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Opening theOpening the
Aperture to Innovation: Aperture to Innovation: 

Expanding Our Collective 
Understanding of a 

Changing Earth

William T. Pecora 
Remote Sensing Symposium
OCTOBER 24 — 27, 2022 Denver, Colorado, USA

1 9 7 2 - 2 0 2 2

Y E A R S

For more information on the conference, program line-up, and to register, visit Pecora22.org.

2022 marks the 50th anniversary of the launch of 
the first Landsat satellite. 

Join us as we celebrate 50 years of 
accomplishments, innovations, and discoveries—

all with an eye on the future.

The premier symposium focusing on all aspects of Earth 
observations, spanning scientific discoveries to operational 
applications, sensors, and decisions. Pecora 22 embraces both 
innovation and discovery while Landsat data improves our ability to 
understand and better manage the resources of our Earth’s surface. 
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INDUSTRYNEWSTo have your press release published in PE&RS, 
contact Rae Kelley, rkelley@asprs.org.

ANNOUNCEMENTS

NV5 Geospatial announced the debut of its ARIS II Rover. 
The upgraded robotic electric substation monitoring system 
comes after five years of in-field implementation and testing. 
The rover meets the industry’s most exacting standards for 
ruggedness and reliability, enabling it to function in harsh 
environmental conditions and over various terrains common-
ly found at distribution and transmission substations. The 
remotely controlled wheeled rover offers a modular design 
custom-fitted with advanced thermal sensors, imaging, and 
audio/video technology that allows utilities to protect assets 
and limit liability while speeding reaction time.

“Geographic and personnel limitations, combined with aging 
infrastructure, present significant challenges for utility com-
panies when it comes to maintaining their substations,” said 
Ian Birdie, vice president of Innovation for NV5 Geospatial. 
“With our extensive experience in these substation environ-
ments, NV5 Geospatial has customized the ARIS II Rover 
for the unique needs of utilities. We built our next-genera-
tion robot on a rugged platform that can exist remotely and 
deliver the information and insights utilities need to main-
tain their networks proactively. On-time information allows 
quick response to equipment anomalies, weather events, and 
intrusions before they have an impact.”

The ARIS II rover supports a variety of applications, in-
cluding event check-ups, situational awareness, health 
monitoring, work audits, inventory management, emergency 
response and security, offering:

 y Industry-leading military standards (MIL-STD) and 
ingress protection ratings, resulting in a weatherproof 
design that can withstand and work reliably in harsh 
environments, and 36-degree climbing ability for diffi-
cult terrain.

 y Pre-configured payload of sensors and equipment that 
supports thermal imaging, video and two-way au-
dio communication capabilities, as well as GPS with 
real-time kinematics (RTK) that supports accurate map-
ping of drives within a substation.

 y Modular design for flexibility in sensor and camera po-
sitioning and simplified maintenance on or off site, with 
the ability to carry up to 110 outs of equipment. 

 y Up to six hours of battery life or two miles of driving and 
a recharge garage included when the rover is not in use. 

 y Easy installation and movement to different substation 
locations with a pallet-ready Rover and housing.

 y Secure web portal that offers controls and management 
tools to support real-time inspection/driving, feedback 
and measurement from onboard sensors, and the ability 
to review and measure thermal conditions and high-res-
olution photos.

This combination of features enables the ARIS II Rover to 
assess conditions in substations. Thermal imaging captures 

temperature deltas against assets to help utilities deter-
mine when equipment needs to be evaluated and replaced. 
Onboard cameras can visually detect corrosion and asset 
damage, and are able to read gauges from up to 50 feet away. 

To learn more about the ARIS II Rover or to schedule a 
demonstration,  contact NV5G-Sales@nv5.com.

 ¼½¼½ 

Trimble announced today its commitment to reduce green-
house gas emissions in line with the ambitious goals of 
the Paris Agreement and a net-zero future to keep global 
temperature increase to 1.5°C. Trimble received approval of 
its emissions reduction targets by the Science Based Targets 
initiative (SBTi), a coalition of the CDP, the United Nations 
Global Compact, World Resources Institute and the World 
Wide Fund for Nature, joining a growing number of compa-
nies taking urgent action on climate change. 

