Deputy Chair: Oscar Duran

TECHNICAL DIVISION OFFICERS
ASPRS has seven professional divisions. To learn more, visit https://www.asprs.org/Divisions.html.

Geographic Information Systems 
Division 
Director: Denise Theunissen 
Assistant Director: Jin Lee

Lidar Division 
Director: Ajit Sampath
Assistant Director: Mat Bethel

Photogrammetric Applications Division 
Director: Ben Wilkinson
Assistant Director: Hank Theiss

Primary Data Acquisition Division
Director: Greg Stensaas
Assistant Director: Srini Dharmapuri

Professional Practice Division 
Director: Bill Swope
Assistant Director: Hope Morgan

Remote Sensing Applications Division
Director: Amr Abd-Ehrahman
Assistant Director: Tao Liu

Unmanned Autonomous Systems (UAS) 
Director: Jacob Lopez
Assistant Director: Bahram Salehi

REGION PRESIDENTS
ASPRS has 13 regions to serve the United States. To learn more, visit https://www.asprs.org/regions.html.

Alaska Region

Cascadia Region
Robert Hariston-Porter

Eastern Great Lakes Region
Michael Joos, CP, GISP

Florida Region
Xan Fredericks

Heartland Region
Whit Lynn

Intermountain Region
Robert T. Pack

Mid-South Region
David Hughes

Northeast Region

North Atlantic Region

Pacific Southwest Region
John Erickson, PLS, CP

Potomac Region
Dave Lasko

Rocky Mountain Region

Western Great Lakes Region
Adam Smith

Founded in 1934, the American Society for Photogrammetry and Remote Sensing (ASPRS) is a scientific association 
serving thousands of professional members around the world. Our mission is to advance knowledge and improve under-
standing of mapping sciences to promote the responsible applications of photogrammetry, remote sensing, geographic 
information systems (GIS) and supporting technologies.
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The 3rd edition of the DEM Users Manual includes 15 chap-
ters and three appendices. References in the eBook version 
are hyperlinked. Chapter and appendix titles include:

1. Introduction to DEMs
David F. Maune, Hans Karl Heidemann,  
Stephen M. Kopp, and Clayton A. Crawford

2. Vertical Datums
Dru Smith

3. Standards, Guidelines & Specifications
David F. Maune

4. The National Elevation Dataset (NED)
Dean B. Gesch, Gayla A. Evans,  
Michael J. Oimoen, and Samantha T. Arundel

5. The 3D Elevation Program (3DEP)
Jason M. Stoker, Vicki Lukas, Allyson L. Jason,  
Diane F. Eldridge, and Larry J. Sugarbaker

6. Photogrammetry
J. Chris McGlone and Scott Arko

7. IfSAR
Scott Hensley and Lorraine Tighe

8. Airborne Topographic Lidar
Amar Nayegandhi and Joshua Nimetz

9. Lidar Data Processing
Joshua M. Novac

10. Airborne Lidar Bathymetry
Jennifer Wozencraft and Amar Nayegandhi

11. Sonar
Guy T. Noll and Douglas Lockhart

12. Enabling Technologies
Bruno M. Scherzinger, Joseph J. Hutton,
and Mohamed M.R. Mostafa

13. DEM User Applications
David F. Maune

14. DEM User Requirements & Benefits
David F. Maune

15. Quality Assessment of Elevation Data
Jennifer Novac

Appendix A. Acronyms
Appendix B. Definitions
Appendix C. Sample Datasets

This book is your guide to 3D elevation technologies, prod-
ucts and applications. It will guide you through the incep-
tion and implementation of the U.S. Geological Survey’s 
(USGS) 3D Elevation Program (3DEP) to provide not just 
bare earth DEMs, but a full suite of 3D elevation products 
using Quality Levels (QLs) that are standardized and con-
sistent across the U.S. and territories. The 3DEP is based on 
the National Enhanced Elevation Assessment (NEEA) which 
evaluated 602 different mission-critical requirements for 
and benefits from enhanced elevation data of various QLs 
for 34 Federal agencies, all 50 states (with local and Tribal 
input), and 13 non-governmental organizations.

The NEEA documented the highest Return on Investment 
from QL2 lidar for the conterminous states, Hawaii and U.S. 
territories, and QL5 IfSAR for Alaska.

Chapters 3, 5, 8, 9, 13, 14, and 15 are “must-read” chapters 
for users and providers of topographic lidar data. Chapter 8 
addresses linear mode, single photon and Geiger mode lidar 
technologies, and Chapter 10 addresses the latest in topo-
bathymetric lidar. The remaining chapters are either relevant 
to all DEM technologies or address alternative technologies 
including photogrammetry, IfSAR, and sonar.

As demonstrated by the figures selected for the front 
cover of this manual, readers will recognize the editors’ vision 
for the future – a 3D Nation that seamlessly merges topo-
graphic and bathymetric data from the tops of the moun-
tains, beneath rivers and lakes, to the depths of the sea.

Co-Editors

David F. Maune, PhD, CP and
Amar Nayegandhi, CP, CMS

PRICING
Student (must submit copy of Student ID) $50 +S&H

ASPRS Member $80 +S&H

Non-member $100 +S&H

E-Book (only available in the Amazon Kindle 
store) $85

To order, visit 
https://www.asprs.org/dem

Digital Elevation Model
Technologies and Applications
The DEM Users Manual, 3rd Edition
Edited by David F. Maune, PhD, CP
and Amar Nayegandhi, CP, CMS
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www.AerialServicesInc.com
Member Since: 5/2001
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Member Since: 3/2022

Applanix
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http://www.applanix.com
Member Since: 7/1997

Ayres Associates
Madison, Wisconsin
www.AyresAssociates.com
Member Since: 1/1953

CT Consultants
Mentor, Ohio
Member Since: 3/2022

Dewberry
Fairfax, Virginia
www.dewberry.com
Member Since: 1/1985

Esri
Redlands, California
www.esri.com
Member Since: 1/1987

GeoCue Group
Madison, Alabama
http://www.geocue.com
Member Since: 10/2003

Geographic Imperatives LLC
Centennial, Colorado
Member Since: 12/2020

GeoWing Mapping, Inc.
Richmond, California
www.geowingmapping.com
Member Since: 12/2016

Halff Associates, Inc.
Richardson, Texas
www.halff.com
Member Since: 8/2021

Keystone Aerial Surveys, Inc.
Philadelphia, Pennsylvania
www.kasurveys.com
Member Since: 1/1985

Kucera International
Willoughby, Ohio
www.kucerainternational.com
Member Since: 1/1992

L3Harris Technologies
Broomfield, Colorado
www.l3harris.com
Member Since: 6/2008

Merrick & Company
Greenwood Village, Colorado
www.merrick.com/gis
Member Since: 4/1995

NV5 Geospatial
Sheboygan Falls, Wisconsin
www.quantumspatial.com
Member Since: 1/1974

Pickett and Associates, Inc.
Bartow, Florida
www.pickettusa.com
Member Since: 4/2007

Riegl USA, Inc.
Orlando, Florida
www.rieglusa.com
Member Since: 11/2004

Robinson Aerial Surveys, Inc.(RAS)
Hackettstown, New Jersey
www.robinsonaerial.com
Member Since: 1/1954

Sanborn Map Company
Colorado Springs, Colorado
www.sanborn.com
Member Since: 10/1984
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Smartphone Digital Photography for Fractional 
Vegetation Cover Estimation

Gaofei Yin, Yonghua Qu, Aleixandre Verger, Jing Li, Kun Jia, Qiaoyun Xie, and Guoxiang Liu

Abstract
Accurate ground measurements of fractional vegetation cover (FVC) 
are key for characterizing ecosystem functions and evaluating remote 
sensing products. The increasing performance of cameras equipped 
in smartphones opens new opportunities for extensive FVC measure-
ment through citizen science initiatives. However, the wide field of view 
(FOV) of smartphone cameras constitutes a key source of uncertainty 
in the estimation of vegetation parameters, which has been largely 
ignored. We designed a practical method to characterize the FOV of 
smartphones and improve the FVC estimation. The method was as-
sessed in a mountainous forest based on the comparison with in situ 
fisheye photographs. After the FOV correction, the agreement of smart-
phone and fisheye FVC estimates highly improved: root-mean-square 
error (RMSE) of 0.103 compared to 0.242 of the original smartphone 
FVC estimates without considering the FOV effect, mean difference of 
0.074 versus 0.213, and coefficient of determination R2 of 0.719 versus 
0.353. Smartphone cameras outperform traditional fisheye cameras: 
the overexposure and low vertical resolution of fisheye photographs 
introduced uncertainties in FVC estimation while the insensitivity to 
exposure and high spatial resolution of smartphone cameras make 
photograph acquisition and analysis more automatic and accurate. 
The smartphone FVC estimates highly agree with the GF-1 satellite 
product: RMSE = 0.066, bias = 0.007, and R2 = 0.745. This study 
opens new perspectives for the validation of satellite products.

Introduction
Fractional vegetation cover (FVC), defined as the fraction of ground 
surface covered by green vegetation in the nadir direction, plays a key 
role in the partition between soil and vegetation contributions in the 
energy and water cycles between surface and atmosphere (Baret et al. 
2013; Mu et al. 2018). FVC is a key controlling factor in many terrestri-
al processes, including photosynthesis, respiration, and evapotranspira-
tion, and it has been extensively used to monitor vegetation dynamics 
and ecosystem change (Arneth 2015; Bonan and Doney 2018).

Currently, FVC can be long term monitored at the local-to-global 
scale through remote sensing technology (Jiapaer et al. 2011; Mu et 
al. 2018; Okin et al. 2013). Several FVC satellite products are already 
available including Copernicus Global Land Service (Baret et al. 2013; 
Verger et al. 2014), European Organization for the Exploitation of 
Meteorological Satellites (EUMETSAT) Satellite Application Facility 
on Land Surface Analysis (LSA SAF) (García-Haro et al. 2018), Global 
Land Surface Satellite (GLASS) (Jia et al. 2019), and GaoFen-1 (GF-1) 
(Jia et al. 2016) products. In situ FVC measurements are indispensable 
for the calibration and validation of these FVC estimation algorithms 
and products (Laliberte et al. 2007; Mu et al. 2015; White et al. 2000). 
Optical instruments based on gap fraction measurements are common-
ly used for in situ estimation of FVC which corresponds to the comple-
mentary of the gap fraction in the nadir direction. The Li-Cor plant 
canopy analyser (PCA) and digital hemispherical photography (DHP) are 
widely used (Demarez et al. 2008; Garrigues et al. 2008; Leblanc et al. 
2005; LI-COR 1991; Mougin et al. 2014). They both measure the gap 
fraction under the canopy over the whole upper hemisphere. The gap 
fraction in the nadir direction should be firstly extracted to properly 
calculate FVC. For PCA, only the reading of the innermost ring (with 
view zenith ranging 0° to 7°) is appropriate for FVC estimation (LI-COR 
1991). For DHP, there is only one pixel per image in the exact nadir 
direction. Therefore, a range of 0°–10° zenith angles around the nadir 
is typically used to achieve a proper trade-off between the estimation 
accuracy and spatial representativeness (Mougin et al. 2014).

Notwithstanding the popularity of PCA and DHP in in situ estima-
tion, they still face several disadvantages. PCA is expensive to purchase 
and to maintain. DHP significantly reduces the cost but is prominently 
sensitive to photographic exposure setting (Macfarlane et al. 2014; 
Zhang et al. 2005). Automatic exposure significantly distorts gap 
fraction estimation, so several methods were proposed to determine 
the optimum exposure (Macfarlane et al. 2014; Zhang et al. 2005). 
However, the implementation of these methods is difficult for most 
common users (Pueschel et al. 2012). In addition, the performance of 
DHP is also limited by the mixed-pixel problem caused by its wide field 
of view (FOV) (Baret et al. 2010; Liu et al. 2013; Macfarlane 2011).

An alternative for in situ FVC estimation is the digital cover pho-
tography (DCP) from consumer-grade digital single lens reflex cameras 
(Chianucci and Cutini 2013; Chianucci et al. 2014). DCP cameras 
have a narrow FOV, generally ranging from 15° to 30°, and the FOV 
effects do not need dedicatedly consideration (Chen et al. 2016; Mu et 
al. 2015). Further, since the sky luminance is relatively homogenous 
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under these acquisition conditions (Chianucci and Cutini 2013; 
Chianucci et al. 2014), DCP is less sensitive to photographic exposure 
than DHP (Macfarlane et al. 2007b). In addition, the DCP generally has 
higher spatial resolution than DHP, and the small gap fractions within 
canopy can be readily resolved (Chianucci 2016; Ryu et al. 2010). 
DCP performs similarly or even better than DHP in the estimation of 
biophysical parameters (Chianucci and Cutini 2013; Chianucci et al. 
2014; Macfarlane et al. 2007a; Macfarlane et al. 2007b; Pekin and 
Macfarlane 2009).

The increasing upgrade of cameras equipped on smartphones cre-
ates a new opportunity for the DCP technology. Compared with digital 
single lens reflex cameras, smartphones are generally cheaper and 
more flexible. In addition, smartphones embed several other compo-
nents, e.g., global position system and gyroscope, which can be used to 
determine the location and orientation of captured images. These ad-
vantages explain the booming development of smartphone applications 
for biophysical parameter estimation, including LAISmart (Qu et al. 
2016) and PocketLAI (Confalonieri et al. 2013). However, smartphone 
cameras often have a wider FOV than digital single lens reflex cameras, 
and the FOV is not explicitly provided by many phone manufactur-
ers. Qu et al. (2017) found that the FOV effects of smartphone cam-
eras cause an underestimation of gap fraction, and consequently an 
overestimation of FVC. This uncertainty is induced by the stretched 
path length in the slant view zenith angle (Yin et al. 2020; Yin et al. 
2018). Moreover, most of the recent smartphones use computational 
method to fuse information from two or more cameras into one image 
and the integrated FOV is unknown even when the FOV for each camera 
is specified. Therefore, the characterization and correction of the FOV 
effects of smartphone cameras need dedicated consideration.

The main objective of this study was to develop a practical method 
for FVC estimation with digital cover photography from smartphones. 
We proposed a novel method to characterize the FOV of smartphone 
cameras and to extract the optimal range of observation zenith angle in 
image acquisitions for FVC estimation. A global binary threshold classi-
fication method was then applied to classify the sky and canopy pixels 
in upward images and calculated the FVC. The performance of the 
developed method was assessed through comparison with the widely 
used DHP technology. Finally, we assessed the potential of smartphone 
FVC estimates for the validation of satellite FVC products. The FVC 
product derived from GF-1 data was used for this purpose.

Materials and Methods
Field Measurements
Fisheye and smartphone photographs were collected in 23 mountain-
ous plots located at Southwestern China (~32°50′N, 104°3′E) on 29–30 
June 2019. Details of the study site can be found in Yin et al. (2017a). 
The plots represent conifer forests, broadleaf forests, and shrub forests. 
Each plot covers approximately 16 m × 16 m area. Five subplots were 
sampled within each plot to capture its spatial variation: one located at 
the center of the plot and others at the four corners. The FVC estimate at 
plot level results from averaging the five subplot-level FVC estimates. 
At each subplot, fisheye and cover photographs were simultaneously 
collected in upward direction under overcast sky conditions.

Fisheye photographs were taken using a Nikon D810 equipped 
with a Sigma 8 mm f3.5 EX DG fisheye lens. The camera lens was 
levelled with a two-axis bubble. As recommended by Macfarlane 
(2011), three exposures were used at each subplot: auto-exposure, and 
under-exposed by one and two stops. The exposure which maximizes 
the contrast between sky and canopy was manually selected for further 
processing. All captured photographs were saved in TIF format with a 
size of 7360 × 4912 pixels.

Cover photographs were taken from a Huawei Mate 10 smartphone 
equipped with a dual-lens camera combining a 12-megapixel color 
sensor and a 20-megapixel monochrome sensor. It also benefits from 
the novel optical image stabilization (OIS) technology. The dual-lens 
setup and the OIS ensure the acquisition of high spatial resolution 
photographs with high quality even under poor illumination condi-
tions (e.g., too dark or too bright). The smartphone was oriented in a 

horizontal position for taking upward photographs. At each subplot, 
three photographs were collected under automatic mode and the one 
with the most vertical view was manually selected for further process-
ing. The photographs were stored in TIF format, with a size of 3968 × 
2976 pixels.

GF-1 Satellite Product
To assess smartphone photography for satellite validation purposes, the 
field measurements in the in 23 mountainous plots were compared with 
the concurrent high spatial resolution (16 m) FVC map generated from 
wide field view (WFV) sensor on board the Chinese GF-1 satellite. For 
comparison purposes, we used the FVC values for the nearest pixels to 
the field plots from the FVC GF-1 satellite product for the concomitant 
date with the field campaign, i.e., 30 June 2019 (Figure 1).

Figure 1. Fractional vegetation cover (FVC) estimated from the GF-1 
WFV image on 30 June 2019. The dots represent the plots of the in 
situ measurements.

The GF-1 WFV snapshoots land surface with high spatial resolu-
tion (16 m), wide coverage (800 km) and high revisit frequency (four 
days). The FVC retrieval algorithm is based on a back propagation 
neural network trained with PROSPECT + SAIL radiative transfer model 
simulations (Jacquemoud et al. 2009). Top of the canopy GF-1 surface 
reflects in green, red, and near-infrared spectral bands are the input of 
the neural network. Details regarding the GF-1 data and the retrieval 
algorithm can be found in Jia et al. (2016).

Estimation of the FOV of the Smartphone Camera
Estimation Method
The FOV of a smartphone describes the angular range that its lens can 
image in a particular direction. For convenience, we focus here on the 
long dimension of a photograph, and the FOV in other directions can be 
easily estimated based on linear assumption for the projection function 
of photographs.

Suppose a smartphone takes a photograph of an object with a physi-
cal length of L (in meter), which is located at a distance D from the 
camera. The angle formed by two rays emanating from the camera to 
the endpoints of the object can be expressed as:

 β = L/D (1)
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Assuming the object is far away from 
the camera, which is often the case for 
field FVC measurement, the FOV of the 
camera can be approximated as:

 FOV = N/D (2)

where N (in meter) corresponds to the 
physical distance the camera can image 
along the direction of L. Combining 
Equations 1 and 2:

 β = FOV L/N (3)

If L and N (both in meter) are, re-
spectively, recorded in a photography as 
l and n, (both in pixel number), Equation 
3 is equivalent to:

 β = FOV l/n (4)

According to Equations 1 and 4, FOV 
can be expressed as:

 L/D = FOV l/n (5)

Therefore, the FOV is the slope of the fitted line between L/D and 
l/n, and it can be estimated through ordinary least square method.

Experiment for FOV Estimation
We designed an indoor experiment to estimate the FOV of the Huawei 
Mate 10 smartphone based on the above-mentioned method. First, 
a ruler was stuck to the wall. Second, 10 photographs were taken at 
different locations ranging from 0.9 m to 8.1 m from the ruler, with a 
step of 0.8m. At each photograph, four virtual objects were defined as 
segments spanning from the ruler tick of 0 cm to 20 cm, 50 cm, 80 cm, 
and 100 cm, respectively. This configuration ensured the objects on the 
ruler were nearly parallel to the long dimension in all the 10 photo-
graphs. Finally, the length in pixels of each object on the ruler were 
counted from all the 10 photographs, and a scatter between L/D and 
l/n was plotted. The FOV was estimated from the scatter diagram as the 
slope of the regressed line (see Equation 5). Figure 2 illustrates the 10 
photographs taken at increasing distances from the ruler.

Image Classification and FVC Estimation
After estimating the FOV of the smartphone camera, the zenith angles 
ranging from 0° to 10° were extracted from the cover images to ensure 
geometric consistence with DHP technology (Morsdorf et al. 2006; 
Mougin et al. 2014). The sky luminance within the limited zenith 
range is relatively homogenous, and the sky and canopy pixels can 
be easily distinguished in the upward-pointing images. The Otsu 
algorithm (Otsu 1979) was used for image classification. The basic 
principle of the Otsu algorithm is to find an optimal global threshold 
that, simultaneously, minimizes the intraclass variance and maximizes 
the inter-class variance. The band selection has a significant influence 
on the classification performance (Pueschel et al. 2012). We used the 
blue band because it provides the highest contrast between sky and 
canopy pixels (Lang et al. 2017; Leblanc et al. 2005; Yan et al. 2019). 
After classification, FVC is calculated as the number of canopy pixels 
divided by the total number of pixels.

Method Evaluation
Three statistical metrics, namely, the coefficient of determination (R2), 
the root-mean-square error (RMSE) and the bias were used to evaluate 
FVC estimated from smartphone against those from fisheye photo-
graphs and GF-1 satellite:
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where FVCSM and FVCB are, respectively, the FVC values derived from 
the smartphone and the benchmark method (i.e., fisheye photographs 
or GF-1 satellite).

Results
FOV Estimation
A zero-intercepted linear regression between L/D and l/n was observed 
with R2 equal to 0.999 (Figure 3). The slope of the regressed line, 
representing the FOV for the long dimension of the smartphone images 
(Equation 5), is 1.214 rad = 69.55°.

Comparison of Smartphone and Fisheye Photography FVC Estimates
Figure 4 illustrates concurrent fisheye and cover images for typical co-
nifer (the left column), broadleaf (the middle column), and shrub (the 

Figure 2. Photographs collected by the Huawei 
Mate 10 smartphone during the experiments 
for measuring its camera’s field of view. 
Photographs (a)–(j) were taken from 0.9 m 
to 8.1 m distances from the ruler, with a step  
of 0.8 m.

Figure 3. Regression between L/D and l/n. L and D are the physical 
length of the object and the distance between the camera and the 
object (both in meter), respectively. l and n are the length in pixels 
of the object and that of the long dimension of the photography, 
respectively.
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right column) forests. The fisheye photographs capture the forest over 
the whole upper hemisphere (FOV of 180º) while the maximum FOV of 
smartphone photographs is 69.55° (see also Figure 3).

Figure 5 shows the variation of canopy closure with view zenith 
angle for fisheye and smartphone photographs over the selected forest 
samples (Figure 4). Note that canopy closure is defined as complemen-
tary of gap fraction, and FVC is the canopy closure for nadir viewing. 
For the conifer case (Figure 5a), the canopy closure increases with 
zenith angle, consistently with the gap fraction theory (Nilson 1999). 
Yet, the increasing tread for the broadleaf forest (Figure 5b) and shrub 
cases (Figure 5c) is not obvious, because of the spatial heterogeneity 
(Figure 4b and 4e) and topographic effects (Figure 4c and 4f). The 
canopy closure from smartphone photographs is higher than the one 
from fisheye photographs, particularly, for open forest samples (Figure 
5a and 5b) while marginal differences are observed for closed shrub 
forest (Figure 5c).

Figure 6 shows the sub-photographs for the 0°–10° zenith angle 
range as extracted from fisheye and smartphone camera acquisitions 
(Figure 4). The proposed FOV estimation method allows to satisfac-
torily align sub-photographs from the smartphone camera with those 
from the fisheye camera. Some small vegetation elements or gaps were 

not captured in the fisheye photographs (Figure 6, top), which can 
bias actual FVC with an underestimation for open canopies (Figure 6a 
and 6b) and an overestimation for closed canopies (Figure 6c), while 
spatial details were well retained in smartphone photographs (Figure 6, 
bottom).

Figure 7 shows the comparison between FVC estimated from fisheye 
and smartphone photographs before (Figure 7a) and after (Figure 
7b) the proposed correction of FOV effects. Neglecting FOV effects 
for smartphone cameras induced remarkable FVC overestimation, 
especially for conifer forests (Figure 7a), because of the high values of 
canopy closure for oblique observations (Figure 5). The correction of 
FOV effects significantly improved the agreement between smartphone 
and fisheye camera FVC estimates: the coefficient of determination R2 
increased from 0.353 to 0.719, the RMSE decreased from 0.242 to 0.103 
and the systematic positive bias of the original smartphone estimates 
before FOV correction was highly reduced from 0.213 to 0.074. The 
residual positive differences of smartphone compared to fisheye 
estimates for intermediate FVC values (Figure 7b) can partially be ex-
plained due to a slight underestimation of actual FVC values for fisheye 
photography due to its lower pixel resolution (Figure 6).

Figure 4. Comparison between fisheye (top) and smartphone photographs (bottom) for (a, d) a conifer forest, (b, e) a broadleaf forest, and (c, f) 
a shrub forest. The gray circles represent the zenith angle isolines with 10° step. The innermost isolines (0–10º) define the boundaries used for 
FVC extraction.

Figure 5. Canopy closure versus view zenith angle for fisheye and smartphone photography over (a) a conifer forest, (b) a broadleaf forest, and 
(c) a shrub forest (cf. Figure 4).
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Comparison of Smartphone FVC Estimates and GF-1 Satellite Product
The comparison of smartphone FVC estimates to GF-1 WFV satellite-
derived FVC (Figure 8) exhibits a similar pattern as that to fisheye 

photography comparison (Figure 7): smartphone derived FVC, before 
dedicatedly FOV consideration, systematically overestimated the satel-
lite retrievals (bias = 0.135), and the consistency was relatively low (R2 

Figure 6. Extracted sub-photographs for FVC estimation from fisheye (top) and smartphone photographs (bottom) in (a,d) a conifer forest, (b,e) a 
broadleaf forest, and (c, f) a shrub forest.

Figure 7. Comparison between FVC estimates from fisheye and smartphone photography before (a) and after (b) FOV correction.

Figure 8. Comparison between FVC estimated from GF-1 and smartphone photographs (a) before and (b) after FOV correction.
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= 0.535). The observed bias was substantially reduced (bias = 0.007) 
and the consistency improved (R2 = 0.745) after the FOV correction in 
smartphone processing. The overall RMSE between the smartphone and 
fisheye FVC estimates was reduced from 0.164 to 0.066 after correc-
tion. The FVC field measurements from fisheye photography showed 
similar performances when compared with the GF-1 satellite retrievals 
(R2 = 0.707, RMSE = 0.078) but slightly underestimated intermediate 
FVC values (bias = –0.070, Figure A1).

Discussion
Projection Function Characterization
The characterization of the projection function, relating the distance (in 
pixel number) from image center to view zenith angle, is a prerequisite 
for quantifying the angular variation of the gap fraction, and further 
estimating vegetation parameters (e.g., FVC). Several methods have 
been developed to characterize the projection function for fisheye 
photographs (Baret and Weiss 2017; Lang et al. 2010). These methods 
were delicately designed for fisheye cameras, in which a wide FOV is 
required to ensure a robust regression between distance and zenith. 
However, these methods cannot be directly applied to smartphones 
with a limited FOV as compared to fisheye cameras.

This study proposed a practical method for estimating FOV of 
smartphone cameras (Section “GF-1 Satellite Product”) in which the 
zenith angle for each pixel in the smartphone photographs is computed 
based on a linear projection function assumption. The significant (p < 
0.01) linear regression between L/D and l/n (Figure 3) demonstrates 
the robustness of the proposed FOV estimation method and the validity 
of the linear assumption for the projection function.

Advantages of Smartphones for in situ Vegetation Parameter Estimation
Adjusting the photographic exposure of DHP for vegetation parameter 
estimation is challenging (Leblanc et al. 2005; Macfarlane et al. 2014; 
Zhang et al. 2005). The difficulty of exposure setting arises from the 
different definition of optimum exposure regarding camera design and 
vegetation parameter estimation. For satisfactory visualization, camera 
tends to please human eye such that the imaged objectives should be 
seen as 18% reflector (Unwin 1980), yet the main purpose of expo-
sure setting in in situ measurements is to achieve the greatest contrast 
between sky and canopy (Macfarlane et al. 2014; Zhang et al. 2005). 
Several protocols have been proposed for DHP, including using two 
stops of more exposure than the reference exposure measured in open 
sky (Zhang et al. 2005), taking multiple photographs under different 
exposures and visually selecting the best one (Macfarlane 2011), and 
reconstructing above-canopy reference from below-canopy hemispher-
ical photographs (Lang et al. 2010). However, these methods are not 
straightforward for common users during field campaigns, impeding a 
consistent compatibility with other measurement methods (Pueschel et 
al. 2012).

Photographic exposure is no longer a big issue for smartphone. 
Figure 6 illustrates that smartphone photographs, under automatic ex-
posure, can provide a greater contrast between sky and canopy than the 
fisheye acquisitions with the best exposure. Furthermore, spatial details 
were well retained in smartphone photographs, while lots of them were 
lost in the fisheye photographs. The loss of fine granularity information 
in fisheye photographs is mainly due to the overexposure close to nadir 
directions, which was also revealed by Macfarlane (2011), Pueschel 
et al. (2012), and Zhang et al. (2005). The overexposure of DHP is 
especially obvious for tall trees with small leaves or needles (see 
Figure 6a and 6b). The exposure discrepancy incurs systematic bias 
between DHP and DCP measurements (Mougin et al. 2014; Pekin and 
Macfarlane 2009; Ryu et al. 2010). Considering that the overexposure 
phenomenon of fisheye photographs in nadir directions would cause an 
underestimation of FVC in these canopies (Figure A1), the smartphone 
estimated FVC may be closer to the true value than DHP (Figure 7b).

The higher spatial resolution of smartphone is also a factor ex-
plaining its outperformance over fisheye cameras in resolving small 
foliage. For DHP, with lower spatial resolution than smartphones, the 

mixed-pixel problem is a key source of uncertainty in estimating veg-
etation parameters (Macfarlane 2011) and robust unmixing algorithms 
are needed to separate mixed pixels into sky and canopy components 
(Leblanc et al. 2005; Ryu et al. 2012). On the opposite, the unmixing is 
not necessary for smartphones, given their improved spatial resolution.

Smartphone is a promising tool to collect in situ vegetation mea-
surements also because of its low cost and portability. Smartphones are 
becoming a popular tool and citizen could contribute for field mea-
surements in a crowdsourcing manner. This would bring a booming 
increase in field data volume, facilitating the big-data research.

Uncertainties in the Estimated FVC
This study proposed a practical method to estimate the FVC from 
smartphone photographs. The improved agreement of smartphone FVC 
estimates with DHP estimates demonstrated the utility of the proposed 
approach for correcting FOV effects. However, several sources of un-
certainty still limit the accuracy of ground-based FVC estimates.

First, for the photograph acquisition and analysis, the automatic 
photographic exposure and the automatic thresholding Ostu (1979) 
algorithm were used, respectively. Satisfactory FVC estimation was 
obtained under these automatic processes (Figure 7b). However, the 
uncertainty caused by these automatic processes is worth of assessment 
to further improve our method.

Second, spatial representativeness of measurements should be 
carefully considered to capture the variation within a plot (Xu et al. 
2016). Close inspection of Figure 5 revealed that, contrarily to gap 
fraction theory (Nilson 1999), the canopy closure variation with 
zenith angle was not monotonically increasing, particularly for angle 
values close to the nadir direction, because the spatial coverage in 
this direction is very limited to capture the plot scale variation (Ryu et 
al. 2012). Sampling multiple subplots within each plot is mandatory. 
The influence of the subplot number on FVC estimation is also worth 
investigation.

Finally, our study site is located in a mountainous area. It has been 
well recognized that topography significantly influences the gap faction 
of forest canopy, and further reduces vegetation parameter retrieval 
accuracy (Cao et al. 2015; María Luisa et al. 2008). As illustrated in 
Figure 4c, the upper left part (up-slopes) seems denser than bottom 
right part (down-slopes) caused by the distorted path length with to-
pography (Yin et al. 2020; Yin et al. 2017b). The topographic influence 
on the gap fraction in the nadir direction is very limited compared to 
slant directions (María Luisa et al. 2008). For this reason, the topo-
graphic influence on FVC estimation was neglected in this study.

Prospects for Future Studies
Several issues still merit to be further investigated to improve the prac-
ticability of the proposed method.

First, the proposed method was tested using a Huawei Mate 10 
smartphone, and the application of the method to other smartphones 
should be assessed.

Second, the comparison to satellite-derived FVC (Figure 8) con-
firmed the rational of the proposed method to validate remote sensing 
products. Therefore, more field campaigns will be implemented in 
future to compile a representative ground data supporting validation 
activities of existing FVC products.

Third, the horizontal position of the smartphone was maintained 
manually in the current study. Gyroscope imbedded in smartphones 
can be used to guarantee horizontality in future studies.

Fourth, no distinction was made between green leaves and other 
non-photosynthetic elements. Considering the higher spatial resolu-
tion and less sensitivity to exposure setting of smartphone images 
than fisheye ones, the green elements of vegetation can be potentially 
extracted from smartphone images, and this may benefit the study of 
photosynthetic process.

Finally, the zenith and azimuth angles of smartphone camera can 
be measured and controlled through gyroscope, so the reconstruction 
of hemispherical observations from smartphones is possible (Tichý 
2016). This treatment will provide more detailed description of canopy 
architecture. The potential of smartphones to reconstruct hemispherical 
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gap fraction and accordingly measure more vegetation parameters 
(e.g., leaf area index, clumping index and leaf inclination angle) will 
be assessed in a near future study.

Conclusions
We proposed a practical method to estimate the fractional vegetation 
cover (FVC) from smartphone photography. The cameras equipped in 
smartphones typically have a wider field of view (FOV) than the digital 
single lens reflex cameras used for traditional digital cover photogra-
phy. This study highlighted that the FOV effect is a key source of un-
certainty when estimating vegetation parameters and, particularly, the 
FVC from smartphone photography. The proposed FOV characterization 
method allows determining the projection function of the smartphones 
and limit the acquisitions to the appropriate zenith range close to nadir 
view for FVC estimation.

This method was assessed in a mountainous forest area in China by 
comparison with fisheye camera acquisitions and GF-1 FVC product. 
The root-mean-square errors (RMSE) of smartphone FVC estimates as 
compared with both fisheye ground measurements and GF-1 satellite 
product were reduced by 40% after the correction of FOV effects. The 
resulting FVC estimates showed no bias and corrected the observed 
overestimation in FVC values of original smartphone estimates. Since 
smartphone photographs are insensitive to the camera exposure setting 
and to the classification method selection, the proposed method has a 
promising prospect to support FVC product validation.

Appendix

Figure A1. Comparison between FVC estimated from fisheye 
photographs and GF-1 satellite.
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A Low-Cost and Portable Indoor 3D Mapping 
Approach Using Biaxial Line Laser Scanners and 
a One-Dimension Laser Range Finder Integrated 

with Microelectromechanical Systems
Xuzhe Duan, Qingwu Hu, Pengcheng Zhao, and Shaohua Wang

Abstract
Existing indoor 3D mapping solutions suffer from high cost and poor 
portability. In this article, a low-cost and portable indoor 3D map-
ping approach using biaxial line laser scanners and a one-dimension 
laser range finder integrated with microelectromechanical systems 
is proposed. A multiple-sensor calibration approach is presented to 
perform the extrinsic calibration of the integrated 3D mapping system. 
The 2D point cloud acquired by the horizontal laser scanner and the 
orientation information obtained by the microelectromechanical sys-
tems are used as inputs for a simultaneous localization and mapping 
framework to estimate the 2D poses. The height information acquired 
by the laser range finder is then fused to obtain the 3D pose, which is 
applied to restore the actual position and orientation of the 2D point 
cloud generated by the tilted laser scanner to reconstruct the 3D point 
cloud of the indoor environment. The experimental results—three 
typical indoor scenes—demonstrate that the proposed approach can 
achieve accuracies of 3 cm and 2°. Therefore, the proposed approach 
is a low-cost, portable, and accurate solution for indoor 3D mapping.

Introduction
Multiple-sensor-integration mobile mapping technology is a cutting-
edge technology that integrates positioning, attitude determination, and 
measurement (D. Li 2006). Different from traditional measurement, 
which requires the instrument to be fixed at several predetermined 
stations, mobile measurement technology realizes measurements in 
motion and avoids the waste of human and time resources caused by the 
migration of instruments among multiple stations. It also improves the 
degree of freedom of the platform and solves the problem of blind spots 
that can exist with traditional methods. A typical mobile measurement 
system consists of a laser scanner, an optical camera, a global navigation 
satellite system (GNSS), and an inertial measurement unit (IMU); the GNSS 
and IMU are responsible for determining the trajectory of the platform, 
whereas the laser scanner and the optical camera are applied to sense the 
surrounding environment (Puente et al. 2013; Zhao et al. 2018).

Generalized mobile measurement refers to the collection of spatial-
position and attribute data of roadside features with mobile vehicles 
as platforms (D. Li 2006; Gong et al. 2015). However, with continu-
ous improvements in the quality of life, the spatial information of the 
indoor environment—which accounts for more than 90% of the time 
spent by human beings—has begun to receive more and more atten-
tion. Accurate indoor 3D spatial information can be applied to many 
fields, such as indoor navigation for mobile robots, digital reconstruc-
tion and conservation of ancient ruins, and emergency escape guidance 
for sudden indoor disasters. The rapid establishment of accurate indoor 

maps has become a prerequisite for building information modeling/
management, indoor location-based services, and augmented and vir-
tual reality applications (Domínguez Martin et al. 2011; Zlatanova and 
Isikdag 2015; Chen and Clarke 2020).

Ensuring that the sensor’s position can be determined while it is in 
motion is a precondition for the effective implementation of mobile 
measurement solutions. However, it is often not possible to obtain valid 
GNSS satellite signals to evaluate the trajectory of the platform in indoor 
environments (Li et al. 2020). Simultaneous localization and mapping 
(SLAM) is a popular technology for solving indoor localization prob-
lems. It aims to build a model of the surrounding environment and esti-
mate the platform’s own motion state by using a specific sensor without 
prior environmental information (Dissanayake et al. 2001). The increas-
ing maturity of SLAM technology provides strong technical support for 
indoor mobile measurement, which has addressed the problem of how 
platforms can “localize themselves” in the absence of GNSS signals.

SLAM can be divided into visual SLAM and laser SLAM, depend-
ing on the sensor type. The positioning and mapping technology that 
uses a monocular, stereo, or depth camera as the only exteroceptive 
sensor is called visual SLAM (Davison et al. 2007; Comport et al. 2010; 
Fuentes-Pacheco et al. 2015; Forster et al. 2017; Mur-Artal and Tardós 
2017). It has the characteristics of small size, low power consumption, 
and rich information acquisition, which can provide rich environment 
texture information (Di et al. 2019). With the continuous optimization 
of image-matching algorithms, research on visual SLAM has grown 
stronger (J. Li et al. 2017; Li et al. 2020; Mao et al. 2020; Cao et al. 
2021). However, since cameras are susceptible to visual-field limita-
tions, bad weather, backlight, and other unsatisfactory conditions, 
visual SLAM is often very dependent on the working environment, and 
has low accuracy (Huang et al. 2018).

Laser SLAM has gradually become the most popular area of research 
in the field of SLAM. Benefiting from the characteristics of a laser scan-
ner, laser SLAM has the advantages of high measurement accuracy, high 
directionality, and low computational effort (Debeunne and Vivet 2020; 
Wei et al. 2020). According to the mathematical optimization frame-
work adopted, laser SLAM can be further divided into filter-based and 
graph optimization-based. FastSLAM is a typical filter-based laser SLAM 
scheme (Montemerlo et al. 2002). In this algorithm, the platform’s 
poses are estimated by a particle filter, and each particle is propagated 
by the kinematics model. For the propagated particles, the weight is 
calculated by the observation model and the map is constructed ac-
cording to the estimated poses. On this basis, a Gmapping scheme that 
uses a Rao–Blackwellized particle filter to synchronize the position 
and orientation of the platform has been proposed (Grisetti et al. 2007). 
Gmapping solves FastSLAM’s problems of high memory consumption 
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and particle dissipation, but is still heavily geared toward odometry 
information.

The Hector SLAM scheme is an algorithm with front-end scan 
matching only and no back-end optimization (Kohlbrecher et al. 
2011). It solves the scan-matching problem using the Gauss–Newton 
method and achieves reliable localization and mapping capabilities by 
using fast approximation of map gradients and multi-resolution grids. 
Google’s Cartographer (Hess et al. 2016) scheme focuses on a method 
of creating local submaps and a scan-matching strategy for detecting 
loop closure. Local errors are optimized by an extended Kalman filter 
(EKF), and global errors are allocated by a graph-optimized scheme. 
In the field of 3D laser SLAM, the LOAM scheme is based on scan 
matching of feature points and uses a nonlinear optimization method 
for laser-map matching (J. Zhang and Singh 2014). The algorithm has 
become a classical framework for 3D laser SLAM. In the LeGO-LOAM 
scheme, a segmentation process for point clouds is introduced (Shan 
and Englot 2018). The ground points and the points that remain after 
segmentation are labeled, and feature extraction and frame match-
ing are performed on the two separately. Shan’s team then proposed 
the LIO-SAM scheme, which uses the idea of a factor graph to perform 
optimization of loop closure and further improves the robustness of 3D 
SLAM (Shan et al. 2020). However, these 3D SLAM schemes all require 
a multi-line laser scanner that obtains 3D point clouds.

In terms of hardware, representative mobile mapping devices for la-
ser SLAM on the market mainly include trolley-type devices, represent-
ed by the NavVis M6 (https://www.navvis.com/M6), backpack-type 
devices, represented by the Leica Pegasus Backpack (https://www.
faro.com/en/Products/Hardware/Focus-Laser-Scanners), and handheld 
devices, represented by the GeoSLAM ZEB-REVO (https://geoslam.com/
solutions/zeb-revo-rt). The most portable is the GeoSLAM ZEB-REVO; it 
weighs 3.5 kg, which is not convenient for large-scale and long-term 
operation. All three types of devices have relatively high costs, and 
therefore are not suitable for low-budget research and production.

Materials and Methods
The proposed low-cost and portable indoor 3D mapping approach 
integrates two line laser scanners, a one-dimension laser range finder, 
and microelectromechanical systems (MEMS). The general idea for 3D 
mapping is illustrated in Figure 1.

Figure 1. Mapping principle.

As the figure shows, each of the two line laser scanners (colored in 
green) captures a 2D point cloud in its own plane, the MEMS (colored 
in yellow) acquires the 3D orientation information, and the one-dimen-
sion laser range finder (colored in red) outputs the height information. 
The horizontal 2D plane point cloud and the MEMS orientation data are 
used as the inputs of SLAM to evaluate the trajectory of the platform. 
As the spatial height of our platform is not consistent and the plat-
form bumps as the operator walks, a height observation is required to 
supplement 2D SLAM to estimate the actual position of the platform in 
3D space. We assume that the ground in the scene is consistent during 
data acquisition, so that the range information acquired by the laser 
range finder can be corrected with the MEMS to evaluate the actual 

height of the platform. With the estimated 3D poses, the 2D point 
clouds obtained by the tilted scanner are then converted into the 3D 
point clouds in a push-broom way.

The overall workflow is shown in Figure 2. The next section 
introduces the system and materials. The following section proposes 
the multiple-sensor calibration approach, and then comes a section 
showing the SLAM scheme, including how to map the indoor environ-
ment, estimate the platform poses, and output the trajectory informa-
tion. Then we describe the method of fusing data collected by multiple 
sensors and reconstructing a 3D point cloud.

Figure 2. Study workflow chart.

System and Materials
The proposed indoor 3D mapping approach in this article assembles 
a MEMS-IMU (HI226), a laser range finder (LDM_L1), and two line laser 
scanners (ScannerS1 and ScannerA3), as shown in Figure 3a. Based on 
experience in mobile measurement systems and previous knowledge 
(Thomson et al. 2013; Vosselman 2014), we design the axial orienta-
tions of the two laser scanners and their scanning pattern as shown 
in Figure 3b. The plane of the red dashed line is the scanning plane 
of the horizontal ScannerA3, and that of the green dashed line is the 
scanning plane of the tilted ScannerS1. With a total weight of 2.6 kg 
and an ergonomic handle, the device can be easily held in one hand by 
surveying personnel.

The HI226 MEMS-IMU, produced by HiPNUC, integrates a three-axis 
accelerometer, a three-axis gyroscope, and a low-power microproces-
sor, which can output the roll, pitch, and relative yaw angle based on 
local geographic coordinates by a sensor fusion algorithm (https://hip-
nuc.com/HI226_229.html). The LDM_L1 laser range finder, manufactured 
by MyAntenna, measures the distance of the target object by detecting 
the phase difference of the laser, and can achieve millimeter-level reso-
lution in the measurement range of 0.05 to 40 m (http://imyantenna.
com/pro_view-62.html). Two line laser scanners, RPLIDAR A3 (https://
www.slamtec.com/en/Lidar/A3) and RPLIDAR S1 (https://www.slamtec.
com/en/Lidar/S1) from Slamtec, are integrated on the device. The 
RPLIDAR A3 horizontal laser scanner can sample up to 16 000 times/s 
at a frequency of 20 Hz, with a maximum measurement range of 25 
m and an angular resolution of 0.3375°. The high-frequency charac-
teristics make it suitable for the SLAM process, especially for building 
solid maps even during turns. The RPLIDAR S1 tilted laser scanner can 
sample 9200 times/s at 15 Hz, with a measurement radius up to 40 m 
and a measurement resolution of 3 cm, which guarantees the accuracy 
of the final 3D point cloud. An industrial personal computer (IPC) with 
an AAEON UP-APL01 mainboard and an Intel Pentium N4200 1.10-GHz 
processor is also installed inside the device to control power supply, 
store data, implement real-time SLAM in the robot operating system, 
and publish map services for the mobile terminal. The entire system 
costs about 11 500 yuan, which is a fairly low price for a handheld 3D 
laser scanning device on the market today.
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System Calibration
Calibration Principle
Extrinsic calibration among sensors is the premise of multi-sensor 
data fusion. For our approach, the extrinsic parameters between the 
horizontal laser scanner and the tilted laser scanner directly affect the 
accuracy of the 3D point cloud. A 2D line laser scanner can only obtain 
a point cloud on the plane where it is located (e.g., the two dashed lines 
in Figure 3b). Therefore, unlike extrinsic calibration of multiple 3D 
laser scanners, multiple depth cameras, or even one laser scanner and 
one camera, the extrinsic calibration process for 2D line laser scanners 
cannot be achieved by simply finding preplaced retroreflective targets 
or identifiable features in the 3D scene. Specific constraints need to be 
constructed to calibrate the 2D line laser scanners using a given scene 
(in this case a cuboid-shaped corridor) as the georeferenced target.

The essence of extrinsic calibration for two laser scanners is to find 
the relative rotation and translation parameters from one scanner to 
the other. The coordinate frames of the two laser scanners are denoted 
as S1 and S2, respectively. Ideally, when a cuboid-shaped corridor is 
scanned using two laser scanners, two parallelograms will be obtained, 
and all the sides of the parallelograms will be on the surfaces of the 

corridor. The coplanarity constraint and the orthogonality constraint 
are expressed as

 (R1I1
a × R2I2

a) · (R1C1
a + T1 – R2C2

a – T2) = 0 (1)
and
 na · nb = (R1I1

a × R2I2
a) · (R1I1

b × R2I2
b) (2)

where a and b denote two adjacent surfaces in the corridor, Ci
k and Ii

k 
represent the center point and the direction vector of the line Li

k (i = 
1, 2; k = 1, 2, 3, 4) scanned by the ith laser scanner on the surface k, 
[R1 |T1]∈R3 and [R2 |T2]∈R3 denote the poses of the two laser scan-
ners with respect to a common reference frame, and nk represents the 
normal vector of the surface k, as shown in Figure 4. The coplanarity 
constraint indicates that when scan lines fall on the same surface of 
the corridor, they should be on the same 3D plane. In Equation 1, it is 
expressed as the two dashed lines (colored in blue) perpendicular to 
each other in Figure 4. The orthogonality constraint means that two ad-
jacent surfaces of the corridor should be perpendicular. In Equation 2, 
it is expressed as the two plane normal vectors (colored in light yellow 
and dark yellow, respectively) perpendicular to each other in Figure 4. 
The Levenberg–Marquardt algorithm is adopted to solve the nonlinear 
optimization problem with constraints, and the relative relationship 
between sensors can be calculated (Fernández-Moral et al. 2015; Yin 
et al. 2018).

Figure 4. 3D view of two scanned parallelograms.

The whole calibration procedure has four parts (Figure 5): col-
lecting observations, extracting lines, constructing constraints, and 
calculating calibration results.

Figure 5. Extrinsic calibration workflow chart.