“Taking decisive climate action is essential to protect our 
planet and communities for future generations. It also 
demonstrates Trimble’s commitment to our purpose—to 
transform the way the world works as well as transform 
the way “we” work,” said Rob Painter, president and CEO, 
Trimble. 

“For decades, Trimble solutions have contributed to reducing 
greenhouse gas emissions and combating climate change,” 
continued Painter. “The nature of Trimble’s technologies, 
which connect the physical and digital worlds, provides effi-
ciencies and promotes sustainability in our end markets such 
as construction, agriculture, forestry, utilities and transpor-
tation. Our leadership team is committed to further reduc-
ing our carbon footprint as well as continuing to develop 
solutions that enable our customers to reduce their climate 
impacts—it is an important lever in our Connect and Scale 
strategy. Trimble is dedicated to do its part to help protect 
and build a better world.”

Trimble’s science-based targets accelerate decarbonization 
across its value chain, and include the following commit-
ments:

 y Reduce absolute scope 1 and 2 greenhouse gas emissions 
50 percent by 2030 from a 2019 base year

 y Achieve 100 percent annual sourcing of renewable elec-
tricity by 2025

 y Reduce absolute scope 3 greenhouse gas emissions from 
fuel and energy related activities, business travel and 
upstream transportation and distribution 50 percent by 
2030 from a 2019 base year

 y Commit to partner with 70 percent of its suppliers by 
emissions covering purchased goods and services and 
capital goods to set science-based targets by 2026.

This decade is considered the decisive decade for climate 

mailto:rkelley@asprs.org
https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUdtb4b96BIC-2B6e1SRQtniLAgMw-2BRd6m93DqK99UVFyM9Tm_4_9xpBzVhCfR8ghcaS-2BO1M-2FHwMVjpJiyNZ335iT8hrDcihSJRHdvMEjZftgCFuvJImzCP8zpXwwCsMOxXpxq3zrdioSycPh943aHVStFQk3h4B21EDBy81vzThA3SUa7npT57K6-2BwOXKKKKqVRHOX5wkMqnl6ym4QTPWr-2BwXn6rr6DV4pDSfNUY6ZqldKGS1c99OmLtLbIyduUN-2BxbSMq6gAgIbtpsL5urOCj-2FDYp2qpfu5USIeeJXQ6pEaMTRY7iyUG-2FoF-2BT7iAB8Y8olTBw90U-2FIpvxQBPWU4vl7DaBCzVLbTIHiGroP70EzkXWjzMVkYDRwJclUO4QKrBv2L1sF-2Fg-3D-3D
mailto:NV5G-Sales@nv5.com
https://c212.net/c/link/?t=0&l=en&o=3635342-1&h=2669625242&u=https%3A%2F%2Fsciencebasedtargets.org%2F&a=Science+Based+Targets+initiative
https://c212.net/c/link/?t=0&l=en&o=3635342-1&h=2669625242&u=https%3A%2F%2Fsciencebasedtargets.org%2F&a=Science+Based+Targets+initiative
https://mma.prnewswire.com/media/1888696/Trimble_Sustainability_Report_Cover.html
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INDUSTRYNEWS
change. As part of answering this urgent call to action, 
Trimble has joined forces with other companies and climate 
leaders in the Business Ambition for 1.5°C campaign, the We 
Mean Business Coalition and the Race to Zero Campaign. 

“Setting ambitious yet achievable climate targets are part 
of our commitment to reducing Trimble’s carbon footprint,” 
said Leah Lambertson, senior vice president and head of 
Sustainability, Trimble. “Embedding our climate action goals 
into Trimble’s operational choices will help ensure that our 
decision making and growth plans are consistent with our 
low-carbon vision. Today’s commitments are important steps 
in our journey to delivering growth in a responsible and sus-
tainable way to achieve a net-zero future.”

Trimble also announced the release of its 2021 Sustainability 
Report. Built around the company’s mission of transforming 
the way the world works, the report features how Trimble 
is helping to create a better future for our planet and the 
communities we serve.