(a)

(b)

Figure 3. Device design scheme: (a) device components; (b) 
scanning pattern.
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First, the random sample consensus (RANSAC) algorithm is used to 
detect lines. RANSAC can effectively cluster lines that are interrupted by 
the dead view zone of the scanner into a continuous line, thus increas-
ing the number of constraints (Fischler and Bolles 1987). Constraints 
including the nearest sampling distance threshold, the maximum 
sampling distance threshold, and the minimum distance threshold 
between two sampling points are added to the RANSAC algorithm to 
extract lines. Line-fitted models are constructed by randomly sampling 
two points in the point set. All other points are verified on the model, 
being divided into inliers and outliers. The model with the highest ratio 
of inliers to outliers is selected as the detected-line model. This cycle is 
repeated four times in each group of observations to detect up to four 
lines with the highest confidence.

Second, by determining the subordinate relationship between the 
line and the corridor surface, the valid corridor observations in each set 
of data are found, and the coplanarity and orthogonality constraints are 
constructed. Assuming that n lines (n ≤ 4) are extracted from the scan 
results at each moment, these lines must be sorted to determine the 
corresponding relationship between lines and corridor surfaces. The 
line-sorting method is applied as follows:
(1) Finding the center points of each line;
(2) Sorting the lines by the angle between the vector from zero point to 

center point and the vector of the positive x-axis direction;
(3) Setting the index of the first line as 1st and determining whether 

the next line belongs to the opposite surface, the previous adjacent 
surface, or the next adjacent surface, based on the relationship 
between the direction vectors until each line is set an index.

After the line-sorting process, a sorted line set is generated in each 
group of data:
 SL = {SSLi} (i = 1, 2, …, nLRFs) (3)

where nLRFs is the number of laser scanners and

 SSLi = {Lj
i} (i = 1, 2, …, nLRFs) (4)

where Lj
i denotes the sorted line with an index of j in the lines from the 

ith laser scanner.
A corridor observation can be regarded as a set containing four lines:

 CO = {S1, S2, S3, S4} (5)

where Sa (a = 1, 2, 3, 4) denotes the line set with respect to the corridor 
surface a:

 Sa = {La
i} (a = 1, 2, 3, 4; i = 1, 2, …, nLRFs) (6)

Comparing Equations 4 and 6, we can find that the essence of 
obtaining CO is to convert Lj

i to La
i—that is, to find the correct arrange-

ment conversion from the line index to the corridor surface index. In 
this way, lines with the same corridor surface index are coplanar line 
pairs; lines with adjacent corridor surface indexes are located on two 
mutually perpendicular surfaces. We adopt an evaluation method based 
on coplanarity to find the correct observations from the candidates. For 
any two lines extracted from the scan results, their four endpoints form 
a tetrahedron. Assuming a, b, and  c are the three vectors from one 
vertex to the other three vertices in the tetrahedron, the volume of the 
tetrahedron can be computed as

 
V a b c
tetrahedron

( )= × ∙� � �

6  
(7)

The relationship between the two line segments can be determined 
by whether Vtetrahedron  is close to zero. With all possible corridor obser-
vations generated previously, each can be assessed by the sum of all 
the tetrahedron volumes in all four corridor surfaces:

 
= …V l l l
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where nw denotes the number of lines in the corridor surface w, the 
function Φ calculates the sum of the tetrahedron volumes, and VCO is 

the assessment score of the corridor observation. The corridor observa-
tion with the smallest VCO is taken as the correct observation.

Finally, the calibration problem is transformed into a nonlinear opti-
mization problem with the coplanarity and orthogonality constrains, 
expressed as
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(9)

where N is the number of corridor observations, j is the index of the 
laser scanner to be calibrated, k is the index of the reference laser scan-
ner, a is the surface index of the corridor, and wi is the weight of the 
corresponding residual from COi. The Levenberg–Marquardt method is 
used to iteratively solve the nonlinear least-squares problem:

 [μ2
kΔT2

k, …, μm
k ΔTm

k ]T = –(H + λdiag(H))–1g (10)

where m is the number of laser scanners, k is the index of the itera-
tion, μj

k  (j=2,…,m) represents the rotation increment represented by 
the exponential map (euj Rj), ΔTk

m indicates the increment of translation 
transformation, λ is the Levenberg–Marquardt damping factor, H is a 
6(m − 1)-dimensional Hessian matrix, and g is the gradient of the cost 
function. The rotation matrix is then updated using the exponential 
map as

 Rj
k+1 = eμk

j Rj
k, Tj

k+1 = ΔTj
k + Tj

k ( j∈[2, m]) (11)

from an initial guess which can be obtained from a rough measurement 
of the device.

Calibration Process
Figure 6 shows the cuboid-shaped corridor selected for our calibration. 
The length of the corridor was about 6.5 m, and its width and height 
were 2.2 and 2.3 m, respectively. The corridor had a regular shape and 
was free of doors, windows, and other clutter to interfere with the cali-
bration process. The scan frequency of the two line laser scanners was 
unified at 15 Hz and the platform was steadily rotated and translated 
in the corridor. Data from the two scanners were collected simultane-
ously for about 1 min as an independent group of observations. The 
acquisition process was repeated several times to yield five groups of 
high-quality independent observations.

Figure 6. Extrinsic calibration site.

Referring to the design drawing of the device, the initial pose of 
the tilted laser scanner relative to the horizontal laser scanner was set 
as [0°, 30°, 0°] and [0.00 mm, 0.00 mm, −64.81 mm]. Figure 7 shows 
the line-detection results for some frames. Two to four lines (colored in 
gray) could be detected in the point clouds (colored in red and green) 
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obtained from the laser scanners. The calibration was repeated 100 
times for each observation group, and error processing was performed 
on the results (Pukelsheim 1994). The mean of the five calibration 
results was calculated as the final extrinsic parameters. The standard 
deviation of each set of observations was then computed to measure 
the accuracy of the calibration results, as shown in Table 1.

As can be seen from Table 1, the standard deviation of the calibra-
tion result was kept within 0.1° and 2.6 mm, which corresponded to 
the accuracy of the subsequent 3D reconstruction. It is also notice-
able that the y-axis translation deviation and the pitch deviation were 
greater than those on the other two axes. This phenomenon is normal, 
because it was difficult to provide the platform with a large pitch angle 
in practice, and consequently the constraints in the y-direction and the 
pitch angle were weak.

Trajectory Evaluation
Framework of Trajectory Evaluation
Considering the scan frequency of the RPLIDAR A3 and the computing 
performance of the IPC, Hector SLAM was selected as the foundation 
for real-time positioning and mapping in our solution. Referring to 
the existing SLAM frameworks (Kohlbrecher et al. 2011, 2014), the 
trajectory-evaluation scheme in this article is shown in Figure 8. It 
combines a scan-matching approach using a laser scanner with a 3D 
estimate module based on additional measurements. The 2D SLAM con-
sists of three steps: data preprocessing, scan matching, and plane-map 

(a) (b)

(c) (d)

Figure 7. The line-detection results for some frames: (a) frame 32, (b) frame 404, (c) frame 860, (d) frame 1052.

Figure 8. Trajectory-evaluation flowchart.

Table 1. Calibration results between two laser scanners.
Item Rotation (°) Translation (mm)

No. 1 −0.22, 31.37, −1.31 11.91, −8.81, −60.27

No. 2 −0.17, 31.41, −1.24 10.29, −7.81, −61.86

No. 3 −0.17, 31.25, −1.33 11.94, −3.62, −60.47

No. 4 −0.15, 31.45, −1.43 8.51, −3.23, −60.55

No. 5 −0.18, 31.30, −1.36 12.20, −2.84, −62.80

Extrinsic parameters −0.18, 31.36, −1.33 10.97, −5.26, −61.02

Standard deviation 0.02, 0.07, 0.06 1.40, 2.52, 0.72

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2022 315



construction. In the 3D navigation, the filter fuses the inertial and 
height information to form a consistent 3D solution. Both estimates are 
updated individually and loosely coupled, to keep synchronized over 
time. The two modules interact with each other to output the pose of 
the platform at every moment.

The state of the platform is represented as x = (ΩT, pT, vT)T, where Ω 
= (ϕ, θ, ψ)T represents the roll, pitch, and yaw Euler angles, and p = (px, 
py, pz)T and v = (vx, vy, vz)T are the position and velocity of the platform, 
respectively. The angular velocity ω = (ωx, ωy, ωz)T and the accelera-
tion a = (ax, ay, az)T obtained by the IMU constitute the input vector u 
= (ωT, aT) T. The motion of the platform is described by the nonlinear 
differential-equation system

 Ω
.
 = EΩ·w (12)

 p
.
 = v (13)

 v
.
 = RΩ·a + g (14)

where RΩ is the direction cosine matrix that maps a vector in the body 
frame to the navigation frame, EΩ maps the angular rate to the derivative 
of the Euler angles, and g is the constant gravity vector (Kuipers 1999).

2D SLAM for Planar Localization
An occupancy grid map is used to represent the arbitrary environ-
ments. The process is divided into two main stages: map access and 
scan matching. The continuous environmental information is first 
discretized with the laser data. These discrete laser scans are then 
matched and local maps are fused to form global maps (Thrun 2002). 
Depending on the actual scenario and the characteristics of the laser 
scanner, the point cloud can be preprocessed, for example by down-
sampling the number of points or removing the outliers, so as to better 
match the scan results in the subsequent processing.

Figure 9. Bilinear interpolation and gradient descent (Kohlbrecher et 
al. 2011).

The occupancy probabilities and derivatives are estimated by bilin-
ear interpolation. For a given continuous map coordinate Pm, the 
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be approximated by using the four closest integer coordinates P11, P10, 
P01, and P00, as depicted in Figure 9. Then the linear interpolation along 
the x- and y-axes yields
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The derivatives can be approximated by

∂
∂ ( ) ≈ −

−
( ) − ( )( ) + −

− ( ) − ( )( )M
x
P y y

y y
M P M P y y

y y
M P M Pm

0

1 0
11 01

1

1 0
10 00

 
(16)

∂
∂ ( ) ≈ −

−
( ) − ( )( ) + −

− ( ) − ( )( )M
y
P x x

x x
M P M P x x

x x
M P M Pm

0

1 0
11 10

1

1 0
01 00  (17)

Scan matching is the process of aligning laser scans with each other 
or with an existing map. To achieve the best alignment between the 
laser scan and the map, we seek to find the transformation ξ=(px, py,ψ)T 
that minimizes
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ξ
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where Si (ξ) is the world coordinates of the obstacle measured by the 
ith laser beam when the scanner transforms as ξ. The function M(Si (ξ)) 
returns the map value at the coordinates generated by Si (ξ). Given an 
initial estimate of ξ, the following equation is used to estimate Δξ so 
that the error measure is optimized:
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The Gauss–Newton iterative method is used to solve the nonlinear 
optimization problem (Lucas and Kanade 1981). In this process, the 
covariance matrix can be calculated as

 R = Var{ξ} = σ2 · H–1 (20)

where σ is a scale factor that depends on the performance of the laser 
scanner and H represents the Hessian matrix
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To avoid the risk of converging into wrong local minima and keep 
the different map layers updated simultaneously, a multi-resolution 
map representation is adopted to gradually substitute the low-resolu-
tion map pose estimate into the high-resolution map.

3D Navigation for State Estimation
The 2D position and orientation in the plane are updated by the scan 
matcher, but for the full 3D estimation, an additional height sensor 
is needed. For best performance, the EKF with the general platform 
model defined by Equations 12–14 is used in 3D navigation (Sorenson 
1985; Senne 1972). As shown in Figure 8, the information between 
the 2D SLAM and the 3D EKF estimate needs to be exchanged in both 
directions. On the one hand, the pose estimate from the EKF is used as 
the initial guess for optimizing the scan matcher. On the other hand, 
covariance intersection is used for fusing the SLAM pose with the full 
belief state to enhance the effect of the Kalman measurement update 
(Julier and Uhlmann 2007).

Denoting the Kalman estimate of the scanning process as x ̂ and the 
covariance as P, the fusion result can be given by

 (P+)–1 = (1 – ω) P–1 + ω · CTR–1C (22)
and
 x̂+ = P+((1– ω) · P–1 x̂ + ω· CTR–1 ξ *)–1 (23)

where ξ* and R are calculated as in Equations 18 and 20, respectively, 
and C is the observation matrix.

With the mutual optimization of 2D localization and 3D EKF esti-
mation, the system can calculate its own 3D position and orientation in 
real time during the data-acquisition process. The evaluated trajectory 
comes with a timestamp that is aligned with the time when the sensors 
collect data and is saved in the IPC.

Scene Reconstruction
Although all data are unified at the robot operating system time, there is 
no guarantee that each frame of data collected by different sensors has 
exactly the same timestamp, due to differences in the power-up sequence 
and sampling frequency. The time synchronization of the trajectory data 
and the other measurement data is key to reconstructing the 3D point 
cloud. Denoting the system pose at time t as (Rt, Tt), it can be calculated as
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 (Rt, Tt) = interpolate ((Rf, Tf), (Rb, Tb)) (24)

where f and b are the time before and the time after t, respectively. 
Since the addition operation of the transformation matrix is unclosed, 
the function “interpolate” is uncertain for a transformation matrix. It is 
automatic to convert the transformation matrix into a quaternion repre-
sentation first, and then linearly average the quaternions according to 
the properties of quaternions (F. Zhang 1997).

The 3D point cloud can be reconstructed by the trajectory and the 
extrinsic parameters. Supposing that after calibration, the coordinate 
system of the tilted laser scanner relative to the horizontal one is (Rs, Ts), 
the trajectory estimated by SLAM relative to the world coordinate system 
at time t is (Rt

d,Tt
d), and the coordinate of the point scanned by the tilted 

laser scanner at time t in its own coordinate system is p0, the coordinate 
of the point in the world coordinate system can be described as

 pw = Rt
d (Rs · Po + Ts) +T t

d  (25)

In order to obtain a better 3D point cloud, some additional process-
ing is required before and after the reconstruction. Uniform spatial 
sampling of the point cloud can not only eliminate the redundant points 
caused by uneven scanning but also facilitate the subsequent point-
cloud processing. Before the point cloud can be used for semantic 
understanding and other tasks, anomalous points caused by high reflec-
tivity, sparse point-cloud bands caused by moving objects, and other 
obviously erroneous points also need to be manually eliminated.

Results
Experimental Data
The sites of the experiment are three scenes inside a library building: 
an underground garage, a study room on the first floor, and a read-
ing room on the fourth floor, with a total area of about 2700 m2. The 
underground garage, with an area of about 1400 m2, is the largest and 
emptiest among the three scenes; the study room on the first floor, with 
an area of about 600 m2, has a simple structure and a wide field of 
view; the reading room on the fourth floor, with an area of about 700 
m2, has dense bookshelves, a complex structure, and poor scene visibil-
ity. We conducted the experiment when there were as few people in the 
library as possible, to reduce the interference of pedestrian movement. 
The surveying personnel held the device in one hand, placed it directly 
in front, and moved at a constant speed in the scene while monitoring 
the mapping effect. In Figure 10, the picture on the left records the 
data-acquisition process, and the screenshot on the right shows the 2D 
mapping result updated in real time on the mobile terminal.

In addition to using our indoor 3D mapping approach for data ac-
quisition, the station-type FARO FocusS 150 3D laser scanner (https://
www.faro.com/en/Products/Hardware/Focus-Laser-Scanners) and the 
handheld GeoSLAM ZEB-REVO RT 3D laser scanner were used to form 
the control group. Figure 11 illustrates the two devices used to conduct 
the controlled trial. Before the FARO FocusS 150 3D laser scanner is 
used, the scene must be surveyed and station setup planned. Since the 
underground garage had a large area and a wide field of view, a total of 
three stations were set up; the study room on the first floor had a small 
area and a wide field of view, so only one station could achieve the 
scanning of most of the scene; the fourth floor had a complex structure 
and poor visibility, so a total of five stations were set up to scan the en-
tire scene. For the collected data from multiple stations, postprocessing 
was needed to register the point clouds in order to obtain a complete 
3D point cloud of the scene. The SLAM algorithm of the GeoSLAM ZEB-
REVO RT 3D laser scanner provides a global optimization strategy, so 
the environment of the scene needs to be surveyed and a closed-loop 
route planned. Since the SLAM strategy based on our approach does not 
require detection of loop closure, data can be collected directly without 
conducting environmental surveys. The point-cloud file was generated 
directly by the data-processing program, and no other postprocessing 
operations were required. In practice, the time consumed by our solu-
tion is typically less than that with the FARO equipment and comparable 
to that with the GeoSLAM device.

Trajectory Results and Planar Maps
Since the SLAM framework used in this article does not contain back-end 
optimization, the complete trajectory can be evaluated and saved direct-
ly during data acquisition. Figure 12 shows the 2D planar point clouds, 
evaluated trajectories, and station locations obtained with the three solu-
tions. The point clouds colored in white are the scanned environment 
boundaries, the lines colored in red are the trajectories, and the points 
colored in yellow are the station locations of the FARO FocusS 150.

Intuitively, the scanning results of our solution are relatively 
satisfactory in the study room on the first floor but inadequate in the 
underground garage. The reasons are twofold. On the one hand, the 
study room has a small area and obvious features, which is conducive 
for the SLAM algorithm to achieve scan matching. On the other hand, 
the underground garage is empty and contains few features, resulting 
in poor mapping by the SLAM algorithm. Therefore, our solution can 
perform the best trajectory evaluation and 2D mapping in environ-
ments with relatively small area and rich scene features.

Scene Reconstruction and Accuracy Evaluation
Based on the trajectory estimated by the SLAM scheme, the 3D point 
clouds of the scenes were reconstructed. On a desktop computer with 
an Intel Core i7-9700 CPU running at 3.0 GHz and with 16 GB of 
memory, data from a 476-s, 103-MB laser scan were converted into a 
3D point cloud in just 48 s. Figure 13 shows the 3D point-cloud recon-
struction results with the roofs removed. The point clouds scanned by 
the FARO equipment are regarded as the ground truth, and the qualita-
tive and quantitative accuracy analyses are respectively performed on 
the 3D point clouds generated by the GeoSLAM device and our solution.

Figure 10. Snapshot of acquisition process.

(a) (b)
Figure 11. Devices used in the controlled trial: (a) FARO FocusS 
150, (b) GeoSLAM ZEB-REVO RT.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 12. Trajectories and 2D maps: (a, d, g) the garage, (b, e, h) the first floor, and (c, f, i) the fourth floor, using (a to c) our solution, (d to f) 
GeoSLAM, and (g to i) FARO.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 13. 3D scene reconstructions: (a, d, g) the garage, (b, e, h) the first floor, and (c, f, i) the fourth floor, using (a to c) our solution, (d to f) 
GeoSLAM, and (g to i) FARO.
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From the qualitative point of view, although multiple stations were 
set up using the FARO equipment, there were still some areas that were 
not scanned due to obstruction, such as the walls in the underground 
garage obstructed by cars and the bookshelves in the reading room ob-
structed by each other; for the study room on the first floor, where only 
one station was set up, most of the ground information was obstructed 
and was incompletely scanned. In contrast, our 3D mapping solution 
and the GeoSLAM device can collect richer scanning data and recon-
struct more complete 3D point clouds in a shorter time. The quality 
of these 3D point clouds largely depends on the results of trajectory 
evaluation. For example, during the trajectory-evaluation process for 
the reading room on the fourth floor (Figure 12c), the 2D point cloud of 
the left wall is anamorphic and the evaluated overall trajectory has er-
rors, resulting in a slight distortion in the 3D point cloud in Figure 13c. 
Different from the three-axis laser-scanner design scheme (Zhao et al. 
2018), our solution uses only one tilted laser scanner to restore the 3D 
point cloud, so the density of the generated 3D point cloud is limited.

From the quantitative point of view, the accuracy of the 3D scene 
reconstruction was evaluated through the following two steps:
(1) Measuring the distance and angle values of the 3D point clouds 

generated by the three experimental groups. Taking the scanning 
result of the FARO equipment as the ground truth, we randomly 
measured 15 line segments in each 3D point cloud to evaluate 
the distance accuracy of our solution and the GeoSLAM device, 
and then 15 angles in each 3D point cloud to evaluate their angle 
accuracy, as shown in Table 2. The specific distance and angle 
measurements are given in Table A1 in the Appendix.

(2) With the point clouds scanned by the FARO equipment as a refer-
ence, registering the point clouds generated by our solution and 
by the GeoSLAM device. The iterative closest-point registration al-
gorithm was performed on the point cloud to be evaluated and the 
reference point cloud. The result of the point-cloud registration was 
evaluated by the root-mean-square (RMS) error, which decreased as 
the registration result became better. The RMS error between two 
point clouds is calculated as

 
RMS dist point comp point ref nearest=

=

∑
i

n

i j n
1

2( _ , _ _ ) /

 
(26)

where point_compi denotes the ith point in the compared point cloud, 
point_ref_nearestj denotes the jth point that is closest to point_compi in 
the reference point cloud, the function “dist” calculates the Euclidean 
distance between two points, and n is the number of points in the com-
pared point cloud. By comparing the registration RMSs, we examined 
the similarity between the compared point clouds and the reference 
point cloud, as shown in Table 3.

Table 2 shows that for our solution, the average distance and angle 
errors of the study room on the first floor were the smallest, followed by 
the reading room on the fourth floor, and the underground garage had the 
largest error, which is consistent with the characteristics of the 2D map 
summarized under “Trajectory Results and Planar Maps.” The average 
errors of the point cloud obtained by our solution can be controlled within 
3 cm and 2°, and the standard deviations within 2 cm and 1°, which are 
not too different from the accuracy of the mainstream GeoSLAM device. 
In Table 3, the registration RMS values are relatively large. We suspect 
this is due to the incompleteness of the reference point cloud scanned by 
the FARO equipment. Due to obstruction, the compared point clouds differ 
from the reference point cloud in the corresponding areas. However, these 
metric values between the two compared point clouds are close to each 
other, indicating that the accuracies of our solution and the GeoSLAM 
device are at the same level. Therefore, we consider that these 3D point 
clouds can be used to accomplish the actual indoor scene-modeling task.

Discussion
This article mainly introduces a low-cost and portable indoor 3D 
mapping approach using biaxial line laser scanners and a laser range 
finder integrated with MEMS. The core technology reconstructs the 3D 
real scene using the extrinsic parameters and the trajectory evaluated 
by SLAM. To control the costs, we choose consumer-grade hardware 

to integrate the scanning device, and some compromises will be made 
consequently on the 3D point-cloud accuracy, which can be made up 
for by standardizing the workflow of data collection.

In terms of the hardware, the two line laser scanners assembled 
on our solution are the RPLIDAR A3 and the RPLIDAR S1 produced by 
Slamtec. The maximum scan frequency of the RPLIDAR A3 used for 2D 
SLAM is 20 Hz. When the system rotates horizontally at too fast a speed, 
the slow-update scan data will lead to a large interframe offset that will 
be updated to the map as the key frame, resulting in map drift error. 
The RPLIDAR S1 used to reconstruct 3D point clouds has a maximum 
scan frequency of 15 Hz, which determines that the surveying person-
nel should move at a relatively slow speed to ensure that the final 3D 
point cloud is not too sparse. Therefore, in the data-collection process, 
the surveying personnel must keep the translation and rotation of the 
system at low speeds to obtain a satisfactory 3D point cloud. In the 
subsequent optimization, motion detection and rotation determination 
can also be implemented to eliminate map drift error.

In terms of the SLAM algorithm, we draw on the idea of the Hector 
SLAM algorithm to fuse the horizontal laser scans, the MEMS-IMU data, 
and the height information for localization, mapping, and trajectory 
output. Excluding detection of loop closure, this algorithm can reduce 
the complexity of the surveying personnel’s work to a certain extent, 
but on the other hand, the accuracy is lower than with a SLAM scheme 
containing loop-closure detection, such as Cartographer. However, 
Cartographer is a CPU-demanding algorithm that exacts high computa-
tional costs in back-end optimization (Hess et al. 2016). Considering the 
performance of the IPC and the requirement for real-time display of the 
mapping process, we believe that it is reasonable and necessary to select 
the Hector SLAM framework as the core of the SLAM part in this article.

Future work will aim to further enrich the types of sensors inte-
grated in the system, such as assembling a consumer-grade panoramic 
camera, and simultaneously collect laser scans and panoramic images. 
Based on the reconstruction of the 3D scene, the panoramic image will 
be mapped to the 3D point cloud, and the coloring of the point cloud 
will be realized to enhance the effect of the 3D scene. Supplementing 
with a GNSS antenna and fusing GNSS data are regarded as further mean-
ingful research content to ensure that the system can more accurately 
evaluate its own trajectory information outdoors. Furthermore, the 3D 
point cloud will be converted into models, and the semantic under-
standing of the scene will be attached in the unit of the model object.

Conclusions
A low-cost and portable indoor 3D mapping approach using biaxial 
line laser scanners and a one-dimension laser range finder integrated 
with MEMS is proposed in this article. Compared with the traditional 
station-type 3D point-cloud acquisition scheme, the solution proposed 
in this article has a higher degree of flexibility and more efficient data 

Table 2. Distance and angle measurements.

Scene Solution
Distance error (cm) Angle error (°)

Mean SD Mean SD

Underground 
garage

Our solution 2.64 1.55 1.34 0.93
GeoSLAM 1.50 0.98 0.65 0.57

First floor
Our solution 1.62 1.61 0.87 0.49
GeoSLAM 1.59 1.82 1.09 1.08

Fourth floor
Our solution 1.87 1.21 1.00 0.61
GeoSLAM 1.93 1.82 0.70 0.47

Table 3. Accuracy evaluation of the devices.
Scene Solution Root-Mean-Square Error (cm)

Underground 
garage

Our solution 24.92
GeoSLAM 22.32

First floor
Our solution 23.07
GeoSLAM 22.87

Fourth floor
Our solution 20.05
GeoSLAM 18.98
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acquisition and processing. Compared with the mature handheld 3D 
laser scanning devices on the market, our solution has advantages of 
being less costly and more lightweight.

Three scenes in a library building were modeled as experimental 
cases. The sites were scanned using a station-type FARO FocusS 150 3D 
laser scanner, a handheld GeoSLAM ZEB-REVO RT 3D laser scanner, and 
our solution. The accuracy of our solution was evaluated by comparing 
the distance errors, angle errors, and registration RMS errors of the 3D 
point clouds. The results demonstrate that in the same scene, our solution 
has the fastest point-cloud acquisition and processing. For each evalua-
tion metric, the accuracy of our solution is not too different from that of 
the mainstream GeoSLAM product. In summary, the proposed approach 
is a low-cost, portable, and accurate solution for indoor 3D mapping.
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Appendix 
Table A1. Accuracy evaluation measurements of the solutions.

Scene

Distance (cm) Angle (°)

FARO
Our 

Solution Error 1 GeoSLAM Error 2 FARO
Our 

Solution Error 1 GeoSLAM Error 2

Underground 
garage

88.49 89.92 1.43 86.91 1.58 89.46 89.78 0.32 89.44 0.02
455.67 452.91 2.76 457.03 1.36 179.88 179.63 0.25 179.89 0.01
2482.57 2478.80 3.77 2483.90 1.33 90.07 91.06 0.99 89.71 0.36
863.94 859.58 4.36 861.01 2.93 53.31 52.83 0.48 53.39 0.08
879.67 876.23 3.44 880.68 1.01 108.79 106.73 2.06 108.83 0.04
796.14 798.15 2.01 798.78 2.64 14.84 15.64 0.80 16.49 1.65
67.24 68.13 0.89 67.70 0.46 157.37 156.75 0.62 156.23 1.14

1125.77 1126.38 0.61 1124.14 1.63 169.13 169.72 0.59 170.82 1.69
349.54 348.26 1.28 349.25 0.29 150.89 152.49 1.60 150.28 0.61
876.23 872.07 4.16 875.84 0.39 89.31 86.90 2.41 90.13 0.82
554.43 552.77 1.66 557.00 2.57 133.69 134.53 0.84 134.24 0.55
247.23 249.74 2.51 247.63 0.40 176.66 178.14 1.48 176.08 0.58
334.11 328.20 5.91 336.37 2.26 91.99 89.13 2.86 90.48 1.51
508.95 509.56 0.61 509.41 0.46 67.93 69.27 1.34 68.12 0.19
1048.62 1044.44 4.18 1051.88 3.26 98.64 95.23 3.41 99.07 0.43

First floor

192.69 193.25 0.56 192.95 0.26 84.19 85.01 0.82 84.38 0.19
586.62 586.13 0.49 588.19 1.57 91.80 90.76 1.04 91.73 0.07
1984.41 1983.56 0.85 1980.86 3.55 89.09 89.28 0.19 88.45 0.64
101.30 100.62 0.68 101.90 0.60 90.03 90.50 0.47 92.62 2.59
869.38 870.15 0.77 869.17 0.21 89.85 90.35 0.50 89.42 0.43
207.53 206.55 0.98 208.99 1.46 89.08 88.12 0.96 88.67 0.41
608.41 609.13 0.72 609.05 0.64 23.75 24.88 1.13 25.35 1.60
134.26 135.69 1.43 134.28 0.02 178.97 178.40 0.57 178.49 0.48
933.98 929.12 4.86 928.80 5.18 177.28 176.51 0.77 177.00 0.28
246.49 247.00 0.51 247.25 0.76 146.20 147.63 1.43 147.16 0.96
108.42 109.41 0.99 108.03 0.39 38.93 39.53 0.60 38.79 0.14
149.19 149.62 0.43 149.51 0.32 133.99 134.10 0.11 133.99 2.59
335.30 330.16 5.14 336.82 1.52 90.66 88.97 1.69 91.10 0.44
70.86 66.62 4.24 69.75 1.11 90.40 89.48 0.92 94.13 3.73
196.94 195.26 1.68 203.13 6.19 87.80 85.94 1.86 89.57 1.77

Fourth floor

690.41 692.35 1.94 691.96 1.55 179.02 178.65 0.37 179.50 0.48
695.46 694.00 1.46 699.45 3.99 88.71 88.26 0.45 88.86 0.15
1895.50 1894.03 1.47 1898.88 3.38 108.51 109.87 1.36 109.03 0.52
499.43 500.34 0.91 498.25 1.18 90.61 91.85 1.24 90.35 0.26
538.75 536.07 2.68 534.75 4.00 118.12 120.45 2.33 117.70 0.42
1667.12 1663.15 3.97 1673.85 6.73 174.14 175.00 0.86 173.56 0.58
245.87 245.40 0.47 243.41 2.46 47.26 45.86 1.40 45.82 1.44
1529.79 1529.83 0.04 1527.44 2.35 155.94 156.01 0.07 155.78 0.16
69.38 68.36 1.02 68.63 0.75 20.66 20.50 0.16 21.09 0.43
88.19 89.93 1.74 87.40 0.79 12.27 11.92 0.35 11.80 0.47
697.14 698.39 1.25 697.00 0.14 2.61 3.88 1.27 3.59 0.98
1218.69 1217.34 1.35 1218.56 0.13 21.51 20.13 1.38 20.44 1.07
330.50 325.97 4.53 330.19 0.31 89.28 87.56 1.72 91.09 1.81
326.27 323.09 3.18 325.76 0.51 90.93 89.90 1.03 90.34 0.59
598.26 596.27 1.99 599.05 0.79 91.26 90.27 0.99 90.09 1.17
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Alternative Procedure to Improve the Positioning 
Accuracy of Orthomosaic Images Acquired with 
Agisoft Metashape and DJI P4 Multispectral for 

Crop Growth Observation
 Toshihiro Sakamoto, Daisuke Ogawa, Satoko Hiura, and Nobusuke Iwasaki

Abstract
Vegetation indices (VIs), such as the green chlorophyll index and 
normalized difference vegetation index, are calculated from visible 
and near-infrared band images for plant diagnosis in crop breeding 
and field management. The DJI P4 Multispectral drone combined 
with the Agisoft Metashape Structure from Motion/Multi View Stereo 
software is some of the most cost-effective equipment for creating 
high-resolution orthomosaic VI images. However, the manufacturer’s 
procedure results in remarkable location estimation inaccuracy 
(average error: 3.27–3.45 cm) and alignment errors between spec-
tral bands (average error: 2.80–2.84 cm). We developed alternative 
processing procedures to overcome these issues, and we achieved a 
higher positioning accuracy (average error: 1.32–1.38 cm) and better 
alignment accuracy between spectral bands (average error: 0.26–0.32 
cm). The proposed procedure enables precise VI analysis, especially 
when using the green chlorophyll index for corn, and may help ac-
celerate the application of remote sensing techniques to agriculture.

Introduction
Remote sensing is a cost-effective tool for monitoring crop growth in 
vast fields. In the past, agricultural research commonly used multi-
spectral images obtained by spaceborne or airborne remote sensing 
sensors for field monitoring (Boegh et al. 2002; Maas and Rajan 
2008; Borgogno-Mondino et al. 2018). Recently, the use of drones 
(unmanned aerial vehicles) has become more popular, especially for 
field-scale agricultural observations and management (Huang et al. 
2018; Maes and Steppe 2019; Peter et al. 2020). One of the reasons 
is that drone-based remote sensing provides multispectral images 
of crop lines with higher spatial and temporal resolution. Another 
reason is the advent of reasonably priced small drones equipped with 
dedicated cameras and Structure from Motion/Multi View Stereo 
(SfM/MVS) software, such as Agisoft Metashape Professional (Agisoft 
LLC, St. Petersburg, Russia) and Pix4D mapper (Pix4D, Lausanne, 
Switzerland), which enable beginners in remote sensing to create or-
thomosaic images. These technological advancements allow phenolog-
ical observation of seasonal changes in crop growth with higher spatial 
resolution (Malambo et al. 2018; Che et al. 2020).

In the field of breeding, drones are used as a high-throughput phe-
notyping tool for the monitoring of various phenotypic features, such 
as vegetation fraction, plant height, and disease symptoms (Reynolds 
et al. 2020). Recently, we developed image analysis methods for evalu-
ating the vegetation fraction and plant architecture of rice using data 
obtained with a DJI Phantom 4 Pro drone (P4P; DJI, Shenzhen, China), 
which has an RGB camera equipped with a 1-in. sensor (Ogawa et al. 
2019, 2021). Until 2019, in reports of high-throughput phenotyping 
with drone remote sensing technology, RGB images were more com-
monly used than multispectral images (Vargas et al. 2019; Zhang et 
al. 2020; Svensgaard et al. 2021; Tang et al. 2021). This was because 
small drones equipped with an RGB camera were cheaper than large 
drones or sophisticated small drones equipped with a multispectral 
camera, such as the Bluegrass Fields drone (Parrot, Paris, France) (Sun 
et al. 2019; Qi et al. 2021). In October 2019, DJI launched a new small 
drone, named P4 Multispectral (P4M), designed for agricultural moni-
toring. It has a six-lens multispectral camera, spectral sunlight sensor, 
and high-precision global navigation satellite system (GNSS) receiver 
for automatic navigation flight using real-time kinematic (RTK). On the 
other hand, the Metashape SfM/MVS software has the largest market 
share in business and research applications, such as 3D work progress 
control for civil engineering work and orthomosaic image creation for 
agricultural environmental monitoring. A Google Scholar search for 
the key words “Metashape” (or “Photoscan”) and “Pix4D” yielded 
11,750 and 5,390 hits, respectively (date of search: 9 August 2021). 
According to the results of a questionnaire survey conducted by the 
Forest Agency of Japan among forest owner cooperatives, forestry 
organizations, and local governments in 2020, 55% of the respon-
dents had used Metashape, whereas only 6.1% had used Pix4D (Blue 
Innovation Co. Ltd 2020). The advantages of Metashape are that there 
are numerous blogs that explain how to use it and that it is highly price 
competitive in terms of its low initial cost and no upgrade fees (up to 
version 1.99) regardless of its versatility.

Although Metashape and P4M are among the most cost-effective 
combinations of aerial photography equipment for creating multi-
spectral orthomosaic images, Metashape does not have a dedicated 
processing mode for P4M data until at least version 1.7.3, build 12473 
(64 bit). Instead, the Agisoft Helpdesk web page officially introduces 
how to process the P4M data by using a general processing flow called 
a “multi-camera system” (Agisoft Helpdesk Portal 2021) (last updated 
on 25 May 2021). As a preliminary experiment, we created a multi-
spectral orthomosaic image from P4M-derived aerial images by follow-
ing the manufacturer’s tutorial, and we visually assessed the quality of 
the tutorial-derived multispectral orthomosaic image by overlaying it 
onto an orthomosaic image created from P4P-derived aerial RGB color 
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images. In doing so, the following issues were found: (1) The positions 
of ground control points (GCPs) on orthomosaic images derived from 
P4M and P4P did not agree with each other. (2) There were obvious 
misalignment errors between spectral band images in the P4M-derived 
multispectral orthomosaic images; therefore, when the GCPs were 
visualized in false color composite (near-infrared [NIR]-red-green) im-
ages, the edges of the white squared parts of GCPs were colored with a 
gradient from blue to red. These misalignment issues would negatively 
influence data analysis. In the Agisoft user forum (https://www.agisoft.
com/forum/index.php?topic=12894.msg57129#msg57129), a similar 
issue has been pointed out with regard to the processing of multispec-
tral images using Metashape. However, no specific solution has been 
presented. Therefore, it is necessary to improve the methodology to 
create orthomosaic images from a series of P4M multispectral images 
using the Metashape software.

In this study, we comprehensively evaluated the absolute location 
accuracy and band alignment accuracy of multispectral orthomosaic 
images created based on the tutorial procedure. In addition, we devised 
alternative processing procedures that combine the other general 
processing steps of Metashape to improve multispectral orthomosaic 
image quality. Finally, we demonstrated that the alternative process-
ing procedures provided higher accuracy in terms of geolocation and 
image alignment between the spectral bands than the manufacturer’s 
tutorial procedure.

Experimental Fields
The experimental fields were located on the campus of the NARO 
Institute for Agro-Environmental Sciences in Tsukuba, Japan 
(36°01′29″ N, 140°06′37.2″ E; Figure 1A and 1B, see next page). The 
target crops for aerial photography were forage dent corn (Zea mays 
L. cv. New dent 100) and paddy rice (Oryza sativa L. cv. Koshihikari). 
Twelve plots (1.28×1.28 m) were set as regions of interest in nine con-
crete-framed fields of 8×8 m. The amount of chemical nitrogen fertil-
izer was varied from 0 to 25 kg N/10 a in the six corn plots and from 0 
to 8 kg N/10 a in the six rice plots (Figure 1C). Corn seeds were sowed 
by hand on 27 May 2021, with a row width of 75 cm and an inter-hill 
space of 20 cm. Rice seedlings were transplanted by hand on 2 June 
2021, with a row width of 30 cm and an inter-hill space of 18 cm.

Twenty ground control points (GCPs) had been painted onto the 
concrete ground using black and white paint for road signs. Half of 
the GCPs (numbers 1, 4, 7, 8, 11, 14, 15, 17, 18, and 20) were used for 
internal camera calibration for SfM/MVS analysis using Metashape. The 
other half (numbers 2, 3, 5, 6, 9, 10, 12, 13, 16, and 19) were used for 
location accuracy verification of the multispectral orthomosaic images 
acquired with the three procedures evaluated.

Materials
The P4M drone was automatically controlled by dedicated flight control 
software, DJI GS Pro (2.0.16 [10657] (DJI), installed on an iPad mini 
(Apple Inc., Elk Grove, Calif., USA). The P4M can take five spectral 
images (blue [450 ± 16 nm], green [560 ± 16 nm], red [650 ± 16 nm], 
red edge [730 ± 16 nm], NIR [840 ± 26 nm]) and one RGB color im-
age simultaneously. Automatic flight photography using the P4M was 
conducted at two flight heights (20 and 30 m) around 8:30 A.M. on 6 
July 2021 and around 13:00 P.M. on 13 July 2021. We investigated four 
aerial photo sets assembled from photographs acquired at two different 
observation dates and two different flight heights. We acquired 204 sets 
of multispectral images on 6 July and 185 on 13 July at a height of 20 
m (resolution: 1.1 cm/pixel) and 114 on each of 6 July and 13 July at a 
height of 30 m (resolution: 1.6 cm/pixel). The parameters of automatic 
flight photography using DJI GS Pro were set as listed in Table 1.

The P4M was automatically operated in RTK positioning mode 
coupled with the use of high-precision GNSS correction informa-
tion distribution service of the Virtual Reference Station (JENOBA 
Co., Ltd, Tokyo, Japan). The images of the MicaSense Calibration 
Reflectance Panel (MicaSense Inc., Seattle, Wash., USA) (Mamaghani 
and Salvaggio 2019), which were used for reflectance calibration, were 
taken before and after each flight with manual operation. The range of 

the automatic flight route at 20-m height was partially narrower than 
that at 30 m to prevent collision with trees. Accordingly, GCP1 and 
GCP2 are not shown in aerial images at 20-m height.

Agisoft Metashape Professional SfM/MVS software was used to cre-
ate multispectral orthomosaic images from the aerial images. The latest 
software version (version 1.7.3, build 12473 [64 bit], 5 July 2021) was 

Figure 1. Near-infrared (NIR) orthomosaic images of the 
experimental field for 6 July 2021 (A) and 13 July 2021 (B) and 
layouts of the ground control points (GCPs) and plots (regions of 
interest) with the amounts of nitrogen fertilizer applied (C).

Table 1. Flight parameters used in the experiments.
Parameter Description

Shooting angle Parallel to main path

Capture mode Capture at time interval

Flight course mode Inside mode

Flight speed 1.3 m/s

Front overlap ratio 80%

Side overlap ratio 80%

Course angle 184°

Gimbal pitch angle −90°
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installed. A general-purpose remote sensing software, ENVI 5.6 (API 
version 3.6; Harris Geospatial, Broomfield, Colo., USA), was used for 
postprocessing, including format conversion and image subset and 
layer stacking of spectral band images.

Methods
Processing Procedures for Creating Multispectral Orthomosaic Images 
Using Metashape
We considered the official processing procedure communicated on the 
Agisoft Helpdesk Portal Web page (Agisoft Helpdesk Portal 2021) 
to be the most common standard procedure when analyzing P4M data 
with Agisoft Metashape Professional version 1.7.3, build 12473 (64 
bit), and named it “tutorial procedure” (TP). We newly developed two 
alternative processing procedures—alternative procedure 1 (AP1) and 
alternative procedure 2 (AP2)—and compared them with TP. The work 
flows of the procedures evaluated are shown in Figure 2.

The major common aspects of data processing in the three methods 
are as follows. RTK positioning information of each spectral camera, 
stored as XMP metadata in the header file of each TIFF file, was used for 
internal camera calibration, along with precisely surveyed coordinate 
information of the GCP markers. The unit for the height of the coordi-
nate information of GCP markers was the ellipsoid height in accordance 
with the RTK positioning information of the multispectral camera.

Universal Transverse Mercator (UTM) (zone: 54 N; datum: WGS84) 
was used for map projection of the orthomosaic images. The output 
spatial resolution was set to 1 cm/pixel regardless of flight height. The 
16-bit unsigned integer pixel values of the orthomosaic images export-
ed from Metashape were divided by 32,768 for conversion to 32-bit 
float pixel values of spectral reflectance ranging from 0.0 to 1.0. The 
output orthomosaic images were cropped to obtain 6000×3400-pixel 
square regions with a fixed location based on the geographic 

information (Figure 1A and 1B). Assuming the use of multispectral or-
thomosaic images for crop growth monitoring, we assessed the impact 
of the three procedures on observed values of vegetation indices (VIs), 
including the green chlorophyll index (CIgreen) and normalized differ-
ence vegetation index (NDVI) (Rouse et al. 1974).

Agisoft TP
The main feature of TP is the use of a dedicated processing mode 
named the “multi-camera system” in Metashape (Figure 2A), in which 
all spectral band images are imported at once into a working folder 
named “chunk.” The advantage of the “multi-camera system” mode is 
that the time-consuming manual work of defining the GCP marker loca-
tions needs to be done only for default blue band images, not for the 
other four spectral bands, resulting in a shorter processing time. A digi-
tal surface model (DSM) was made from a high-quality dense cloud that 
was built as a common data set for all spectral bands. Multispectral or-
thomosaic images were built in reference to the DSM and were exported 
as a single TIFF file containing five spectral band images.

AP1
AP1 used a general processing flow named “single camera” in 
Metashape instead of the “multi-camera system” mode. First, we 
created five chunks of working folders named after the spectral bands 
(blue, green, red, red edge, and NIR) in a working project file (Figure 
2B). Next, the multispectral band images were imported separately into 
each chunk with the corresponding spectral band. The following steps 
were repeated as many times as the number of chunks (spectral bands) 
created: manual placement of GCP marker locations on each image, 
internal camera calibration, dense cloud building, DSM, and creation of 
single-band orthomosaic images. The single-band orthomosaic images 
were individually exported from each chunk. Therefore, the workload 
of AP1 was estimated to be approximately five times that of TP. In ad-
dition, the five TIFF files were layer stacked into a single file containing 
multispectral band images using the general-purpose remote sensing 
software ENVI or IDL5.6.

AP2
AP2 was a further improvement of AP1. AP2 also preliminarily cre-
ated five chunks in the working project file. Furthermore, AP2 created 
new subfolders called “camera group folder” within each chunk and 
named the subfolders according to the corresponding spectral band. 
The original spectral band images were separately moved into the new 
subfolders. This was a preliminary step to make it easier to merge the 
five chunks described later. Internal camera calibration was repeated 
for every chunk. The major process difference between AP1 and AP2 
was that the separately created chunks were merged into one common 
chunk to integrate tie points and GCP markers for each spectral band in 
AP2. Then internal camera calibration was reconducted for the newly 
merged common chunk using the integrated tie points and GCP mark-
ers to establish one common camera parameter for all spectral bands 
(Figure 2C). Only one common dense cloud or DSM layer was created 
in the merged chunk. Single-band orthomosaic images were repeatedly 
created as follows. For example, when creating a blue band orthomo-
saic image, the other subfolders of the camera group folder (green, 
red, red-edge, and NIR) were preliminarily disabled before building the 
blue band orthomosaic. These steps were repeated as many times as the 
number of spectral bands in the merged chunk. The way of stacking the 
five TIFF files into one file was the same as in AP1.

Accuracy Assessment of Estimated GCP Locations
Coordinate data of the GCPs (latitude, longitude, and ellipsoid height) 
were measured by postprocessing static (PPS) surveys using GNSS data 
acquired simultaneously from two paired GNSS receivers. GNSS rover 
data of each GCP marker were logged by compact GNSS receivers using 
a NEO-M8P RTK GNSS receiver board (Etehs SIA, Riga, Latvia) for more 
than 30 minutes. Data of a GNSS continuously operating reference 
station named “Tsukuba 3” were used as base station data. The station 
is located 9 km away from the experimental field and is operated by 
the Geographical Survey Institute of Japan. The PPS surveys were con-
ducted using an open-source program package for GNSS positioning, 
RTKLIB (version 2.4.3b34) (http://www.rtklib.com). The GNSS-derived 

Figure 2. Work flows of the three procedures for creating 
multispectral orthomosaic images using Agisoft Metashape 
evaluated in this study.
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GCP coordinate information was converted from latitude and longi-
tude to the UTM coordinate system for comparison with the estimated 
coordinate information of the corresponding GCPs for verification based 
on the orthomosaic images. UTM coordinate information of the GCPs 
was manually read for each spectral band individually using ENVI/IDL 
5.6 software.

Accuracy Assessment of Misalignment  
Between Five Spectral Band Images
The relative alignment error between five spectral band images was 
evaluated according to the following criteria, without using the ground-
truth coordination data measured by the GNSS receiver. For each single 
GCP, information of five coordinates could be read as the P4M-derived 
multispectral orthomosaic image comprised of five spectral band images.

Figure 3. Diagram of the estimated ground control point (GCP) 
locations for validation derived from five spectral bands and the 
center of gravity point of those locations. The distance between the 
gravity point and each estimated location was defined as a scale for 
measuring the relative misalignment between spectral bands.

As shown in Figure 3, we assumed the center of gravity of the five 
coordinate points as hypothetical true GCP location rather than the GNSS 
receiver-derived coordinate location. The coordinate information of 
the gravity point (Xgrav, Ygrav) was calculated with Equation 1. Next, the 
five distances (Lband) from the gravity point to these five points were 
calculated with Equation 2. The average value of the five distances was 
defined as a scale (Smis) to measure the relative misalignment between 
spectral bands (Equation 3):
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where band is blue, green, red, red edge, or NIR.
 