The report summarizes its initiatives and performance 
across Environmental, Social and Governance (ESG) topics, 
highlighting the company’s sustainability approach; end-us-
er industry solutions; community philanthropy through 
its Trimble Foundation Fund; employee engagement and 
development as well as Diversity, Equity and Inclusion (DEI) 
initiatives; and governance.

¼½¼½

URISA is pleased to announce the results of its 2022 URISA 
Board of Directors’ election. Tom Fisher will serve in the 
position of President-Elect and Josiah Burkett, Bernadette 
deLeon, and Matt Gerike will serve as Directors. They will 
all begin their three-year terms at the conclusion of GIS-Pro 
2022 in Boise.

Tom will serve as President-Elect for one year and his term 
as President will begin at the conclusion of GIS-Pro 2023.

“This is a great honor to lead the URISA organization and 

to represent the members for three more years through the 
Presidential track. URISA has accomplished a lot over the 
past sixty years with steady leadership and member volun-
teerism.  I plan to continue the tradition of excellence set 
by the trailblazers before me and leave a legacy of servant 
leadership for upcoming geospatial professionals to aspire 
to.  Thank you again for your confidence and trust to lead 
URISA.  I look forward to seeing everyone in Boise, Idaho 
this fall and, in the chapters, and committees of this amaz-
ing URISA organization.”   

Newly-elected URISA Directors include: 
 y Josiah Burkett, Geographic Information Systems Ana-
lyst /Geospatial Team Lead, GeoTechVision, Kingston, 
Jamaica

 y Bernadette de Leon, GISP,  Director of School of Public 
Health Bloomington IT Services 
Indiana University, Bloomington, Indiana

 y Matthew J. Gerike, PhD, GISP, Geospatial Program 
Manager, Virginia Geographic Information Network 
(VGIN), Virginia Department of Emergency Manage-
ment (VDEM), Richmond, Virginia

Ashley Hitt was elected by the membership as Presi-
dent-Elect last year and will begin her term as President of 
URISA at the conclusion of GIS-Pro 2022. Brent Jones will 
become Immediate Past-President at that time. 

At the close of GIS-Pro 2022, the terms of service for these 
URISA Board members will conclude and we thank them 
all, in advance, for their amazing dedication and service to 
URISA:

 y Immediate Past President—Kevin Mickey, GISP, The 
Polis Center-IUPUI, Indianapolis, Indiana

 y Board Secretary—Susan Kamei, USC Spatial Sciences 
Institute - Los Angeles, California

 y Tom Fisher, GISP, AICP, Cuyahoga County - Cleveland, 
Ohio

 y John Nolte, GISP, Denver Water - Denver, Colorado 

CALENDAR

• 23-27 October, Pecora 22, Denver, Colorado. For more information, visit https://pecora22.org/.

• 31 October - 4 November, URISA GIS Leadership Academy, Santa Rosa, California. For more information, visit www.
urisa.org/education-events/urisa-gis-leadership-academy/.

• 2-4 November, AutoCarto 2022— Ethics in Mapping: Integrity, Inclusion, and Empathy, Redlands, California. For 
more information, visit https://cartogis.org/autocarto/autocarto-2022/.

https://c212.net/c/link/?t=0&l=en&o=3635342-1&h=2096539897&u=https%3A%2F%2Fsciencebasedtargets.org%2Fbusiness-ambition-for-1-5c&a=Business+Ambition+for+1.5%C2%B0C+campaign
https://c212.net/c/link/?t=0&l=en&o=3635342-1&h=1750595085&u=https%3A%2F%2Fwww.wemeanbusinesscoalition.org%2F&a=We+Mean+Business+Coalition
https://c212.net/c/link/?t=0&l=en&o=3635342-1&h=1750595085&u=https%3A%2F%2Fwww.wemeanbusinesscoalition.org%2F&a=We+Mean+Business+Coalition
https://c212.net/c/link/?t=0&l=en&o=3635342-1&h=2670763359&u=https%3A%2F%2Funfccc.int%2Fclimate-action%2Frace-to-zero-campaign&a=Race+to+Zero+Campaign
https://c212.net/c/link/?t=0&l=en&o=3635342-1&h=1612899723&u=https%3A%2F%2Fwww.trimble.com%2Fen%2Four-commitment%2Foverview&a=2021+Sustainability+Report
https://c212.net/c/link/?t=0&l=en&o=3635342-1&h=1612899723&u=https%3A%2F%2Fwww.trimble.com%2Fen%2Four-commitment%2Foverview&a=2021+Sustainability+Report
https://www.urisa.org/gis-pro
https://www.urisa.org/gis-pro
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631 A Novel Residual Attitude Estimation Approach Using Georeferenced 
Satellite Imagery
Bhaskar Dubey and B. Kartikeyan

This article presents an efficient novel approach estimating residual attitude based on geometrically 
corrected (GEO) satellite images. A technique is presented that uses orbital plane geometry to compute 
the rotation angle as a function of geographic latitude between GEO image space and radiometrically 
corrected (RAD) image space. 

643 Efficient Building Inventory Extraction from Satellite Imagery for Megacities
Edmond Yat-Man Lo, En-Kai Lin, Velautham Daksiya, Kuo-Shih Shao, Yi-Rung Chuang, and 
Tso-Chien Pan

Accurate building inventories are essential for city planning and disaster risk management. Traditionally 
generated via census or selected small surveys, these suffer from data quality and/or resolution. High-
resolution satellite imagery with object segmentation provides an effective alternative, readily capturing 
large extents. This article develops a highly automated building extraction methodology for location-
based building exposure data from high (0.5 m) resolution satellite stereo imagery.

653 A Semi-Supervised Learning Method for Hyperspectral-Image Open Set 
Classification
Zhaolin Duan, Hao Chen, Xiaohua Li, Jiliu Zhou, and Yuan Wang

We present a conceptually simple and flexible method for hyperspectral-image open set classification. 
Unlike previous methods, where the abundant unlabeled data inherent in the data set are ignored 
completely and unknown classes are inferred using score post-calibration, our approach makes the 
unlabeled data join in and help to train a simple and practical model for open set classification. The 
model is able to provide an explicit decision score for both unknown classes and each known class. 

655 The Fractional Vegetation Cover (FVC) and Associated Driving Factors of 
Modeling in Mining Areas
Jun Li, Tianyu Guo, Chengye Zhang, Fei Yang, and Xiao Sang

To determine the fractional vegetation cover (FVC) and associated driving factors of modeling in mining 
areas, six types of data were used as driving factors and three methods—multi-linear regression (MLR), 
geographically weighted regression (GWR), and geographically weighted artificial neural network 
(GWANN)—were adopted in the modeling. 
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How to Gain Clearer Visibility into 
Dynamic Coastal Environments
By Alexa Ramirez, PMP, GISP, and Colin 
Cooper, GISP, NV5 Geospatial

617

www.facebook.com/ASPRS.org
www.twitter.com/ASPRSorg
www.youtube.com/user/ASPRS
https://www.nv5.com/geospatial/


616 October 2022 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

PHOTOGRAMMETRIC   
ENGINEERING & 
REMOTE SENSING 
Journal Staff

Publisher ASPRS
Editor-In-Chief Alper Yilmaz
Director of Publications Rae Kelley
Electronic Publications Manager/Graphic Artist  
Matthew Austin

Photogrammetric Engineering & Remote Sensing is the official journal of the 
American Society for Photogrammetry and Remote Sensing. It is devoted to the 
exchange of ideas and information about the applications of photogrammetry, 
remote sensing, and geographic information systems. The technical activities 
of the Society are conducted through the following Technical Divisions: 
Geographic Information Systems, Photogrammetric Applications, Lidar, 
Primary Data Acquisition, Professional Practice, Remote Sensing Applications, 
and Unmanned Autonomous Systems Division. Additional information on the 
functioning of the Technical Divisions and the Society can be found in the 
Yearbook issue of PE&RS.