VIs
We evaluated the effect of quality differences of the multispectral ortho-
mosaic images due to the different processing procedures on observed 
VI values. CIgreen and NDVI were calculated using Equations 4 and 5:
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where ρNIR, ρgreen, and ρred are spectral reflectance values (0–1.0) in the 
NIR (840 ± 26 nm), red (650 ± 16 nm), and green (560 ± 16 nm) bands.

CIgreen is correlated with the canopy chlorophyll content, which is 
the amount of chlorophyll per unit area (Wu et al. 2012; Schlemmer et 
al. 2013; Inoue et al. 2016; Clevers et al. 2017) or nitrogen concen-
tration in plant leaves (Cai et al. 2019). CIgreen is widely used as a 
remote sensing–based indicator useful for estimating photosynthetic 
carbon assimilation in various fields (Peng and Gitelson 2011; Zhang 
et al. 2015). Gitelson et al. (2003, 2005) found that CIgreen is related to 
canopy photosynthesis of irrigated maize. It can be used as an alterna-
tive indicator to the product of light use efficiency (ε) and fraction of 
absorbed photosynthetically active radiation (fPAR) in the light use 
efficiency model (Peng and Gitelson 2012) described by the following 
equation (Monteith 1972) to estimate gross primary production (GPP):

 GPP = ε × fPAR × PAR (6)

   GPP ∝ CIgreen × PAR (7)

NDVI remains the most popular multipurpose VI used for crop 
monitoring of various features, including leaf nitrogen concentra-
tion, aboveground biomass, fraction of absorbed photosynthetically 
active radiation, and damage caused by diseases (Thenkabail et al. 
1994; Franke and Menz 2007; Sakamoto et al. 2012; Shibayama et 
al. 2012). In recent years, with the advent of affordable small drones 
with multispectral cameras, many researchers who are starting to apply 
drone-based remote sensing for crop growth monitoring in Japan tend 
to use NDVI as a de facto standard VI under a national trend in precision 
agriculture research called “smart agriculture” (Morimoto and Hayashi 
2017; Guan et al. 2019; Osaki 2019; Inoue 2020).

Comparison of Pixel-Level or Region-Averaged VIs at  
Fixed Locations Between Multispectral Orthomosaic  
Images Obtained at 20- and 30-m Flight Height
The effect of misalignment due the processing procedure on the VI was 
evaluated as follows. Multispectral orthomosaic images with a 1-cm 
pixel resolution were generated from the data sets acquired on the 
same day but at different flight heights. A one-by-one comparison of 
pixel-level VI and region-averaged VI was performed for the 12 plots 
for each procedure evaluated in anticipation of the creation of gridded 
vegetation growth maps for designing variable-rate fertilization in 
precision agriculture (Veroustraete 2015; McKinnon 2016; Saiz-Rubio 
and Rovira-Más 2020). The square (grid) size for measuring region-
averaged VIs was varied at seven levels (2×2, 4×4, 8×8, 16×16, 32×32, 
64×64, and 128×128 pixels) to investigate the effect of square size on 
the observed VI value. If there is no misalignment effect, the observed 
VI should consistently be approximately the same at the same location 
regardless of the flight height. The lower the misalignment effect, the 
closer the data points in a scatter plot are distributed to the one-by-
one straight trend line. In other words, the procedure that showed the 
highest correlation or lowest root mean square error (RMSE) between VI 
images obtained at different flight heights could be regarded as having 
the best performance without a misalignment problem.

Results and Discussion
Location Estimation Accuracy of GCPs for Verification
Figure 4 shows the GCP location estimation error for verification based 
on the GNSS-derived true position. Some of the TP-derived results had 
errors of more than 6 cm at any combination of flight height and obser-
vation date (Figure 4A1–4). When using TP, the number (percentage) 
of GCPs with errors of less than 1.5 and 3.0 cm were 40 (21.1%) and 
97 (51.1%) out of the total (190) GCPs, respectively. Although it was 
unclear why the TP-derived location error tended to be more spread out 
in the east–west direction than in the north–south direction, this error 
trend may be related to the fact that the GCP locations were widely 
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spread in the east–west direction in the experimental fields. The AP1-
derived results had little directional error variation, especially in the 
east–west direction, and the variability of error was substantially small-
er than that of the TP results. AP1 did not produce errors of more than 
6 cm (Figure 4B1–4). The number of GCPs with errors less than 1.5 
and 3.0 cm were 103 (54.2%) and 173 (91.1%) out of the total (190) 
GCPs, respectively. The AP2-derived results showed similar overall 

trends in error variation as the AP1 results. There was no GCP with an 
error greater than 6 cm based on the GNSS-derived true locations. When 
we focused on local trends in error variation, we observed a smaller 
variability of the errors, especially between spectral bands, than in AP1 
(Figure 4C1–4). When using AP2, the number of GCPs with errors of 
less than 1.5 and 3.0 cm were 125 (65.8%) and 185 (97.6%) out of the 
total (190) GCPs, respectively. Thus, AP2 produced the smallest error.

Table 2 shows a summary of statistics for errors in the estimated 
GCP locations. The average values of the GCP location estimation error 
of TP for all spectral bands were 2.70–3.01 cm at 20-m flight height 
and 3.78–3.85 cm at 30-m flight height. The GCP location estimation 
error of TP was about twice that of AP2 (average error: 1.35–1.40 cm 
at 20 m, 1.30–1.36 cm at 30 m). Only for the red band, which had the 
best location estimation accuracy, was the estimation error comparable 
between AP1 and AP2, although we used mainly the default blue-band 
images for placing GCP markers manually and internal camera calibra-
tion. Unlike in the case of TP, when AP1 and AP2 were used, there were 
no extreme differences in location estimation errors depending on 
specific spectral cameras. The estimation location accuracy of AP2 was 
comparable to that of a drone designed for surveying work, that is, the 
DJI Phantom 4 RTK (Taddia et al. 2020). 

Table 3 summarizes paired t-test results of GCP location estima-
tion error comparison between TP and AP1 and between AP1 and AP2. 
The location estimation error of AP1 was significantly smaller than of 
TP at the 1% level in two-tailed tests. The average location estimation 
error of AP2 was smaller than that of AP1; except for a few cases, no 
significant difference was found between these procedures for data 
obtained at 20-m flight height. However, at the 1% level, the location 
estimation error of AP2 was significantly smaller than that of AP1 only 
for data obtained at 30-m flight height. These data clearly indicated 
that the absolute location estimation accuracy of TP was inferior to that 
of AP1 and AP2. Considering that the positioning accuracy of the PPS 
survey using GNSS data used to measure the coordinates of the GCPs 
is approximately 1 cm, the estimation accuracy of AP1 and AP2 can be 
considered almost similar. 

The most interesting finding in this study was that estimation ac-
curacy typically depended on the spectral cameras position when using 
TP; the spectral cameras showing better location estimation results, 
in order from best to worst, were red, NIR, green, red edge, and blue. 
This tendency was commonly observed regardless of the observa-
tion date or flight height. The multispectral cameras of the P4M are 
arranged in a 3×2 horizontal and vertical pattern. The red and NIR band 
cameras, which had the best and second-best location estimation ac-
curacy, respectively, are placed in the center of the arrangement, while 
the green, red-edge¬, and blue band cameras are placed in the four 
corners. RTK-measured position information of each spectral camera 

Figure 4. Comparison of GCP location estimation errors by the three 
procedures (A1-4: tutorial procedure [TP]; B1-4: alternative procedure 
1 [AP1]; C1-4: alternative procedure [AP2]) and at different flight heights.

Table 2. Summary of GCP location estimation errors at each spectral band and flight level among the three procedures evaluated on 6 and 13 July 2021.
TP AP1 AP2

Flight Height 30 m 20 m 30 m 20 m 30 m 20 m

Date Band Average (SD), cm Average (SD), cm Average (SD), cm Average (SD), cm Average (SD), cm Average (SD), cm

6 
July 
2021

Blue 6.12 (1.19) 4.40 (1.42) 1.78 (0.66) 1.39 (0.79) 1.22 (0.83) 1.36 (1.07)

Green 3.22 (1.29) 2.68 (1.47) 1.64 (0.73) 1.32 (0.85) 1.43 (1.14) 1.29 (0.97)

Red 1.42 (1.04) 1.61 (1.11) 1.41 (0.86) 1.77 (0.88) 1.22 (0.67) 1.42 (1.06)

Red edge 5.22 (2.70) 2.93 (1.16) 1.59 (1.02) 1.48 (1.15) 1.46 (0.79) 1.46 (1.16)

NIR 2.94 (1.68) 1.87 (0.82) 1.82 (0.92) 1.43 (0.53) 1.46 (0.99) 1.46 (1.19)

All 3.78 (2.35) 2.70 (1.53) 1.65 (0.83) 1.48 (0.84) 1.36 (0.87) 1.40 (1.04)

13 
July 
2021

Blue 6.06 (1.44) 4.84 (1.57) 2.09 (1.73) 1.37 (1.08) 1.27 (0.67) 1.47 (0.67)

Green 3.36 (1.20) 3.10 (1.63) 1.96 (1.38) 1.54 (0.72) 1.26 (1.00) 1.34 (0.70)

Red 1.41 (0.91) 1.89 (1.41) 1.66 (1.20) 1.37 (1.06) 1.40 (0.81) 1.29 (0.87)

Red edge 5.36 (2.14) 3.22 (1.05) 1.80 (1.14) 1.50 (1.16) 1.27 (0.90) 1.32 (0.94)

NIR 3.04 (1.31) 2.00 (0.88) 1.77 (1.26) 1.33 (0.86) 1.30 (1.03) 1.34 (0.67)

All 3.85 (2.20) 3.01 (1.67) 1.86 (1.31) 1.42 (0.95) 1.30 (0.85) 1.35 (0.75)

GCP = ground control point; TP = tutorial procedure; AP1 = alternative procedure 1; AP2 = alternative procedure 2; SD = standard deviation; NIR = near infrared.
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was individually recorded in the header of TIFF image. Latitude and 
longitude coordinate information was recorded with a resolution of 
up to eight decimal places, which corresponded to a millimeter-level 
of resolution. This implies that the P4M is designed to record GNSS-
derived positional information with sufficient resolution to understand 
the relative positions between individual spectral cameras. Our results 
suggested that the algorithm used in “multi-camera system” mode in 
TP may not properly use the precise RTK position information of each 
spectral camera during internal camera calibration, which may have 
resulted in systematic alignment errors between spectral bands, at least 
when using Agisoft Metashape Professional, version 1.7.3, build 12473 
(64 bit). Accuracy evaluation in the height direction of the orthomosaic 
images was not the subject of this study because the height difference 
between the GCP markers placed on the concrete ground was less than 
2.6 cm, which is not sufficient for quantitative verification.

Alignment Error Between Five Spectral Band Images
Table 4 summarizes paired t-test results comparing the average 
distance from the gravity point to the estimated GCP locations (Smis) 
between TP and AP1 and between AP1 and AP2. The TP-derived align-
ment error between spectral bands was an order of magnitude larger 
than those for AP1 and AP2. The average Smis derived from TP was 2.82 
cm (n = 190), which was 525% to 972% larger than those derived with 
AP1 (0.52 cm) and AP2 (0.29 cm). The alignment accuracy differed sig-
nificantly between TP and AP1 and between AP1 and AP2 at the 1% level 
in two-tailed tests. The misalignment distance of AP2 was 46% smaller 
than that of AP1. Considering that the average corn and rice leaf widths 
are approximately 9 and 1 cm, respectively, a few centimeter-level 
misalignments between spectral bands of multispectral orthomosaic 
images derived from TP would produce an error of magnitude that 
cannot be ignored in VI calculations to evaluate leaf color. The results 
suggested that the additional step in AP2, that is, integrating tie points 
and GCP markers created separately for the five spectral bands into a 
merged chunk, effectively reduces the alignment error between spectral 
band images from AP1. 

Figure 5 shows the false color composite of NIR-red-green images 
and spectral reflectance images of GCP10, Plot 03 (corn), and Plot 07 
(rice). The center points of the GCP markers were manually traced with 
crosshairs for each spectral band and superimposed on a single partial 
figure. In addition, the boundaries between the background and the 
vegetation in the middle row were manually traced and superimposed 
on Plots 03 and 07. As can be seen from the superimposition of the 

Table 3. Average GCP location estimation errors of five spectral bands at each flight level among the three procedures evaluated on 6 and 13 July 2021.

Flight 
Height (m) n

TP ← Paired t-Test → AP1 ← Paired t-Test → AP2

Mean (V), cm p-Value Mean (V), cm p-Value Mean (V), cm

6 July 
2021

30 50 3.78 (5.51) 4.79 × 10−7 ** 1.65 (0.68) 2.87 × 10−3 * 1.36 (0.76)

20 45 2.70 (2.33) 8.97 × 10−6 ** 1.48 (0.70) 2.89 × 10−1 1.40 (1.09)
All 95 3.27 (4.26) 4.97 × 10−11 ** 1.57 (0.69) 2.20 × 10−3 * 1.38 (0.90)

13 July 
2021

30 50 3.85 (4.82) 7.81 × 10−7 ** 1.86 (1.71) 5.32 × 10−5 ** 1.30 (0.73)
20 45 3.01 (2.80) 5.05 × 10−8 ** 1.42 (0.90) 3.89 × 10−1 1.35 (0.56)
All 95 3.45 (4.00) 8.48 × 10−13 ** 1.65 (1.36) 9.04 × 10−5 ** 1.32 (0.64)

GCP = ground control point; TP = tutorial procedure; AP1 = alternative procedure 1; AP2 = alternative procedure 2; V = variance.
*p < 0.05, **p < 0.01.

Table 4. Summary of alignment errors between spectral bands at each flight level among the three procedures evaluated on 6 and 13 July 2021.

Flight 
Height (m) n

TP ← Paired t-Test → AP1 ← Paired t-Test → AP2

Average (SD), cm p-Value Average (SD), cm p-Value Average (SD), cm

6 July 
2021

30 50 3.42 (5.01) 2.08 × 10−12 ** 0.55 (0.050) 2.62 × 10−3 ** 0.41 (0.048)
20 45 2.11 (1.49) 3.71 × 10−9 ** 0.67 (0.064) 6.43 × 10−13 ** 0.22 (0.024)
All 95 2.80 (3.74) 1.78 × 10−18 ** 0.61 (0.059) 1.62 × 10−12 ** 0.32 (0.045)

13 July 
2021

30 50 3.43 (4.86) 8.99 × 10−13 ** 0.47 (0.053) 3.97 × 10−6 ** 0.28 (0.025)
20 45 2.18 (1.86) 4.61 × 10−10 ** 0.46 (0.055) 1.21 × 10−6 ** 0.23 (0.018)
All 95 2.84 (3.80) 3.64 × 10−20 ** 0.47 (0.054) 1.57 × 10−11 ** 0.26 (0.022)

SD = standard deviation; TP = tutorial procedure; AP1 = alternative procedure 1; AP2 = alternative procedure 2.
*p < 0.05, **p<0.01.

Figure 5. Enlarged false color composite of near-infrared (NIR)-red-
green images of Plot 03, Plot 07, and GCP10 (A) on 6 July 2021, spectral 
band images with manually traced lines of vegetation and center of the 
ground control point (GCP) marker (B–D) and superimposed images.
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traced lines, the spectral reflectance images derived from TP were mis-
aligned by a few centimeters. The trace lines of AP1 were more closely 
overlaid than those of TP; however, a misalignment between the red 
and green band images was still noticeable. The misalignment between 
spectral band images of AP2 was further reduced compared to that of 
AP1, especially for GCP10 and Plot 03. The cross lines for GCP10 nearly 
perfectly overlapped and were centered on the GCP marker. Similar 
improvement was seen in Plot 03 (corn). As for Plot 07 (rice), there 
was no obvious improvement in the alignment error between AP1 and 
AP2, while there was an improvement in AP1 or AP2 versus TP. Possibly, 
the difference in misalignment could not be visualized by manual trac-
ing, as rice leaves are substantially smaller than corn leaves, making 
it harder to recognize the edges between the background and vegeta-
tion. We cannot conclude whether AP1 or AP2 is more suitable based 
on visual assessment of Plot 03 alone; however, AP2 provided more 
accurate coordinate information and reduced the interspectral band 
misalignment error.

Comparison of Pixel-Level VIs Derived Multispectral Orthomosaic  
Images Acquired at Different Heights at the Same Location
Figure 6 shows scatter plots of the VIs for the 12 plots (N = 128×128×12 
= 196,608 pixels) based on multispectral orthomosaic images obtained 
at different flight heights (20 or 30 m) with the three processing pro-
cedures. The TP-derived results (Figure 6A1–6A4) showed the largest 
data variability and the lowest correlation coefficients regardless of 
the observation date or VI. The scatter plots obtained with AP2 showed 
a smaller variability and higher correlation coefficients than those 
obtained with AP1, especially for CIgreen (Figure 6B1, 6B2, 6C1, 6C2). 
However, when using NDVI, there was no obvious difference between 
the two procedures in terms of degree of agreement (Figure 6B3, 6B4, 
6C3, 6C4).

Table 5 summarizes the correlation coefficients between the pixel-
level VIs per plot. The correlation coefficients tended to be lower on 13 
July than on 6 July for both CIgreen and NDVI. This was probably due to 
the limited dynamic range of VI within each plot and vegetation growth 
in one week. The vegetation cover fraction (i.e., the area percentage of 
vegetation covering the background area) rapidly increased with the 
leaf expansion during this phenological stage. Thus, the percentage 
of vegetated pixels within each plot increased in one week, and the 
dynamic range of VI was proportionally biased toward vegetated pixels 
over background pixels. Interestingly, AP2-derived CIgreen values had 
the highest correlation coefficients in all plots and on both observation 

Table 5. Correlation coefficients of pixel-level CI and NDVI data between multispectral orthomosaic images obtained at 20- and 30-m flight heights.a

CIgreen Correlation Coefficient (r) NDVI Correlation Coefficient (r)

Fertilizer 6 July 2021 13 July 2021 6 July 2021 13 July 2021

Plot Crop (N kg/10 acres) TP AP1 AP2 TP AP1 AP2 TP AP1 AP2 TP AP1 AP2

1

Corn

0 0.65 0.52 0.80 0.54 0.16 0.56 0.82 0.95 0.97 0.66 0.77 0.76

2 5 0.51 0.56 0.80 0.50 0.43 0.64 0.71 0.88 0.91 0.67 0.71 0.68

3 10 0.62 0.60 0.77 0.56 0.51 0.73 0.81 0.92 0.95 0.70 0.71 0.75

4 15 0.73 0.56 0.79 0.55 0.63 0.71 0.85 0.90 0.95 0.75 0.71 0.78

5 20 0.65 0.53 0.66 0.54 0.49 0.59 0.82 0.91 0.92 0.66 0.61 0.67

6 25 0.71 0.58 0.79 0.71 0.67 0.76 0.81 0.89 0.94 0.80 0.74 0.76

7

Rice

0 0.39 0.68 0.82 0.35 0.62 0.74 0.67 0.82 0.89 0.63 0.44 0.60

8 1 0.69 0.82 0.93 0.57 0.80 0.88 0.82 0.89 0.93 0.73 0.69 0.78

9 2 0.61 0.80 0.87 0.39 0.73 0.77 0.78 0.896 0.901 0.61 0.66 0.65

10 4 0.66 0.85 0.91 0.42 0.74 0.81 0.80 0.95 0.92 0.67 0.77 0.69

11 6 0.58 0.85 0.90 0.39 0.62 0.72 0.78 0.94 0.92 0.73 0.58 0.56

12 8 0.58 0.83 0.83 0.24 0.54 0.60 0.68 0.93 0.87 0.54 0.48 0.40

All 0.69 0.78 0.89 0.61 0.77 0.85 0.87 0.94 0.95 0.86 0.92 0.93

CI = chlorophyll index; NDVI = normalized difference vegetation index; CIgreen = green chlorophyll index; TP = tutorial procedure; AP1 = alternative procedure 
1; AP2 = alternative procedure 2.
aBoldface values indicate higher correlation coefficients than those obtained with the other procedures.

Figure 6. Density scatter plots of pixel-level green chlorophyll 
index (CIgreen) (top) and normalized difference vegetation index 
(NDVI) (bottom) data for the 12 plots shown in Figure 1, based 
on the tutorial procedure (TP), alternative procedure 1 (AP1), and 
alternative procedure 2 (AP2). Data were derived from multispectral 
orthomosaic images acquired at different flight heights (20 and 30 m) 
on 6 and 13 July 2021.
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dates. AP2-derived NDVI values also tended to have higher correlation 
coefficients than those obtained with the other procedures in most 
cases. The highest correlation coefficients were observed for plots 1–9 
on 6 July and for plots 3–5 and 8 on 13 July.

As shown in Figure 6, NDVI was less sensitive than CIgreen to 
absolute and relative misalignment related to the procedure used. 
The robustness of NDVI to the misalignment problem of multispectral 
orthomosaic images was highlighted with the increase in vegetative 
fraction in each plot. The difference in sensitivity of NDVI and CIgreen 
to misalignment can be interpreted based on the difference in reflec-
tance between leaf and background. As shown in Figure 5, the contrast 
between the leaf cover and background in the green reflectance images 
was higher than that in the red reflectance images, especially for corn 
(Viña et al. 2004). As for NDVI, the NIR reflectance of leaves was 
approximately 50% and was nearly ten times higher than that of the 
background, whereas the red reflectance of leaves and background 
were similar and low (a few percents). Therefore, NDVI is intrinsi-
cally less sensitive to changes in red reflectance than to changes in 
NIR reflectance (Gitelson 2004) given how it is calculated (Equation 
5). In contrast, CIgreen is intrinsically more susceptible to misalignment 
between these spectral band images, especially at the borders between 
leaf and background areas, as it considers the ratio of NIR to green 
reflectance (Equation 4). 

Comparison of Region-Averaged VIs Derived from Multispectral 
Orthomosaic Images Acquired at Different Flight Heights
Figure 7 compares region-averaged VIs derived from orthomosaic im-
ages acquired at different heights for the 12 plots using seven different 
grid sizes. Determination coefficients were calculated using all plot 
data, without considering the observation dates (N = 24 [12 plots×2 
days]). The determination coefficients obtained with TP were consis-
tently smaller than those obtained with AP1 and AP2 for both CIgreen 
and NDVI. AP2 showed the best performance in terms of the degree of 
agreement of the observed value of region-averaged VIs under different 
aerial photography conditions, especially for CIgreen (Figure 7A). The 
determination coefficients plateaued at a grid size of 32×32 pixels for 
all three procedures and both VIs. As for the region-averaged NDVI, 
there were no substantial differences between AP1 and AP2 results 
(Figure 7B). When focusing on the effect of grid size for region averag-
ing, the determination coefficients for CIgreen decreased more rapidly 
than those for NDVI with decreasing grid size. This was also due to 
the lower sensitivity of NDVI to the alignment error between spectral 
bands. Even when using TP, the determination coefficient of the region-
averaged NDVI based on a 2×2-pixel grid was high, 0.895, which was 
0.15 greater than that of CIgreen. However, there were still noticeable 
negative effects of a low alignment accuracy on the observed value of 
the region-averaged NDVI, especially when comparing TP with the other 
procedures. Increasing the grid size for region averaging could mitigate 
the negative effects, and the optimal grid size for the spatial resolution 
(flight level) of aerial photography using the P4M, which ranges from 
1.1 cm/pixel (20 m) to 1.6 cm/pixel (30 m), was 32×32 pixels.

Figure 8 shows scatter plots of region-averaged VIs with the grid 
size fixed at 32×32 pixels. The RMSEs for rice and corn were com-
pared to investigate the effect of the processing procedure applied on 
the results. The scatter plot of CIgreen obtained with TP in Figure 8A1 
shows that region-averaged CIgreen of corn was more affected by mis-
alignment than that of paddy rice (RMSE = 0.61, which was the worst 
error observed). The difference in the RMSE of CIgreen between AP1 and 
AP2 was low; thus, both procedures showed comparable accuracy. In 
contrast, the 32×32-pixel-based region-averaged NDVI showed no dif-
ferences in accuracy regardless of the processing procedure applied or 
the crop species. This result suggested that calculating region-averaged 
VIs using a 32×32-pixel grid size is an effective way to minimize the 
negative effect of misalignment on observed values, except for the 
CIgreen of corn. Moreover, the region-averaged NDVI is more robust to 
the misalignment problem than CIgreen regardless of crop species.