Correspondence relating to all business and editorial matters pertaining to 
this and other Society publications should be directed to the American Society 
for Photogrammetry and Remote Sensing, 8550 United Plaza Boulevard, Suite 
1001, Baton Rouge, LA 70809, including inquiries, memberships, subscriptions, 
changes in address, manuscripts for publication, advertising, back issues, 
and publications. The telephone number of the Society Headquarters is 301-
493-0290; the fax number is 225-408-4422; web address is www.asprs.org.
PE&RS. PE&RS (ISSN0099-1112) is published monthly by the American 
Society for Photogrammetry and Remote Sensing, 425 Barlow Place, Suite 
210, Bethesda, Maryland 20814-2144. Periodicals postage paid at Bethesda, 
Maryland and at additional mailing offices.
SUBSCRIPTION. For the 2022 subscription year, ASPRS is offering two options to 
our PE&RS subscribers — an e-Subscription and the print edition. e-Subscrib-
ers can add printed copies to their subscriptions for a small additional charge. 
Print and Electronic subscriptions are on a calendar-year basis that runs from 
January through December. We recommend that customers who choose print 
and e-Subscription with print renew on a calendar-year basis. 

The rate for a Print subscription for the USA is $1105.00 USD, for Canadian* 
is $1164.00 USD, and for Non-USA is $1235.00 USD.
The rate for e-Subscription (digital) Site License for the USA and Non-USA 
is $1040.00 USD and for Canadian* is $1089.00 USD. 
The rate for e-Subscription (digital) plus Print for the USA is $1405.00 
USD, for Canadian* is $1464.00 USD, and for Non-USA is $1435.00 USD. 
*Note: e-Subscription, Print subscription, and e-Subscription plus Print for 
Canada includes 5% of the total amount for Canada’s Goods and Services 
Tax (GST #135123065). PLEASE NOTE: All Subscription Agencies 
receive a 20.00 USD discount.

POSTMASTER. Send address changes to PE&RS, ASPRS Headquarters, 8550 
United Plaza Boulevard, Suite 1001, Baton Rouge, LA 70809. CDN CPM 
#(40020812).
MEMBERSHIP. Membership is open to any person actively engaged in the practice 
of photogrammetry, photointerpretation, remote sensing and geographic 
information systems; or who by means of education or profession is interested 
in the application or development of these arts and sciences. Membership is 
for one year, with renewal based on the anniversary date of the month joined. 
Membership Dues include a 12-month electronic subscription to PE&RS. To 
receive a print copy of PE&RS there is an additional postage fee of $60.00 
USD for U.S. shipping; $65.00 USD for Canadian shipping; or $75.00 USD for 
international shipping per year. Annual Individual Member dues for members 
residing in the U.S. and Other Foreign Members are $150.00 USD and $158.00 
USD for Canadians. Annual Student Member dues for members residing in 
the U.S. are $50.00 USD; $53.00 USD for Canadian; and $60.00 USD for 
Other Foreign Members. A tax of 5% for Canada’s Goods and Service Tax (GST 
#135123065) is applied to all members residing in Canada.
COPYRIGHT 2022. Copyright by the American Society for Photogrammetry and 
Remote Sensing. Reproduction of this issue or any part thereof (except short 
quotations for use in preparing technical and scientific papers) may be made 
only after obtaining the specific approval of the Managing Editor. The Society 
is not responsible for any statements made or opinions expressed in technical 
papers, advertisements, or other portions of this publication. Printed in the 
United States of America.
PERMISSION TO PHOTOCOPY. The copyright owner’s consent that copies of the 
article may be made for personal or internal use or for the personal or internal 
use of specific clients. This consent is given on the condition, however, that the 
copier pay the stated per copy fee through the Copyright Clearance Center, Inc., 
222 Rosewood Drive, Danvers, Massachusetts 01923, for copying beyond that 
permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does 
not extend to other kinds of copying, such as copying for general distribution, for 
advertising or promotional purposes, for creating new collective works, or for resale.

In 1798, with a yellow fever epidemic raging in New York City, fifteen-year-old 
Washington Irving was sent north to stay with a family friend in the lower 
Hudson River Valley in the hope that fresh air and open space would help him 
elude the deadly virus. He ended up in Tarrytown, a small town about 25 miles 
(40 kilometers) north of Manhattan on the eastern side of the river.

Irving delighted in exploring the verdant, rocky landscapes north of Tarrytown, 
particularly an area later named Sleepy Hollow. He found the forests and 
streams there to be perfect for wandering, daydreaming, and fishing. He later 
settled there, and many of the landscapes he had explored as a teen became 
nostalgic backdrops for his short stories.

One of his most famous—The Legend of Sleepy Hollow—is set in the area 
highlighted in the cover image. The image is composed from elevation data from 
the Shuttle Radar Topography Mission (SRTM). It is false-color to emphasize the 
topography; red areas are the highest elevations, and blue areas are closer to 
sea level. The Operational Land Imager (OLI) on Landsat 8 acquired a natu-
ral-color image (below) of the same area on October 27, 2017.

Much of the rock beneath this landscape is Fordham gneiss, an ancient bedrock 
that formed more than one billion years ago under the intense heat and pressure 
of colliding land masses. The smashing and suturing of continents that produced 
a supercontinent called Rodinia was followed by countless cycles of erosion, 
mountain building, and the ebb and flow of ice ages. Over time, these and other 
geologic processes formed the worn, hilly landscapes that are found today 
around Sleepy Hollow.

According to Irving’s tale, the forests and swamps of this uneven, corrugated 
terrain are where a headless horseman—perhaps a Hessian soldier killed 
during the Revolutionary War—is said to roam at night looking for his missing 
head. The Sleepy Hollow Cemetery and Old Dutch Church, landmarks that fea-
ture prominently in the story, sit on a small ridge near the center of the image.

The Pocantico River, what Irving calls that “wizard stream,” flows through a val-
ley that appears as a dark, thin line in the elevation map. In the story’s climax, 
the Headless Horseman chases the protagonist across a wooden bridge over the 
river. To the east, in the Pocantico Hills, lies Raven Rock, a large glacial erratic 
transported and deposited by melting ice in a glen haunted by the ghost of a 
woman who perished there. The cliff on the western side of the river, part of the 
Palisades, formed roughly 200 million years ago when a sheet of rising magma 
was trapped between layers of sedimentary rock as a different supercontinent 
was breaking apart.

Irving died and was buried in the Sleepy Hollow Cemetery in 1859, but his 
words about Sleepy Hollow live on. They still resonate, especially on Hallow-
een, when the town celebrates its literary history with a festival each year. “The 
place still continues under the sway of some witching power, that holds a spell 
over the minds of the good people, causing them to walk in a continual reverie,” 
Irving wrote in the opening of The Legend of Sleepy Hollow. “The whole neigh-
borhood abounds with local tales, haunted spots, and twilight superstitions; 
stars shoot and meteors glare oftener across the valley than in any other part of 
the country, and the nightmare, with her whole ninefold, seems to make it the 
favorite scene of her gambols.”

Visit, https://landsat.visibleearth.nasa.gov/view.php?id=149022 to see both 
images in full size.

NASA Earth Observatory images by Joshua Stevens. using topographic data 
from the Shuttle Radar Topography Mission (SRTM) and Landsat data from the 
U.S. Geological Survey. Story by Adam Voiland.
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FEATURE

Mapping rugged coastlines is dangerous work. Rocky shores, 
underwater hazards, volatile weather, and changing turbid-
ity create perilous conditions. These conditions make it dif-
ficult to collect accurate, detailed data through conventional 
means, including boats equipped with sonar and ground 
survey instruments. 
Advances in technology are changing the dynamics. Using 
a state-of-the-art combination of advanced remote sensing 
and imaging technologies, NV5 Geospatial is yielding more 
accurate data and delivering insights on dynamic coastal 
landscapes.