This study focused on evaluating the geometric correction results 
of the proposed procedures and its improvement effect on VIs without 
a detailed analysis of the effects on radiometric correction. Although 
Fawcett et al. (2020) suggested that drone-derived NDVI had relatively 

good agreement with those derived from an airborne imaging spec-
trometer and an optical satellite image in a maize field, they demon-
strated that drone-based hemispherical-conical reflectance factor values 
exhibited bias when compared to spectroradiometer measurement data, 
particularly over lower reflective surfaces. Meanwhile, although the 
commercial SfM/MVS software packages can easily perform radiometric 
correction, details on their calculation algorithms are not disclosed. 
Therefore, we believe that further verification of the accuracy of radio-
metric correction is necessary in future studies.

Figure 7. Determination coefficients of region-averaged green 
chlorophyll index (CIgreen) (A) and normalized difference vegetation 
index (NDVI) (B) data based on the tutorial procedure (TP), 
alternative procedure 1 (AP1), and alternative procedure 2 (AP2). Data 
were derived from multispectral orthomosaic images acquired at 
different flight heights.

Figure 8. Scatter plots of region-averaged green chlorophyll index 
(CIgreen) (A) and normalized difference vegetation index (NDVI) (B) 
data based on the tutorial procedure (TP), alternative procedure 1 
(AP1), and alternative procedure 2 (AP2). Data were derived from 
multispectral orthomosaic images acquired at different flight heights. 
The grid size for region averaging was set to 32×32 pixels (32×32 cm).
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Conclusion
We examined the location estimation accuracy of three processing pro-
cedures to propose an appropriate procedure for creating high-quality 
multispectral orthomosaic images acquired with the P4M in conjunction 
with the Agisoft Metashape SfM/MVS software. The standard process-
ing procedure (TP) that can be found on the Agisoft Helpdesk website 
showed remarkable inaccuracy in terms of location estimation and 
alignment between spectral band images in this study. The degree 
of alignment error caused by TP obviously varied depending on the 
spectral camera. This finding suggested the presence of a program bug 
in the processing flow of the “multi-camera system” mode of Agisoft 
Metashape (as of version 1.7.3, build 12473 [64 bit]) that interferes 
with internal camera calibration using RTK-derived precise position 
information individually recorded by the multispectral camera. Here, 
we developed alternative processing procedures (AP1 and AP2) for P4M 
data analysis using Agisoft Metashape. AP1 uses the “single camera” 
generic processing mode to individually import P4M-derived aerial im-
ages by spectral band to separately create five single-band orthomosaic 
images. Then the five single-band orthomosaic images are stacked in a 
single file containing five spectral band images. The location estima-
tion error of AP1 was significantly reduced to about half of that of TP. 
Compared to using TP, the absolute location estimation accuracy of 
GCPs for verification in AP1 was significantly improved by the altered 
procedure, which processed the multispectral images separately by 
spectral band. AP2 has one more processing step than AP1. It merges 
the five chunks of tie points and GCP markers created separately for 
each spectral band into a single chunk and then reconducts internal 
camera calibration. The alignment accuracy between spectral bands of 
AP2 was significantly better than that of AP1. We conclude that band-
to-band misalignment can be minimized by a second internal camera 
calibration after integrating tie points and GCP markers preliminarily 
processed for each spectral band separately. While the mean absolute 
location estimation error of AP2 was 1.32–1.38 cm, the mean of band-
to-band misalignment was 0.26–0.32 cm.

The effect of the differences in the processing procedures on ob-
served NDVI and CIgreen value was investigated in 12 plots cropped with 
corn and paddy rice. The use of region-averaged VIs based on at least 
32×32-pixel square size was effective to minimize the negative impact 
of misalignment on observed VI values for all procedures. Overall, AP2 
yielded the best location estimation and band alignment accuracy of 
multispectral orthomosaic images among all procedures evaluated, es-
pecially for monitoring corn growth with the P4M drone. The proposed 
alternative procedure for the Agisoft Metashape software (for version 
1.7.3, build 12473 [64 bit]) in conjunction with the P4M contributes 
to more precise VI analysis in crop breeding and field management in 
agriculture until the software flaws are fixed.
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Robust Dynamic Indoor Visible Light Positioning 
Method Based on CMOS Image Sensor

 Senzhen Sun, Guangyun Li, Yangjun Gao, and Li Wang

Abstract
A real-time imaging recognition and positioning method based on 
visible light communication flat light source is proposed. This method 
images the visible light communication flat light source through the 
rolling shutter effect of the complementary metal-oxide semiconduc-
tor imaging sensor and obtains the rectangular area outline of the 
light source. The light and dark stripe information of image with 
the digital image processing method realizes light source matching 
recognition by defining the concept, the autocorrelation sequence, 
which can be used to obtain the identity of the light source, and the 
rectangular vertex coordinate information of flat light source achieves 
high-precision vision positioning on the basis of inertial measurement 
unit attitude sensor-assisted imaging. Simultaneously, the correspond-
ing positioning module is developed for positioning testing. The test 
results indicate that the plane positioning error is less than 4.5 cm, 
and the positioning frequency is greater than 10 Hz, which provides 
a high-precision visual positioning solution for indoor positioning.

Introduction
With the development of urbanization, the demand for indoor position-
ing technology is increasing in areas such as large building venues, au-
tomated factories, underground spaces, and so on. The global satellite 
navigation system can basically meet the navigation and positioning 
requirements in most outdoor areas, but it cannot work indoors because 
of the difficulty in receiving satellite signals. Therefore, base station 
wireless indoor positioning technologies based on Wi-Fi, Bluetooth, 
ultrawide band (UWB), pseudosatellite, radio frequency, and so on 
came into being (Li et al. 2020). However, indoor structure is diverse 
and the electromagnetic environment is complex. Taking the UWB 
base station-type wireless indoor positioning solution as an example, 
it needs to set additional positioning base stations, dedicated receiving 
equipment, special data processing center, and dedicated personnel 
maintenance. This kind of base station wireless indoor positioning 
technology requires a balance between positioning accuracy and 
operation cost, and its versatility is poor. With the development of deep 
learning technology, indoor positioning methods based on multi-sensor 
fusion technologies such as semantic simultaneous localization and 
mapping (SLAM) have made great progress (Huang et al. 2021), but 
the engineering application of large-scale SLAM technology is difficult 
to adapt to dynamic application scenarios (Shao et al. 2019), and 
absolute position calibration is required. With the wide application of 
the light-emitting diode (LED) lighting system, the indoor positioning 
technology based on visible light communication technology shows 
the prospect of a broad application. For example, the visible light 
positioning (VLP) system based on imaging has fewer changes to the 
environment, takes both lighting and positioning into account, and 
has the advantages of high positioning accuracy, low system cost, no 

electromagnetic interference (Luo et al. 2017), and is very suitable for 
mobile robot position calibration.

The implementation models of indoor visible light communication 
positioning technologies are mainly divided into imaging methods and 
nonimaging methods according to the types of receivers. The nonimag-
ing positioning method of visible light communication mainly uses the 
photodiode (PD) at the receiving terminal to receive and analyze the 
signals and intensity information of multiple light sources to achieve 
visible light localization; its main implementation methods include 
the fingerprint matching method and geometric measurement method 
(Yan et al. 2019; Amsters et al. 2021; Li et al. 2018; Almadani et al. 
2021; Zheng et al. 2017). The image sensor-based visible light com-
munication positioning method mainly includes LED-identification 
(LED-IDs) (Xie et al. 2018) and imaging measurement. LEDs transmit 
IDs or geographical location information mainly by using the rolling 
shutter mechanism of complementary metal-oxide-semiconductor 
(CMOS) sensors (Do and Yoo 2016; Chen et al. 2017; Ma et al. 2019; 
Guan et al. 2018). On the other hand, the imaging positioning method 
is based on the principle of photography to achieve positioning, which 
is to perform imaging measurements on the light source by recogniz-
ing and detecting the geometric key points of the light source through 
digital image processing technology, and by determining the spatial 
relationship between the camera and the light source according to the 
photographic geometric relationship (Guan et al. 2019). The image 
sensor-based visible light communication imaging positioning method 
shows high positioning accuracy and strong portability, while the PD-
based visible light communication imaging positioning method shows 
high positioning rate, but it shows complicated systematic design and 
poor portability. With the wide application of CMOS imaging sensors in 
smart terminals, the visible light communication positioning method 
based on mobile phone imaging has achieved more research and ap-
plication results (Zhang et al. 2019; Wu et al. 2019; Ji et al. 2019; Kim 
et al. 2016; Sun et al. 2020).

Aiming at the decoding problem of visible light communication 
imaging, Do and Yoo (2016) systematically analyzed the imaging 
communication mechanism of CMOS sensor’s rolling shutter, Chen et 
al. (2017), Ma et al. (2019), and Guan et al. (2018) analyzed the com-
munication demodulation method based on the rolling shutter of the 
CMOS sensor, and discussed the method of reducing the bit-free rate. 
In terms of light source ID recognition, Xie et al. (2018) converted the 
identification of light source ID into an image classification problem 
and realized the recognition of light source. As for the application 
research, Guan et al. (2019) achieved the positioning accuracy of 4.38 
cm by simultaneously recognizing three LED light sources based on 
the light source image classification and recognition method. Zhang et 
al. (2019) proposed an LED-optical fringe code (OFC) modulation and 
recognition algorithm using red, green, blue (RGB)-LED as a position-
ing light source; meanwhile, a Convolution Neural Network was used 
to recognize light source images, which improved the recognition 
accuracy and recognition distance of light source. Wu et al. (2019) 
comprehensively considered the positioning accuracy, robustness, and Senzhen Sun, Guangyun Li, Yangjun Gao, and Li Wang are with the 

School of Geospatial Information, Information Engineering University, 
Zhengzhou, Henan 450001, China (guangyun_li_chxy@163.com).

Yangjun Gao and Li Wang are also with the State Key Laboratory of 
Geo-Information Engineering, Xi’an, Shaanxi 710054, China..

Contributed by Bo Wu, October 6, 2021 (sent for review November 4, 2021; 
reviewed by Yaxin Li, Shengjun Tang).

Photogrammetric Engineering & Remote Sensing
Vol. 88, No. 5, May 2022, pp. 333–342.

0099-1112/22/333–342
© 2022 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.21-00077R3

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2022 333



real-time performance of the VLP system, and adopted particle filters to 
achieve fast tracking of light source, which improved the anti-interfer-
ence ability of the image sensor-based VLP system. Ji et al. (2019) used 
a mobile phone as a positioning terminal and used a single LED light 
source to achieve centimeter-level positioning. Ji et al. (2019) then 
used two LED light sources and a single image sensor to evaluate the 
positioning accuracy at different distances. Sun et al. (2020) proposed 
a VLP system based on binocular vision, and developed a position-
ing module for verification, which was used for indoor robot mobile 
positioning.

At present, VLP positioning systems based on a CMOS sensor gener-
ally requires higher imaging quality. Usually, the circular LED light 
source with a diameter of less than 30 cm is used as the positioning 
beacon, so the imaging communication capacity of a single image is 
limited due to the limitation of size of the source. The high-perfor-
mance CMOS imaging sensor can obtain relatively clear light and dark 
strip images of the visible light communication light source, which can 
directly perform image binarization to distinguish high and low signals 
for decoding. Common CMOS sensors have poor sensitivity to light, 
and the distinction between light and dark stripes is small due to the 
influence of random noise. Therefore, it is difficult to perform image 
binarization to distinguish high and low signals by fixed threshold or 
adaptive threshold for decoding. In terms of light source identifica-
tion and matching, Xie et al. (2018) modulated a circular light source, 
set a certain duty cycle, and classified the light source barcode with a 
machine learning method according to the proportion of light and dark 
stripes in the image of the light source, so as to realize light source 
recognition. In order to take into account lighting, the capacity of duty 
cycle method is limited. With the upgrading of LED lighting systems, 
flat panel LEDs have been widely used. As shown in Figure 1, the 
rectangular light sources in underground parking lots and indoors are 
usually about 2–3 m away from each other, and about 3 m from the 
ground, arranged neatly, are large in size, and have significant rectan-
gular visual characteristics, which makes it easy to meet the decoding 
requirements of high-performance CMOS sensors. When ordinary CMOS 

imaging sensors cannot be decoded directly, template matching can be 
performed according to the light and dark fringe signals imaged by the 
light source. However, this method needs to establish a template data-
base; the larger the database capacity is, the more matches are needed, 
which leads to efficiency problems.

Aiming at the problem of matching efficiency and robustness, a vi-
sual VLP method based on visible light communication rectangular flat-
panel LEDs is proposed, which uses ordinary CMOS sensors for visual 
imaging, uses signal autocorrelation analysis to extract the signal cycle 
of the light source, and establishes a signal feature library to achieve 
rapid identification and matching of the light source. What’s more, to 
verify the applicability of this method, the visual positioning module is 
also demonstrated in this paper.

The rest of this paper is organized as follows. The section “System 
Principles and Methods” elaborates the proposed positioning system, 
including the LED recognition method based on signal autocorrela-
tion sequence and the visual three-dimensional localization algorithm 
model assisted by inertial measurement unit (IMU). The experimental 
results are shown and discussed in the sections “Experiment and 
Results” and the “Discussion”. Finally, conclusions are drawn in the 
final section, “Conclusions”.

System Principles and Methods
Principle of Using COMS Sensor in Visible Light Communication (VLC)
The signal-modulated LED positioning light source circularly broad-
casts the ID information through light and shade flashing. As shown in 
Figure 2a, a CMOS imaging sensor is used to image two rectangular flat 
light sources, one of which modulates the visible light communication 
ID signal to form a light and dark stripe image. The principle is shown 
in Figure 2b. The CMOS imaging sensor is exposed from top to bottom 
in sequence. After each row is exposed, the data writing operation is 
performed, and then the next cycle is performed after a period of time. 
The time of image generation for each frame is from data writing for 
the first row to the end of writing data for the last row. This period is 

(a) (b)

Figure 1. Indoor scene using a flat light source.

(a) (b)

Figure 2. (a) Communication light source and imaging effect. (b) Analysis of complementary metal-oxide semiconductor (CMOS) rolling shutter 
imaging cycle.
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the frame, which is read tf. During this period, the grayscale fringe 
image is obtained by perceiving the light and shade flicker of com-
munication by the light source line by line. Most CMOS cameras have a 
threshold delay after reading the line-by-line image, which is called tg, 
so the frame interval is the sum of the two.

When imaging the light source, the CMOS is exposed line by line, 
and the signal of the light source on and off is recorded to form a light 
and dark fringe image, as shown in Figure 3. In order to realize the im-
aging communication, the modulation frequency of a visible light com-
munication (VLC) light source signal is required to adapt to the CMOS 
line exposure imaging time. Generally, the modulation time interval is 
required to be more than two times of CMOS line exposure time th. At 
the same time, considering the requirements of indoor lighting, the by-
tecode should be converted into Manchester code, and the starting bit 
mark should be added before each bytecode to facilitate decoding. A 
bytecode can represent a hexadecimal number, and multiple bytecodes 
are concatenated to form the LED light source ID.

In visible light communication, the light and dark interval of the 
fringe signal (VLC_IFS) is related to the sending frequency of LED_ID 
signal’s modulation, and the frame rate and resolution of the imaging 
sensor. The clarity of fringe imaging is related to the camera’s sensitiv-
ity value’s setting and the sensitivity of the sensor (Do and Yoo 2016).

Taking the imaging of flat-panel light source as an example, the fol-
lowing four types of CMOS imaging sensors are used to image the same 
visible light communication light source, which are respectively the 
rear camera of the mobile phone used in Figure 4a, the front camera of 
the mobile phone used in Figure 4b, the ordinary universal serial bus 
(USB) camera used in Figure 4c, and the front camera of the laptop 
used in Figure 4d. As shown in Figure 4, the obtained fringe’s density 
and definition are different to some extent, the imaging in Figure 4a 
and 4b is relatively clear, while the image’s gray scale distinction be-
tween light and dark stripes in Figure 4c and 4d is not large. The fringe 
grayscale fluctuation curves of the two imaging sensors respectively 
used in Figure 4b and 4d are shown in Figure 5. The image of the sen-
sor in Figure 4b is clear; the amplitude of the gray scale curve is large, 
which is easy to convert into high and low signals for decoding. While 
the image of the sensor in Figure 4d is blurred, the amplitude of the 
gray scale curve is small, which is difficult to decode.

Meanwhile, due to the threshold delay effect of the CMOS sensor, 
VLC_IFS is constantly moving and changing on the image, so it is dif-
ficult to extract the LED_ID image signal in a standard period.

Recognition Principle of Light Source Recognition
Visible light communication flat-panel light source cyclically broad-
casts the ID information, which causes the light and dark stripe signals 
obtained by CMOS imaging to form significant periodic characteristics. 
The period of VLC_IFS can be obtained by calculating the period of the 
autocorrelation sequence of the VLC_IFS (VLC_IFS_AS).

According to the correlation of the discrete time signals, the imag-
ing fringe sequence signal is defined as y(n):

 y(n) = x(n) + w(n) (1)

where x(n) is the theoretical value of fringe gray-value sequence 
of CMOS sensor imaging for communication light source, and the 
period value is T unknown. w(n) represents the random noise of the 
fringe gray-value sequence due to factors such as sensor sensitiv-
ity. Assuming that the observation sequence has M samples, M >> T. 
When n<0 or n≥M, if 0 ≤ n ≤ M – 1, the autocorrelation sequence of 
y(n) is as follows, where 1/M  is the normalization factor.
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 ryy(l) = rxx(l) + rxw(l) + rwx(l) + rww(l) (3)

Since x(n) is periodic, rxx(l) has the same period T as x(n). When 
the value of l is an integer multiple of the period T such as 0, T, 2T, the 
autocorrelation sequence curve will have a large peak value. In order 

to avoid the peak value decreasing in amplitude when l is approaching 
M,   needs to be no greater than M/2. The peak value of the autocor-
relation function of w(n) is at l = 0. Due to its random characteristics, 
it will rapidly decay to zero. The signal x(n) is completely independent 
of random noise w(n), and its cross-correlation  rxw(l) and rwx(l) can be 
considered relatively small. Therefore, the number of cycles T can be 
determined by calculating the VLC_IFS_AS. As shown in Figure 6, the 
autocorrelation of fringe gray signals of the four CMOS imaging sensors 
used in Figure 4 is calculated. The results show that the fringe signal 
period of the sensor used in Figure 4a is 179, the sensor used in Figure 
4b is 119, the sensor used in Figure 4c is 76, and the sensor used in 
Figure 4d is 95, respectively. Different types of CMOS sensors image 
the same light source with different fringe signal periods.

Use the same model of CMOS sensor to analyze the autocorrelation 
sequence of the fringe signals imaged by four different communication 
light sources under the condition of image resolution of 1280 × 720, 

Figure 3. The modulation method of the light-emitting diode (LED) 
light source identification (ID).

(a) (b) (c) (d)

Figure 4. The imaging effect of the same light source with different 
complementary metal-oxide semiconductor (CMOS) imaging sensors.

Figure 5. Grayscale fluctuation curve of image stripes.
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as shown in Figure 7, the autocorrelation period of the fringe signal of 
one light source is 76, and that of the rest three light sources is 90. The 
method of finding the period through autocorrelation can be used as a 
preliminary classification method to distinguish different light sources.

A light source identification and matching method based on signal 
autocorrelation sequence is established according to the periodic char-
acteristics of the VLC_IFS_AS. The process is shown in Figure 8. Firstly, 
the stripe image is averaged row by row to generate VLC_IFS, which 
is called V = {v1, v2, v3, …, vi}, v∈[0, 255]. According to the sequence 
V of light and dark fringes, the signal autocorrelation calculation is 
carried out to obtain the signal autocorrelation sequence and its period 
number, which can be respectively called N,  N = {n1, n2, n3, …, nT, 
…}, and T. The standardized sequence, which is called X, X = {x1, x2, 
x3, …, xT}, x∈[0, 1], is obtained by extracting the sequence value in 
the first period of the signal autocorrelation sequence N and perform-
ing normalization processing. The LED_ID matched-degree problem of 
two light sources is transformed into the matched-degree problem of 
the VLC_IFS_AS of two light sources. Define DT as the matched-degree 
sequence of two light sources, which can be defined as follows:

 DT = X1T – X2T (4)

 DT = {d1, d2, d3, …, di}, d∈[–1, 1] (5)

where X1T and X2T respectively represent the normalized signal auto-
correlation sequences of two light sources in one cycle.

Using the support vector machine (SVM) classification method, the 
standardized sequence X of light source images can obviously be used 
as the classification elements of light sources with the same period 
but different LED_IDs, and the light source LED_ID identification can 
be converted into a classification problem. Similarly, the light source 
matching degree sequence DT can be used as the SVM classification 
element to convert the matching problem into a binary classification 
problem. Furthermore, the matching problem can be directly converted 
into a linear discriminant, and the definition of the matching degree K 
of two light sources is shown in Equation 6:

 K = a × H + b × M + c × S + d × W (6)

where a, b, c, and d are the coefficients, which are usually not less than 
1. H is the different value between the maximum and minimum values 
of the sequence DT, M is the mean value of the sum of the absolute 
values of the sequence DT, S is the standard deviation of the sequence 
DT, and W is the average value of the sum of sequence values whose 
absolute value is greater than 0.15 in the sequence. The smaller the K 
value, the higher the matching degree. If the matching degree of the 
images of the light source with the same LED_ID is made less than that 
of the images of the different light sources, the determination of the 
parameters can be converted into a linear programming problem to 
solve the quaternary first order inequality equations, and the K value 
calculated between the matching light sources can be minimized 
through linear programming calculation to determine the parameter 

values. Obviously, the calculation elements of K can also be converted 
into the calculation elements of SVM regression classification to carry 
out light source classification and recognition.

IMU-Assisted Visual Positioning Method with Flat Panel Light Source
The corner points of the rectangular flat-panel light source are on an 
approximate plane. The visual imaging positioning using rectangular 
flat plate light source can be regarded as the Perspective-n-Point (PNP) 
(Lepetit et al. 2009) pose calculation based on four points in the plane 

Figure 6. Autocorrelation sequence curves of the same light source with 
different complementary metal-oxide semiconductor (CMOS) sensors.

Figure 7. Autocorrelation sequence curves of different light sources with 
the same complementary metal-oxide semiconductor (CMOS) sensor.

Figure 8. Light source matching process.
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or the issue of single image space resection. The calculation can be 
divided into direct method and iterative method (Sun et al. 2021). The 
direct method has high calculation efficiency, while the accuracy is 
poor compared with the iterative method. The calculation efficiency 
of the iterative method has a certain dependence on the initial value; 
a good initial value can reduce the number of iterations and improve 
the calculation efficiency. The combination of the two methods can 
improve the calculation accuracy and algorithm efficiency. The im-
age point extraction error is the main source of the visual positioning 
error. According to the homography direct method (Sun et al. 2021), 
the Monte Carlo method is used for simulation, the focal length of the 
camera is set to 4.3 mm, the imaging resolution is set to 1280 × 720, 
the camera is located in a 2 m × 2 m plane, 3.5 m directly below the 
light source, and the center of the VLC light source with a size of 60 
cm × 60 cm is imaged. Four theoretical image points of a rectangular 
VLC light source are calculated, and then random errors are attached 
to the four image points for simulation. Place the camera in a 2 m × 2 
m plane, 3.5 m directly below the light source, and image the center 
of the VLC light source with a size of 60 cm × 60 cm. The simulation 
times are more than 1000 times, and the variation of the evaluation 
positioning error with the image point noise is shown in Figure 9a. 
With the increase of the image point error, the imaging positioning 
error increases linearly, and the plane error increases faster relative to 
the height error. The variation of the attitude angle error with the image 
point error is shown in Figure 9b. The growth rate of the tilt angle error 

is much faster than the heading angle, and the heading angle error does 
not exceed 1° at two pixels error levels.