A History of Innovation
NV5 Geospatial is no stranger to challenging geospatial proj-
ects. Throughout our company’s 90+ year history, we have 
been at the center of many of the nation’s most interesting 
and demanding projects. 
NV5 Geospatial and its predecessor companies documented 
the construction of the Golden Gate Bridge in the ‘30s and 
mapped the Colorado River in the Grand Canyon, flying 
more than 3000 feet below the rim in many locations. We 
performed the first ever comprehensive mapping of Ameri-

How to Gain Clearer Visibility into 
Dynamic Coastal Environments

By Alexa Ramirez, PMP, GISP, and Colin Cooper, GISP, NV5 Geospatial

Photogrammetric Engineering & Remote Sensing
Vol. 88, No. 10, October 2022, pp. 617-619.

0099-1112/22/617-619
© 2022 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.88.10.617

Figure 1 (above).  Color infrared image of the southern end of 
Duke Island. Duke Island is part of the Alexander Archipelago 
in southeastern Alaska. Image is created from 4 band imagery 
collected with the Vexcel UltraCam Eagle M3 camera.

https://www.nv5.com/geospatial/
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can Samoa’s five islands and two atolls and monitored the 
eruption of Kilauea in Hawaii and its impact on the local 
population and environment. In addition, we conducted the 
largest hyperspectral project on record, providing accurate 
locations of all ash trees in and around electric grid assets 
and documenting risk from the emerald ash borer.
The secret to NV5 Geospatial’s success on projects of this 
scale is our constant innovation, seeking a diversity of cut-
ting-edge geospatial technologies and solutions that deliver 
more and better data. In just the past decade, we have be-
come well known for our expertise in ship-based bathymetric 
surveys and topobathymetric lidar. 

Alaska Topobathymetric Project Breaks   
New Ground
The Alaska Coastal Mapping Strategy was spearheaded by 
the 2019 Presidential Memorandum on Ocean Mapping of the 
United States Exclusive Economic Zone and the Shoreline and 
Nearshore of Alaska, which brought together the National 
Oceanic and Atmospheric Administration (NOAA), the State 
of Alaska, and the Alaska Coastal Mapping Executive Com-
mittee. The long-term vision was to create seamless coastal 
mapping data across the state of Alaska by 2030, with short-
term goals of prioritized topobathymetric lidar mapping cam-
paigns that build a strong connection between land and sea.
NV5 Geospatial’s contribution to this initiative began with 
mapping the coastal waters of the Revillagigedo Channel 
in Alaska for NOAA’s National Geodetic Survey (NGS) 
Remote Sensing Division (RSD) Coastal Mapping Program 
(CMP). NOAA, and its partners at the State of Alaska and 
the Alaska Coastal Mapping Executive Committee, brought 
in NV5 Geospatial to leverage our unique array of sensors 
and processes. The project required planning and executing 
an 846-square-mile aerial acquisition, which began in June 
2021, and was conducted as weather permitted. We also 
deployed buoys throughout the survey area to monitor water 
turbidity and performed limited ground surveys. 

The Coastal Mapping Program requires the collection of air-
borne topographic/bathymetric lidar and digital camera im-
agery data to enable accurate and consistent measurement 
of the national shoreline. This supports increasing efficiency 
and safety of NOAA’s hydrographic surveying operations 
and is critical for updating nautical charts, managing coastal 
resources, and defining U.S. territorial limits.
Conditions in and around the Revillagigedo Channel make it 
extremely difficult and hazardous to operate large survey ves-
sels in nearshore areas. There is a short operational window 
for data collection due to environmental constraints in addi-
tion to shoals and rocky outcrops that must be avoided. This 
is mitigated by collecting topobathymetric lidar in the danger-
ous, hard-to-reach areas where the rocky shoreline meets the 
open water.  The lidar data allows sonar vessels to stay further 
offshore where they can collect data safely and efficiently.  