In Zhang’s (1999) calibration method, the homography matrix is 
H, which can be expressed as follows: H = [h1 h2 h3], the R matrix 
of imaging attitude is obtained from h1, h2 in the homography matrix 
H, the translation relationship between the imaging measurement 
coordinate system and the world coordinate system is obtained from h3 
in the homography matrix H, and the error of the imaging calculation 
attitude is transmitted to the camera position through the R matrix. The 
common IMU attitude sensors can provide a tilt angle accuracy of 0.1°, 
which is far better than the tilt angle accuracy of the visual calcula-
tion, but the heading angle accuracy is usually greater than 2° and is 
susceptible to interference. Therefore, when the IMU is used to assist 
the imaging positioning, the heading angle calculated by the vision 
and the tilt attitude angle with higher accuracy provided by the IMU are 
used to correct the R matrix, which can improve the imaging position-
ing accuracy (Sun et al. 2021).

Integrate the CMOS imaging sensor and IMU module into an imaging 
positioning module for an imaging positioning simulation system with 
VLC flat-panel light source, as shown in Figure 10a. Under the same 
imaging conditions, the simulation results after using a higher-preci-
sion tilt angle reorganization rotation matrix to participate in the posi-
tioning calculation are shown in Figure 10b, with the increase of the 
image point error, and the plane accuracy of the imaging positioning 
is greatly improved. The error in the height direction is also reduced, 

(a) (b)

Figure 9. (a) The variation of imaging positioning error with the image point error. (b) The variation of the imaging attitude error with the image 
point error.

(a) (b) (c)

Figure 10. (a) Inertial measurement unit (IMU)-assisted visual positioning system based on visible light communication (VLC), (b) the variation of 
IMU-assisted positioning error with image point error, and (c) the variation of IMU-assisted iterative method positioning error with image point error.
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indicating that the IMU-assisted imaging tilt attitude angle can improve 
the positioning accuracy. Similarly, in the calculation of the iterative 
method, the tilt angle can be fixed, and only the positioning value 
and heading angle can be iterated to further improve the positioning 
accuracy. Under the same conditions, the iterative method positioning 
simulation result is shown in Figure 10c. Under the condition of two 
pixels errors, the mean-square-error based on the IMU-assisted imaging 
positioning results in the three axis directions is less than 2 cm.

The digital image processing method is used to extract the bound-
ary of the light source’s stripe region to obtain the contour points of 
the light source and perform identification matching to obtain the four 
corner points’ coordinates of the rectangular flat light source corre-
sponding to its ID information as shown in Figure 11.

Figure 11. Visual recognition and extraction effect of rectangular 
communication light source.

When determining the correspondence relation between the world 
coordinates of the corner points and the coordinates of the image 
points of the rectangular light source, firstly, a corresponding relation 
is assumed to calculate the imaging positioning and obtain the heading 
angle of the module at the same time. Then, the difference between the 
heading angle and the geomagnetic deflection angle of the IMU sensor 
is calculated. If the difference is less than a certain threshold, it is the 
correct relation; otherwise, the assumed calculation continues. The 
process is as follows:

Step 1. Input the world coordinates of the corner points of the light 
source in a counterclockwise sequence {p1, p2, p3, p4},and the light 
source corner point counterclockwise sequence image coordinates {c1, 
c2, c3, c4};

Step 2. Assume a correspondence between the world coordinate 
of the four corner points of the light source and the image coordinate 
sequence;

Step 3. Perform visual calculation according to the assumed rela-
tionship to obtain the heading angle H of the positioning module. At the 
same time obtain the geomagnetic azimuth angle M of the IMU sensor;

Step 4. Calculate the deviation angle C between the heading angle H 
and the geomagnetic azimuth angle M. Determine whether C is more 
than 45 degrees. If it is, return to the second Step 2; otherwise, output 
the correspondence between the world coordinates of the light source 
corner points and the image coordinates; The deviation angle C is an 
empirical setting value. Usually, when the spatial coordinates of the 
reference point are consistent with the corresponding image point co-
ordinates, the heading angle H calculated by the imaging positioning is 

not much different from the geomagnetic azimuth angle M provided by 
the IMU, generally not more than 10°, namely C = |H – M| < 10. When 
the local magnetic azimuth is disturbed, the value of C may be larger. 
We assume that its threshold value is 45 degrees, mainly considering 
that in the positioning environment, the geomagnetic azimuth based 
on IMU sensor is prone to interference from magnetic field. When the 
threshold value exceeds 45 degrees, strong magnetic field interference 
will be received, resulting in inaccurate geomagnetic azimuth and 
errors in system judgment. Therefore, the threshold of the deviation 
angle C cannot exceed 45 degrees.

There are four kinds of sequence correspondences for the four cor-
ner points, so the corresponding relationship can be determined after 
four calculations at most. Finally, according to the correct correspon-
dence, the IMU-assisted iterative method is used for imaging position-
ing calculation.

Experiment and Results
Introduction of Imaging Positioning Module
According to the visual method of IMU-assisted imaging measurement, 
a positioning module is made for algorithm verification. As shown in 
Figure 12, it has a binocular vision measurement function. The specific 
parameters are shown in Table 1. The module is used to achieve visual 
localization based on a single VLC circular light source (Sun et al. 
2020). In this experiment, one of the cameras is used for the monocular 
positioning test. The camera coordinate system and IMU coordinate 
system are calibrated before the test.

Figure 12. Visual imaging test positioning module.

Table 1. Positioning module parameters.
Parameters Value

Camera focal length/mm 4.3

Maximum resolution 1920 × 1080

Binocular baseline/mm 170

IMU tilt angle accuracy/degree 0.05–0.1

IMU heading angle accuracy/degree 1–4

CPU ARM A53@ 1.4 GHz 64 

Overall dimensions/mm 210 × 72 × 38

IMU = inertial measurement unit; CPU = central processing unit

Recognition Rate and Imaging Distance Relationship
The light source recognition rate of the light source visual matching 
method based on signal autocorrelation is related to many factors, such 
as the signal modulation period of the light source, the type of CMOS 
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imaging sensor, the imaging distance, the angular resolution, and so on. 
After determining the signal modulation frequency and the period of 
the light source, as well as the CMOS sensor’s type, the recognition rate 
of the light source based on signal autocorrelation is mainly related to 
the imaging resolution, the imaging distance, the imaging angle, and 
the image noise. A rectangular flat-panel LED lamp with a size of 548 
mm × 548 mm is used as the VLC light source, and the signal is modu-
lated based on LED_ID technology. The modulation frequency is 16 
kHz, and Manchester code is used to form three hexadecimal numbers, 
with a total ID capacity of 4096. The positioning module adopts an im-
aging resolution of 1280 × 720. The recognition rate of the light source 
at different imaging distances is shown in Figure 13. When the imaging 
distance is less than 3.9 m, the recognition rate is above 95%. When 
the imaging distance exceeds 4.2 m, the recognition rate drops rapidly.

Figure 13. The relationship between the recognition rate of the light 
source and the imaging distance.

When the parameters of the CMOS imaging sensor are fixed, the 
number of imaging fringes for the communication light source is 
mainly related to the distance between the imaging sensor and the light 
source and the imaging angle. The imaging distance affects the number 
of imaging fringes and the fringe gray levels’ degree of discrimination, 
but does not affect the calculation of the fringe signal’s period. When 
the imaging angle changes, the image of the light source is shaped like 
an affine quadrilateral, and the number of lines in the imaging area 
of the light source will also change accordingly; it will decrease or 
increase, which affects the recognition rate. When the number of image 
lines extracted from the light source area is less than the number of 
imaging cycles (T) of the light source signal, it cannot be recognized. 
Therefore, the use of a large-sized flat-panel light source can meet the 
requirements of longer-distance visible light communication imaging 
and positioning.

Multi-Light Source Recognition and Positioning Test
The visual imaging positioning module is used to collect the imaging 
data of five rectangular flat LED light sources with the same communi-
cation frequency but different LED_IDs. The acquisition method is as 
follows: within the range of 3.5 m from each light source, 14 images 
of light sources are collected at different imaging angles and distances, 
and a total of 70 samples are collected. After extracting the fringe gray-
scale sequence images of each sample image, noise expanded image 
samples are added randomly to the grayscale sequence image values, 
the number of samples is less than 10, and then 4610 training sets and 
5160 test sets are generated according to the number of autocorrelation 
cycles of the fringe image sequences. Three schemes are used to per-
form SVM classification test by selecting the optimal parameters (Wu 
and Wang 2009). As shown in Table 2, Scheme 1 directly intercepts 
the light source fringe’s gray value sequence V within one period as 

the classification element. Scheme 2 uses the autocorrelation sequence   
and the standardized sequence N and the standardized sequence X of 
the fringe image in one period as the classification elements. According 
to Equation 4, the sequence D obtained by the difference between the 
autocorrelation sequences of two images in one period is used as the 
classification element, and the matching problem is transformed into a 
dichotomy problem.

Table 2. Support vector machine (SVM) classification accuracy rate of 
the three schemes under different conditions.
Scheme Autocorrelation Normalized Kernel Accuracy (%)

1 No
No

RBF
20.16

Yes 85.32

2 Yes
No

Linear
98.64

Yes 100

3 Yes
No

RBF
88.26

Yes 99.18

RBF kernel = radial basis function kernel.

From the analysis of the SVM classification accuracy of the three 
schemes under different conditions in Table 2, extracting the autocor-
relation sequence of the light source fringe image and normalizing it 
can ensure the accuracy of the classification. Scheme 1 directly uses 
the grayscale sequence of fringe image, which is not accurate. The SVM 
classification in Scheme 2 uses a linear kernel function, and the accu-
racy after normalization reaches 100%, indicating that the light source 
image is linearly separable after signal autocorrelation. In Scheme 3, 
the autocorrelation sequence of the image signals of two light sources is 
differentiated, and the multi-classification problem is transformed into 
a binary classification problem. The trained discriminant model can be 
extended to the matching discrimination of other light sources, and the 
accuracy is still above 98% in the discrimination of other light sources.

Further, according to the matching degree of the two light source 
images defined in Equation 6, the matching test is carried out. Ten 
images of each light source were selected from the collected image sets 
of the five light sources, and the standardized autocorrelation sequence 
Xi of each image was calculated respectively. Then, the average value 
sequence X is taken as the matching template of the light source, and 
five matching template libraries are established. If the coefficients of 
Equation 6 are all 1, the matching degree is calculated in the data set, 
and the values of each the component are shown in Figure 14. The 
first 50 data points are the matching values between 10 images of each 
light source and its own template, while the last 200 data points are the 
matching values between images of each light source and non–self-
template. As can be seen from the fluctuation of K value, the maximum 
value of the first 50 data points is 0.53, and the minimum value of 
the last 200 data points is 0.59, indicating that K value can be used as 
the threshold value of light source matching. The coefficient of the K 
value’s calculation formula can be adjusted by linear programming 
method to improve the discrimination of matching threshold. Taking 
the minimum K value as the matching basis, the recognition effect of 
multiple light sources within the imaging range is shown in Figure 15, 
which realizes the identification of multiple light source IDs and the 
extraction of rectangular contour points in the same image.

The positioning test is carried out in a laboratory environment of 
11 × 8 × 3.5 m. As shown in Figure 16, there are nine flat-panel LED 
light sources in total in the room, and five of them are modified as VLC 
positioning light sources by using visible light communication technol-
ogy, and the spatial coordinates of each positioning light source’s four 
corner points is measured to establish a world coordinate system.

Using the IMU-assisted rectangular light source imaging position-
ing method mentioned in the section “IMU-Assisted Visual Positioning 
Method with Flat Panel Light Source” for the positioning test, which is 
divided into a static test and a mobile positioning test.When the imag-
ing resolution of the imaging positioning module is set to 1280 × 720 
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and the vertical height from the light source is 3.4 m, static positioning 
was carried out at 21 positions in the area covered by the light source, 
and the positioning error of each point was shown in Figure 17. The 
plane positioning error of the module is less than 17 mm, and the 
height error is less than 30 mm.

Place the positioning module horizontally on the trolley and perform 
the IMU-assisted iterative mobile positioning test by controlling the 
trolley to move along the direction of the light source layout. When the 

height of the module is 3.12 m from the light source and the imaging 
resolution is 1280 × 720, the plane positioning trajectory is shown in 
Figure 18, during the positioning process, the light source is identified 
accurately and the transition between different light sources is smooth.

Figure 14. Matching degree and distribution of each component.

Figure 15. The recognition and matching effect of multiple light sources.

Figure 16. The layout of the communication light source in the test 
scenario.

(a)

(b)

Figure 17. (a) Static positioning test’s points distribution, and (b) 
analysis of positioning accuracy of static positioning test’s points.

Figure 18. Moving and positioning plane trajectory among multiple 
light sources.
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Operate the trolley to make it move along the fixed rectangular 
line. The rectangular reference point and the positioning trajectory are 
shown in Figure 19a, and the lines of the trajectory and the reference 
point are basically coincidental. Take the vertical distance between 
the plane positioning track point and the reference line as the plane 
positioning deviation, and take the difference between the positioning 
result along the Z-axis direction and the imaging distance as the height 
positioning deviation to analyze the mobile positioning accuracy. The 
result is shown in Figure 19b; the plane positioning deviation is less 
than 4.5 cm, and the height deviation is less than 6 cm. As for the 
fluctuation of positioning error in the Figure 19b, the initial analysis 
believes that it is caused by the larger mobile positioning error relative 
to the static positioning error, which may be caused by the fact that 
the corner extraction error of the light source in the moving state is 
relatively higher than that of the static positioning. When multiple 
light sources appear in the scene, the positioning accuracy is high, and 
the Z-axis positioning error changes dramatically due to light source 
switching in the visual image. These details are worth further analysis.

Discussion
The test results show that when the image resolution of 1280 × 720 and 
the distance of 3.5 m from the flat plate light source are adopted, the 

fast recognition and matching of multiple flat plate light sources with 
the size of 0.548 m × 0.548 m can be realized simultaneously. With 
the assistance of the IMU attitude sensor, the planar mobile positioning 
accuracy is better than 4.5 cm, and it can provide a directional refer-
ence of better than 1°, and the positioning frequency of the positioning 
module is greater than 10 Hz. With the upgrading of indoor lighting 
system, the method based on the fusion of visible light communication 
and visual imaging positioning provides a high-precision mobile posi-
tioning solution for indoor positioning, which can meet the application 
requirements of centimeter-level mobile positioning and navigation for 
indoor robot.

The positioning method proposed in this paper can only be effective 
in the area covered by a VLC rectangular light source, and the reason-
able layout of light source needs to be considered to achieve indoor 
continuous positioning. When there is not a complete light source 
image in the field of vision, positioning cannot be performed, which is 
a limiting factor for the promotion and application of all VLC imaging 
positioning. In order to overcome the influence of blind areas, the use 
of a fisheye lens for imaging and positioning is one of the research 
directions to explore to overcome this problem.

Conclusion
A visual matching recognition and positioning method for visible 
light communication based on rectangular flat-panel LED light source 
is proposed. According to the CMOS shutter effect, the light and dark 
stripe images in the flat light source area are extracted by a digital im-
age processing method and the signal period was obtained by calculat-
ing the signal autocorrelation sequence of the stripe images. Then, the 
normalized processing of the autocorrelation sequence signal in one 
period is carried out to transform the light source identification and 
matching problem into a SVM classification problem, and to establish 
the matching degree K’s calculation method of light source image, 
realizing the fast recognition and matching of light source ID informa-
tion. Based on the realization of light source visual recognition, an IMU 
sensor-assisted imaging positioning method is proposed, and a posi-
tioning module is made for testing. The positioning test results show 
that the visible light communication visual positioning system based 
on the rectangular flat panel light source meets the need for centimeter-
level positioning accuracy and provides a robust solution for indoor 
robot navigation.
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Comparing the Sensitivity of Pixel-Based and  
Sub-Watershed-Based Analytic Hierarchy Process 
to Weighting Criteria for Flood Hazard Estimation

 Hongping Zhang, Zhenfeng Shao, Wenfu Wu, Xiao Huang, Jisong Sun, Jinqi Zhao, and Yewen Fan

Abstract
In flood hazard estimation via the analytic hierarchy process (AHP), 
using the pixel as the basic unit might lead to accuracy relying on the 
optimal weighting criteria. To this end, considering the sub-watershed 
as the basic unit is new. In this study, taking the Chaohu Basin in 
Anhui Province, China, as a study case, the accuracy of the sensitivity 
of the pixel-based and sub-watershed-based AHP models influenced 
by weighting criteria was compared. There were 48 judgment ma-
trixes defined, following the same order of importance of the involved 
indicators. Validation ground truthing is constructed by the extracted 
flooded regions from GF-3 images. As weighting criteria changed, the 
results indicated that the pixel-based AHP fluctuated significantly, while 
the correct ratio and fit ratio derived by the sub-watershed-based AHP 
could improve by >35% and >5%, respectively, over the pixel-based-
AHP. It indicated that the sub-watershed-based AHP has an advantage 
in relying less on in situ weighting criteria than the pixel-based AHP.

Introduction
Floods are worldwide natural events that commonly occur in river 
networks in interwoven areas, driven by extreme or continuous 
rainfall. These low-lying areas have a high risk of flood and waterlog-
ging. Meanwhile, the abundant water resources bring convenience to 
agricultural irrigation and commercial transportation. Most of the inter-
woven river areas have long histories of human inhabitants. Therefore, 
to improve the accuracy of flood hazard estimation in river networks, 
interwoven areas can support better flood risk management practices.

The analytic hierarchy process (AHP) is a popular multi-criteria de-
cision method used in flood hazard estimation. The AHP method relies 
on expert knowledge to determine involving indices and correspond-
ing criteria (Liu et al. 2021). In AHP, the judgment matrix definition 
determines the final weighting (Saaty 2014), and the weighting might 
lead to impact flood hazard estimation results (Ohnishi and Imai 1998; 
Ohnishi et al. 2011). As in landslide detecting, Adnan et al. (2020) ad-
dressed that the uncertainties in the results derived by various models 
would create challenges in landslide management.

Efforts are still needed to reduce the impact of criteria weight 
sensitivity on flood hazard estimation results. For example, Koc et al. 
(2021) used a fuzzy AHP method to identify the weight of used criteria. 
Rahman et al. (2021) used the hydrodynamic model coupled with a 
machine learning algorithm to create a flood hazard map. Costache 
et al. (2020) focused on a combination of AHP, certainty factor, and 
weights of evidence on the one hand and gradient boosting trees and 
multi-layer perceptron on the other to evaluate flood potential areas. 
Ali et al. (2020) developed a framework for identifying flood-prone 
areas using geographic information systems (GIS), a multi-criteria deci-
sion making approach, bivariate statistics, and machine learning.

With spatial information techniques, flood hazard estimation can 
produce involved indicators by GIS and remote sensing images and us-
ing the pixel as the basic unit to prepare flood hazard estimation–related 
indices. The sub-watershed is a boundary reflecting pixels flowing out 
from the same outlets, and the sub-watershed is always considered as 
a basic unit to simulate rainfall-runoff processes (Abdulkareem et al. 
2018; Shao et al. 2019; Wang et al. 2020; Zhang et al. 2020). Therefore, 
using the sub-watershed as the basic unit in AHP-based flood hazard 
estimation may capture the terrain features or hydrological characteris-
tics introduced by neighborhood cells at the sub-watershed scale (Zhang 
et al. 2020; Betancourt et al. 2021). The sub-watershed has been widely 
used as the basic unit in hydrology process simulation by hydrology 
or numerical models, but it is new use it as a basic unit in flood hazard 
estimation (sub-watershed-based AHP). As a sub-watershed is a group of 
pixels, taking the sub-watershed as the basic unit to estimate flood haz-
ard may reduce the uncertainty caused by weighting changes compared 
to using individual pixels as the basic unit. Therefore, this study aims to 
compare the sensitivity caused by weighting criteria definition between 
pixel-based AHP and sub-watershed-based AHP.

However, flood hazard map derived by AHP may choose different 
kinds of indices and thus might lead to individual weighting in different 
research. In some works (Bathrellos et al. 2017; Ghosh and Kar 2018; 
Kanani-Sadat et al. 2019; Shariat et al. 2019; Mishra and Sinha 2020; 
Nachappa et al. 2020; Nguyen et al. 2020; Ekmekcioglu et al. 2021; 
Pham et al. 2021), flood hazard estimation indices consisted of direct 
flood-caused factors (i.e., rainfall), runoff converging factors (i.e., slope, 
elevation, and water systems), and surface runoff production characters 
(i.e., land use type and impervious surfaces). Meanwhile, similar indices, 
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such as distance from streams, flow accumulation, and density of rivers, 
can represent runoff converging factors. Even using the same indices, 
researchers usually construct weighting criteria according to in situ expert 
knowledge. Exploring a cluster of candidate weighting criteria may be the 
conversion implement to reduce the dependency on pursuing optimized 
criteria in AHP-based flood hazard estimation. The sub-watershed division 
methods can be grouped as single flow direction and multiple flow direc-
tion algorithms, and different sub-watershed division results represent 
different group patterns of pixels. Therefore, the flood hazard estimation 
sensitivity analysis caused by weighting criteria also needs to further 
detail the differences caused by different watershed division methods.

This study compared the sensitivity of flood risk estimation to 
disparity weighting criteria between the pixel-based AHP and the sub-
watershed-based AHP models, including MFD-RC, MFD-All, D8-RC, and 
D8-All, detailed in Section 3. The flood event that occurred in July 2020 
in the Chaohu Basin, Anhui Province, China, was taken as a study 
case. Ground-truthing validation compares the sensitivity among the 
five used models constructed by flood areas extracted from remote 
sensing images. The structure of this article is as follows. The next sec-
tion introduces the study area and the primary data sources. The meth-
odology is described next. The results and discussions are presented, 
and then conclusions and limitations are presented.

Study Area and Materials
This section describes the study area and the main materials used in 
this research.

Study Area
Chao Lake in Anhui Province is the fifth-largest freshwater lake in 
China. More than 30 rivers converge into Chao Lake. Following the 

hydrology network of level 3 in the 2008 version, the surrounding riv-
ers, including the Hangfu, the Fengle, the Zhao, the Xi, the Nanfei, and 
the Pai, make up the central water system of the Chaohu Basin. The 
geographical location, the hydrology network, and the digital elevation 
model (DEM) distribution of the study area are shown in Figure 1a.

As shown in Figure 1a, the terrain of the Chaohu Basin surround-
ing Chaohu is higher in the west-south and north-east than other areas. 
Lying downstream of the Yangtze River, the Chaohu Basin suffers a 
high probability of floods during the rain-rich seasons from June to 
August every year. According to a Hefei Municipal Hydrology and 
Water Resources Bureau report, the water level of Chao Lake reached 
13.43 m at 10:48 on July 22, 2020, breaking the record of 12.80 m in 
1991 (Anhui Net 2020). This situation brought significant threats to 
the cities of Chaohu and Hefei. Improving the flood risk estimation 
accuracy of the Chaohu Basin is important in mitigating flood-related 
losses. In this study, the district surrounding Chaohu in the range of the 
Chaohu Basin was taken as the study area, as shown in Figure 1b.

Materials
Table 1 presents the primary data sources and their descriptions. The 
GIS vectors were used to obtain hydrological information. The DEM 
was used to divide watersheds and calculate slopes. The impervi-
ous surface products contain impervious surface, water, and porous 
surface, which can extract land cover and hydrological infiltration 
information. All the pre-processing steps, including transforming, 
projecting, mosaicking, and clipping, were implemented in ArcGIS 
10.3. Synthetic aperture radar images serve as the primary material to 
construct the ground truthing of high flood hazard areas.

The level 2 image of the 10-m resolution GF-3 Fine Stripmap II 
(FSII) model was used to extract floodwater. The threshold method for 
the backscatter coefficient image of GF-3 was adopted to derive water 

(a) (b)

Figure 1. Geographical location of the study area (according to the China basic geographic information, 2008 version). (a) Study area and 
distinct distribution. (b) Study area and elevation distribution.

Table 1. Main data materials used in this study.
Data Sources Used Data Detailed Information

Geographic information 
(1:1 million)

District, 
hydrological layers

The vectorized distinct boundaries and hydrological layers were released in 2008. The hydrological layers, 
including rivers, streams, and lakes, constrain terrain as natural water bodies when delimitating sub-watersheds.

ASTER GDEM ver. 2 
(30 m)

DEM DEM downloaded from http://www.gscloud.cn. The DEM is the main material used to divide watersheds and 
extract digital streams. DEM is also used to derive flood risk estimation indicators, such as the slope and the 
elevation.

China’s impervious 
surface product (2 m)

Water, vegetation, 
soil, buildings,  
and roads

China’s impervious surface grid product (2 m) (Shao et al. 2019), which contains classification types of water, 
vegetation, soil, building, and roads, was adopted. And Buildings and roads consist of impervious surfaces. 
Vegetation and soil represent porous surfaces. Land use types, including water, impervious, and porous surfaces, 
were used to prepare hydrological indicators.

Images for extracting 
flooded areas

Water bodies The GaoFen center of Hubei province supports the GF-3 data. GF-3 extracted the flooding areas on 24 July 2020. 
Landsat 8 OLI download from https://www.usgs.gov. The Landsat 8 OLI on 20 July 2020 was used to identify 
water areas before the flooding event.
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or no-water areas. After geometrical correction and registration, the 
Landsat OLI image was adopted to extract water areas by the maximum 
likelihood method. The water areas extracted by GF-3 and Landsat OLI 
were considered as the whole water range during the flood event. This 
water range excludes the normal water area in the 2 m of impervious 
surface products making up the range of the flood hazard areas.

Methodology
The technical work flow of this study is illustrated as in Figure 2. As 
shown in Figure 2, based on the definition of the original indices, the 
initial indicator distribution was ranked according to the distribution 
representing flood hazard levels. The pixel-based AHP model and the 
MFD-RC, MFD-All, D8-RC, and D8-All models adopted customized com-
parison matrixes to derive candidate weighting criteria. The ranking 
indices and weighting criteria calculated the flood hazard index.

The flood hazard maps of “very high,” “high,” “normal,” “low,” 
and “very low” were sliced by flood hazard index via the natural break 
method. The union distribution of “high” and “very high” were com-
pared with ground truthing. The flood areas extracted from Landsat 
8 OLI and GF-3 in a flood event on July 2021 made up the ground 
truthing. The sensitivity was analyzed by the fluctuant features of cor-
rect(%) and fit(%) (Bathrellos et al. 2017) among the models used.

At the criteria construction step, the WZSAHP calculated the maxi-
mum statistical value of ranked indices constraining sub-watersheds. 
At the flood hazard estimation step, the candidate weighting criteria 
were chosen by a consistency ratio higher than 0.1 (Saaty 2014). At 
the sensitivity analysis step, the fluctuate feature of correct (%) and fit 
(%) when judgment matrixes change was considered a performance of 
weighting criteria deriving sensitivity.

The Basic Theory of Pixel-Based AHP and WZSAHP Models
The pixel-based AHP model adopts pixels as the basic unit and con-
structs flood hazard estimation assisted by pixel-scale weight vectors 
from a group of raster layers. The WZSAHP models combine the theory 
of pixel-based AHP, additionally considered sub-watersheds as a basic 
unit to constraint-relevant indicators.

The Pixel-Based AHP Model
AHP is composed of three levels—target, criteria, and alternatives—as 
shown in Figure 3. The target layer refers to the evaluation unit, the 
criteria (with single or multiple layers) consist of several clusters that 
reflect different aspects of the target, and the alternative is composed 
of the estimated results. The flood hazard estimation target, the criteria, 
and the corresponding watershed are defined as follows:

 

P

p p p
p p p

p p p

n

n

m m mn

=

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

= =,
...
,

...

...

.
C

c
c

c

C

c c c
c c c

x

x

n

n

1

2

11 12 1

21 22 2

... ... ... ...

...c c cm m mn1 2  

(1)

where matrix P represents the pixel matrix in the study area with a size 
of m × n and C is the flood hazard estimation indicator. Each of the 
indicators Cx suggests a raster layer with a size of m × n.

Figure 2. Overall work flow of deriving flood hazard maps and validation data sets in the study.

Figure 3. Structure of the AHP method.
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Then the flood risk index can calculate via Equation 2,

 
FRI = =

=

=∑ω ω· ·C C
i

i n

i i1  
(2)

where FRI is the flood hazard index calculated by the cumulative sum 
of criteria C (using either original indices ci and its corresponding 
weight ω, and n is the number of flood hazard estimation indices.

The WZSAHP Model
The WZSAHP flood hazard estimation method adopts sub-watersheds 
as the constraint unit to calculate maximum zonal statistical value of 
relevant indicators. The indices related to runoff converging, such as 
slope and distance from streams, are constrained by sub-watersheds via 
Equations 3–4. The flood hazard index calculated via Equation 5,
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 F(S, cx) = zonal statistic (S, cx, maximum) (4)

where S is the sub-watershed division raster and F(S, cx) is the 
constraint sub-watershed as a statistical zonal unit with updated cor-
responding indicator cx. Note that the size of F(S, cx) is also m × n. 
The index zonal statistic is calculated using the descriptive statistics 
of indicator cx for each sub-watershed S, and maximum suggests the 
maximum statistical method,
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where FRI is the flood hazard index calculated by the cumulative sum 
of criteria C using either original index cj or sub-watershed constraint 
indices F(S, ci) and its corresponding weight ω.

Constructing Weighting Criteria and Deriving Flood Risk Maps
Both AHP and WZSAHP for flood hazard estimation are hierarchic evalu-
ation structure methods. They have the following processes: preparing 
involving indices → deriving candidate weighting criteria → calculat-
ing flood hazard index → slicing flood hazard levels.

The positive pairwise judgment matrix uses values from 1 to 9 to 
indicate the relative importance of two indices (as shown in Table 2). 
Eigenvector could establish weighting criteria for the hierarchic evalu-
ation structure. The weighting criteria are calculated by the largest 
eigenvalue of the judgment matrix (Saaty 2014). The hierarchic evalu-
ation structure and the deriving criteria are shown as follows:
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where the comparison matrix J, with a size of x × x, is used to deter-
mine the importance order among criteria (in Equation 1; X is the ei-
genvector corresponding to the largest eigenvalue λmax of J; and ω is the 
weight vector corresponding to the normalized value of eigenvector X.

The consistency ratio (CR) indicates the consistency of criteria, 
which can be calculated following Equation 7 (Saaty 2014). The con-
sistency ratio of a pairwise judgment matrix is the ratio of its consis-
tency index to the corresponding random index value in Table 3. The 
pairwise comparison matrix can be accepted if its consistency ratio 
is less than 0.1 (a consistency ratio of 0 indicates that the judgment 
matrix is entirely consistent),

 
CI CR CI

RI
= −

−
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where CR is the consistency ratio, CI is the consistency index, RI is a 
statistic random index, RI is the average CI of a randomly generated 
pairwise comparison matrix of similar size (as shown in Table 3), λmax 
is the largest eigenvalue of the comparison matrix, and n is the number 
of indicators used in criteria.

Criteria Construction
The indices and the weight criteria constructed the criteria of the 
AHP models. Both the pixel-based AHP and the WZSAHP models build 
weighting criteria via a defined judgment matrix.

Preparing Involving Indices
In flood hazard estimation, studies have shown that information re-
garding topography, hydrology, and geological location is considerably 
dominant (Kazakis et al. 2015; Shariat et al. 2019; Nachappa et al. 
2020; Pham et al. 2021). The underlying surface penetration features 
(e.g., land use type and porous and impervious distribution) drive 
the rainfall-runoff production. The terrain features, such as elevation, 
slope, and hydrological systems (e.g., lakes, rivers, and the low-lying 
wetland areas), may determine the rainwater converging path. They 
represent the rainwater assembling pressure on the drainage system 
and thus influence the in situ likelihood of floods occurring.

Constructing original indices: With reference to Bathrellos et al. 
(2017), flood hazard estimation indices were constructed as C = C1, C2, 
C3, C4, C5, where C1 = slope, C2= elevation, C3= distance from streams, 
C4 = hydro-lithological formations, and C5 = land use type. The indica-
tors could be considered rain-runoff production indicators, such as 
hydro-lithological formations, and rainfall-runoff converging indica-
tors, such as slope, elevation and distance from streams.

Ranking indices: The natural distribution of indices needs to be 
ranked according to flood hazard level to calculate the flood risk index 
on the same scale. As shown in Tables 4 and 5, the original indices 
were ranked as a new class of (0–5) to match flood hazard levels of 
“none,” “very low,” “low,” “normal,” “high,” and “very high.” The 
slope and elevation factors were ranked by the natural breaking method 
according to their normal distribution. The factors distance from 
streams, land-use type, and hydro-lithological formations were ranked 
via expert experience.

Calculating WZSAHP indices: The WZSAHP models need to also 
calculate the maximum statistical value of related ranked indicators. 

Table 2. Scales for pairwise comparison (Referring to (Saaty 2014).
Important 
Levels Description Explanation

1 Equal 
importance

Two activities contribute equally to the objective.

3 Moderate Experience and judgment slightly favor one 
activity over another.

5 Strong 
importance

Experience and judgment strongly favor one 
activity over another.

7 Very strong 
importance

An activity is favored very strongly over another, 
its dominance demonstrated in practice.

9 Extreme 
importance

The evidence favoring one activity over another 
is of the highest possible order of affirmation.

2, 4, 6, 8 Intermediate 
values

The intermediate values of the above values.

Reciprocals Inverse 
comparison

A reasonable assumption.

Table 3. Random index (Saaty 2014).
n 1 2 3 4 5 6 7 8 9 10

Random index 0 0 .52 .89 1.11 1.25 1.35 1.40 1.45 1.49
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MFD-All constrained MFD-derived sub-watersheds to all indicators. 
MFD-RC restrained MFD-derived sub-watersheds to slope, elevation, 
and distance from streams. D8-All used D8-derived sub-watersheds as 
a basic unit to calculate the maximum statistical values of each ranked 
indicator. In contrast, D8-RC constrained D8-derived sub-watersheds to 
slope, elevation, and distance to streams.

Defining Comparison Matrixes
The initial comparison matrix definition was referenced to work 
Bathrellos et al. (2017), as shown in Table 2. For the WZSAHP models, 
the flood hazard estimation results would be more obviously influ-
enced by the rainfall-runoff converge indicators than the rainfall-runoff 
production indicators.

This study focuses on investigating the sensitivity of the pairwise 
judgment matrix definition of rainfall-runoff convergence targeting 
in flood hazard estimation results. The comparison element might be 
defined following the order of distance from streams > slope > eleva-
tion. The comparison element related to rainfall-runoff production was 
the same as the original definition in Bathrellos et al. (2017). Only the 
judgment matrix that can maintain consistency will be used to build 
candidate weighting criteria.

Following the candidate judgment matrix definition, the final avail-
able selection of comparison elements is shown in Table 7. The choice 
of the pairwise element of (slope, elevation) was in a set of {4, 5, 6, 7, 
8, 9}, and the option of element (slope, elevation) was in a set of {1/2, 
1/3}. The candidate value of (slope, elevation) was in a set of {1/3, 1/4, 
1/5, 1/6}. Therefore, there were a total of 48 different judgment matrix 
definitions: 48 = C1

6 · C1
2 · C1

4.

Deriving Flood Risk Maps
For the pixel-based AHP, MFD-RC, MFD-All, D8-RC, and D8-All models, 
the flood risk indexes could be calculated by Equations 8–12,
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where, given the project number p, the estimation indicators are re-
corded as C = C1, C2, C3, C4, C5, ωpj is the weight of indicator Cj of the 
weighting criteria of number p (information on F(S, C) can be found in 
Equation 4), SD8 represents the D8 algorithm divided sub-watersheds, 
SMFD represents the MFD algorithm delimitated sub-watersheds, C′ 
means the indicators of slope and distance from streams, C″ describes 
the rest factors, and ω′pj and the ω″pi are responding weight elements of 
C′ and C″, respectively.

This study produced flood risk maps via flood hazard indexes 
slicing by the natural break method. Each flood map consisted of five 
classes labeled, respectively, as “very low” (class 1), “low” (class 2), 
“normal” (class 3), “high” (class 4), and “very high” (class 5).

Validating Flood Risk Estimation Results
The correct and fit ratios were used to assess flood hazard estimation accu-
racy following Alfier et al. (2014) and Bates and De Roo (2000). They in-
dicated the differences in weighting criteria influence among used models:
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Table 4. Ranking classes of slope, elevation, hydro-lithological 
formations, and land use. types.
Factors Classes Rating Factors Classes Rating

Slope 0 5 Hydro-
lithological 
formations

Water 4

0–2 4 Impervious surface 3

2–6 3 Pervious surface 1

6–12 2

12–20 1

>20 0

Elevation 
(m)

–204–12 5 Land use 
type

Water 5

12–23 4 Road 4

23–46 3 Building 3

46–152 2 Soil 2

>152 1 Vegetation 1

Table 5. Ranking classes of Distance from streams, including the 
ranking class of water areas.
Stream 
Levels

Distance 
(m) Rating Stream Levels

Distance 
(m) Rating

1 >500 0 2 >1000 0

0–500 1 500–1000 1

0–500 2

3 >1500 0 4 >3,000 0

1000–1500 1 2000–3000 1

500–1000 2 1000–2000 2

0–500 3 0–1000 3

5 >6000 0 Rivers, lakes, 
and reservoirs

— 5

4000–6000 1

2000–4000 2

1000–2000 3

0–1,000 4

Table 6. Original definitions of judgment matrixes (Bathrellos et al. 
2017). C1 = slope, C2 = elevation, C3 = distance from streams, C4 = 
hydro-lithological formations, C5 = land use type.
Indicators C1 C2 C3 C4 C5

C1 1 4 1/2 3 1/2

C2 1 1/3 1/2 1/4

C3 1 3 1

C4 1 1/3

C5 1

Table 7. Definitions of judgment matrixes for involved criteria, C1 
= slope, C2 = elevation, C3 = distance from streams, C4 = hydro-
lithological formations, C5 = land use type.
Indicators C1 C2 C3 C4 C5

C1 1 {4, 5, 6, 7, 8, 9} {1/2, 1/3} 3 1/2

C2 1 {1/3, 1/4, 1/5, 1/6} 1/2 1/4

C3 1 3 1

C4 1 1/3

C5 1
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where Correct (%) is the correct ratio, Fit (%) is the fit ratio, FAFRI 
suggests areas with a high likelihood of being flooded, and FAWater 
represents the flood cells extracted from the GF-3 and Landsat 8 OLI im-
ages excluded the permanent water areas following (Shao et al. 2018).

In this study, the flood hazard levels of “high” and “very high” were 
considered as true to calculated correct (%) via validation water area. 
The flood risk levels of “very low,” “low,” and “normal” were consid-
ered as false to calculate Fit (%) by validation none water areas.

Results
Performance Differences Among Models
The histograms compared the increasing value of the correct and fit ra-
tios of the WZSAHP models with the pixel-based AHP model (Figure 4). 
The bar diagram of Figure 4a and 4b, respectively, shows the relative 
correct and fit ratios as weighting criteria changed, while Figure 4c and 
4d, respectively, shows the relative correct and fit ratio referring to the 
weighting criteria of Pr. 1.

Figure 4a indicates that the correct ratios of WZSAHP models are 
higher than the pixel-based AHP model, and the order of correct ratios 
was D8-All > MFD-RC > D8-RC > MFD-All.

As shown in Figure 4b, as the candidate weighting criteria changed, 
the increasing values of the fit ratio estimated by MFD-RC remained 
higher than that of the pixel-based AHP, while the fit ratio calculated by 
MFD-All, D8-RC, and D8-All was higher than that of the pixel-based AHP.

As shown in Figure 4c, considering the setting of the pixel-based 
AHP weighting criteria of Pr. 1 as a reference, the increasing correct ra-
tio of MFD-RC, D8-RC, and D8-All was higher than that of the pixel-based 
AHP, and the MFD-All model always had an equal or lower correct ratio 
than that of the pixel-based AHP.

As shown in Figure 4d, considering the setting of the pixel-based 
AHP weighting criteria of Pr. 1 as a reference, the increasing fit ratio of 
MFD-RC always remained higher than that of the pixel-based AHP.

Influence of Weighting Criteria Definitions in MFD-RC
In this subsection, flood hazard distribution influenced by judgment 
matrixes among different types of basins is discussed. The outlets of 
the Chaohu Basin in the study area are Chao Lake and the Yangtze 
River, as shown in Figure 5. Three sub-basins, denoted as Basin 1, 
Basin 2, and Basin 3, were used for further analysis.

Figure 5 shows that Basin 1 contained no outlet, meaning that the 
collected rainwater flows away from the study area. Basin 2 contains 
Chao Lake and the Yangtze River. For the low-lying areas surround-
ing the Yangtze River and Chao Lake, the high water level resulted in 
flooding. Basin 3 was located on the north side of the Yangtze River.

Taking Basins 1–3 as mask layers, distributions of flood hazard 
levels are shown in Figures 6–8, respectively. The flood hazard maps 
were designed to follow a five-color schema: {green, light Green, 
yellow, orange, red} to map flood hazard levels of {“very low,” “low,” 
“normal,” “high,” “very high”}, respectively. As shown in Figures 6–8, 
the distribution of flood hazard levels was similar when using candi-
date weighting criteria.

Figure 4. Performance comparison of changing criteria definitions 
between the pixel-based AHP with the four WZSAHP-related models. 
(a) Increase of the correct ratio. (b) Increase of the fit ratio of 
WZSAHP models reference pixel-based AHP using the changed 
candidate weighting criteria. Increase of correct ratio (c) and 
increase of fit ratio (d) of WZSAHP models compared with the pixel-
based AHP using fixed weighting criteria of Pr. 1.

Figure 5. Distribution of the five basins in the study area.
Figure 6. Distribution of flood hazard levels of Basin 1 derived by 
the MFD-RC via WZSAHP.
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The pie charts and curve diagrams (Figure 9) show the statistical 
flood hazard distribution derived by 48 weighting criteria. The pie 
charts (Figure 9(1)–(3)) were the average flood hazard ratios of the 
whole weighting criteria, while the curves diagrams (Figure 9(a)1–
(e)3) were the contrastive flood hazard pixels classified by pairwise 
element (slope, elevation) in a set of 4, 5, 6, 7, 8, 9.

Figures 9(a)1–(e)1, 9(a)2–(e)2, and 9(a)3–(e)3 show the flood 
hazard distribution of Basins 1–3, respectively. For Basins 2 and 3, the 
cure diagrams had similar fluctuated features influenced by comparison 
matrixes. The two basins contained similar terrain features near the 
Yangtze River. The results indicated that the MFD-RC reflected similar 
high likelihood distributions not influenced by candidate comparison 
matrixes.

Estimated Flood Hazard Levels Among Investigated Methods
In this study, the 48 definitions of weighting criteria (i.e., the compari-
son element definition for S/E, S/R, and E/R calculating weight criteria) 
were coded by projects, and the derived flood hazard maps were com-
pared, as shown in Figure 10.

For the pixel-based AHP and WZSAHP models, the distribution pixel 
amount of five flood hazard levels estimated by candidate weighting 
criteria at the basin level were drawn in perspective view as 3D histo-
grams (Figure 10(a)–(e)). The X-axis denotes comparison elements of 
weighting criteria for Basins 1–5. The Y-axis shows the accumulated 
flood hazard value of the basins. Meanwhile, for the pixel-based AHP, 
MFD-RC, MFD-All, D8-RC, and D8-All, Figure 10(a)′–(e)′, respectively, 
shows the curve diagrams of the flood hazard ratio to the accumulated 
flood hazard level value for each of the 48 weighting criteria. The 
X-axis denotes the comparison matrix of the weighting criteria. In 
contrast, the Y-axis denotes the flood hazard levels ratio to the accumu-
lated values of all projects.

Discussion
This section discusses the performance of flood hazard influenced by 
drived by judgement definitions among pixel-based AHP, MFD-RC, and 
other WZSAHP models.

Flood Hazard Distribution via Pixel-Based AHP Influenced by Weighting 
Criteria
As shown in Figure 4, it indicated that the MFD-RC always had higher 
correct and fit ratios than the pixel-based AHP. As shown in Figure 
10a and 10a′, the statistical distribution flood hazard levels derived 
by the pixel-based AHP were changed as the weighting criteria were 
reassigned. For “high” and “very high” pixels, among the candidate 
weighting criteria, the change regulation of MFD-RC (Figure 10b and 
10b′) and D8-RC (Figure 10d and 10d′) could be observed to remain 
steady. For “very low,” “low,” and “normal” distributions, the flood 
risk level distribution of MFD-All (Figure 10c and 10c′) and D8-All 
(Figure 10e and Figure 10e′) indicated as similar as weighting criteria 
changing. The flood hazard distribution demonstrated that all the 
WZSAHP models got a higher or equal correct ratio than the pixel-based 
AHP and that the MFD-RC could improve both correct and fit ratios 
compared with the pixel-based AHP.

Flood Hazard Distribution via MFD-RC Influenced by Weighting Criteria
As shown in Figure 6, it can be noticed that the flood hazard level of 
the start of the Dongfei River was recognized as “normal.” There were 
“high” and “very high” areas distributed west to east at the bottom part 
of Basin 1. There were “high” and “very high” areas distributed at the 
top edge of the north part of Basin 1. This phenomenon showed that 
the MFD-RC estimated “high” or “very high” areas that do not directly 
rely on the factor of distance from streams.

Figure 7. Distribution of flood hazard levels of Basin 2 derived by 
the MFD-RC via WZSAHP.

Figure 8. Distribution of flood risk levels in Basin 3, derived by the 
MFD-RC via WZSAHP.
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As shown in Figure 7, the flood hazard distribution of Basin 2 
indicated the “high” and “very high” areas distributed nearby rivers in 
Basin 2. Especially at the bottom of Basin 2, there were larger areas 
at the north beach of the Yangtze River classified as “high” and “very 
high” than other rivers shown in the hydrology network. This result 
indicated that the MFD-RC might consider the influence of local terrain 
distribution on flood hazard maps for river-intertwined areas.

As shown in Figure 8, the flood hazard distribution of Basin 3 was 
recognized as “high” and “very high” near the Yangtze River compared 
to the south part nearby the Yangtze River. It demonstrated that the 
MFD-RC could distinguish between the flood hazard differences for lo-
cal terrain distribution and a certain distance to the hazard risk source.

MFD-RC Is an Optimal Model Compared with Other WZSAHP Models
Using the sub-watershed as a unit to constrain flood hazard estima-
tion indicators might consider the similar flood hazard level brought 
by adjacent pixels in the same sub-watershed. Referring to the correct 
ratio consistently increased, while the fit ratio fluctuates, as using 
WZSAHP and the WZSAHP-RC (i.e., MFD-RC, D8-RC) might improve cor-
rect and fit ratios well, as in the low level of flood hazard distribution. 
It showed that all the WZSAHP models would derive sensitivity of high-
hazard level areas, while using WZSAHP-RC would further increase the 
accuracy of low-hazard level areas. Reasons for MFD-RC being more 
optimal than other WZSAHP models are the following:
1. The sub-watershed reflects the rainwater converting feature but 

did not influence the rainfall-runoff production process. Therefore, 

Figure 9. Quality of pixels grouped by flood risk levels in Basins 1–3.
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using the sub-watershed to constrain the converging rainwater 
indicators (i.e., slope, elevation, and distance from streams in this 
study) might be more reasonable than a constraint to all indicators.

2. The MFD algorithm focuses on sink areas converging from all the 
higher pixels of neighborhood pixels (Zhang et al. 2019), while the 
D8 algorithm adopts the most gradient drop pixels to determine to 
converge path. In this perspective, the sub-watershed delimitated 
by MFD might focus on sink areas and perhaps be closer to the na-
ture overflow process than D8, leading to the MFD-RC overmatch-
ing the D8-RC.

Conclusion
This study compared the sensitivity to weighting criteria between 
pixel-based AHP and sub-watershed-based AHP models (including 
MFD-RC, MFD-All, D8-RC, and D8-All). Taking the Chaohu Basin in Anhui 
Province, China, as the study area, the accuracy of sensitivity for 
three typical sub-basins was discussed. Following the same weighting 
criteria order, this article discussed 48 judgment matrix–derived correct 
and fit ratios.

The results indicate that the pixel-based AHP model is more sensi-
tive to weighting criteria than sub-watershed-based AHP models. As the 
weighting criteria change, the MFD-RC model always gets better and 
steady correct and fit ratios. However, as the weighting criteria change, 
the correct and fit ratios derived by the pixel-based AHP, MFD-All, D8-
RC, and D8-All may fluctuate.

Compared with the pixel-based AHP, the results demonstrate that 
the sub-watershed-based AHP may have an advantage in flood risk 
estimation, relying less on expert criteria. There is still room for further 

investigation and discussion on the mathematical principles and inter-
nal mechanisms of the hydrologic process of this finding.
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