A Closer Look at the Remote Sensing Technology
NV5 Geospatial’s topobathymetric program relies on multi-
ple lidar systems. When planning projects, we take into care-
ful consideration how sensor selection, site characteristics, 
survey approach, acquisition specifications and processing 
methodology will impact results and data quality. 
In Alaska, we deployed Leica Chiroptera 4X and Hawkeye 
4X topobathymetric lidar sensors for mapping submerged 
lands, a Riegl VQ1560ii near-infrared (NIR) topographic 
lidar sensor for mapping adjacent lands, and a Vexcel Ultra-
Cam Eagle M3 camera for four-band imagery acquisition - all 
installed in a fixed-wing aircraft. The Chiroptera/HawkEye 
4x combines shallow- and deep-water laser channels that 
produce high-resolution and accurate data necessary for de-
tecting submerged features. It has an integrated NIR chan-
nel for capturing seamless data at the land water interface. 
Southeast Alaska is characterized by mountainous terrain, 
fjords, and boxed canyons that can pose safety and efficiency 
problems for capturing the nearshore land with low alti-
tude topobathymetric sensors. Adding the Riegl VQ1560ii 
supported decoupling of inland and nearshore areas, which 
allowed increased flight windows crucial to maximizing pro-
ductivity on limited good weather days.   
To support the aerial work, we needed to collect ground 
truthing data across the study area, which was rugged and 
remote. To achieve necessary coverage, we had to rely on 
a boat to access areas to survey. We were able to conduct 
real-time kinematic (RTK) GPS surveys to collect non-vege-
tated and vegetated vertical accuracy check points, as well 
as the necessary control points for both lidar and imagery 
processing. A boat was also used to deploy buoys equipped 
with Xylem EXO2 turbidity sondes to provide real-time mon-
itoring of conditions across the area. In addition, two docks 
were set up with turbidity monitoring stations.
Once acquired, NV5 Geospatial calibrated and processed lidar 
data using commercial and proprietary software to meet the 
national mapping program specifications. The Leica Lidar 
Survey Studio was used to extract points from the bathymet-
ric waveform data, as well as define the water surface, which 
it uses to correct the placement of points for refracting into the 
water column. Additional processing steps were used to seam-

Figure 2.  Hillshade model of the topobathymetric lidar generat-
ed DEM colored by depth to highlight areas shallower than 10 
meters.  Submerged rocks and a steeply rising coastline make this 
area dangerous and difficult to map with survey vessels.
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lessly combine the collected topographic data from the Riegl 
VQ1560ii sensor with coastal shore data collected from the 
Chiroptera 4x’s topographic NIR channel. A detailed cutline 
was developed between the datasets, which favored hard per-
manent surfaces with no to little change, mitigating artifacts 
in the final developed elevation models. 
The average bathymetric laser penetration throughout the 
study area was approximately 12 meters, with maximum 
depths reaching down to greater than 25 meters in clearer 
waters. The resulting submerged topography highlighted 
areas of rocky outcrops, shoals, and pervasive kelp beds.

Results Benefit A Wide Array of Applications
While this project was conducted for NOAA’s coastal map-
ping program, the data collected will be far reaching in 
support of a variety of important applications when made 
available to other federal, state, local, and tribal government 
agencies; the private sector; not-for-profit, and the public. 

For example, topobathymetric data can provide insights that:
• Support maritime trade and transportation 
• Inform wave and wind energy site selection 
• Contribute to coastal resiliency efforts, such as model-

ing sea level change, storm surge, coastal flooding, and 
pollution trajectories

• Help analyze and monitor the environment and critical 
habitats

• Assist in developing land and marine GIS base layers
Overall, the topobathymetric lidar collected for NOAA’s CMP 
demonstrates the strength of the technology for mapping 
logistically and environmentally challenging environments. 
The implications for supporting larger mapping efforts, such 
as the Alaska Coastal Mapping Initiative, cannot be under-
stated. With careful sequencing and planning, a symbiotic 
relationship is formed where technologies complement each 
other to increase data coverage in an efficient and safe way. 
If you’d like to learn more about NV5 Geospatial’s work 
in Alaska or its topobathymetric capabilities, visit 
nv5geospatial.com. 

About the Authors
Alexa Ramirez is an eGIS Program Manager for NV5 Geo-
spatial. She is certified as a PMP and GISP and holds a Mas-
ter of Science in Geological Oceanography from the University 
of South Florida. She has considerable experience managing 
some of the firm’s largest and most complex projects. 
Colin Cooper, GISP  is a Technical Domain Expert for NV5 
Geospatial in the fields of topographic and bathymetric lidar. 
He holds a Master of Science in Geography from Oregon 
State University. 

Figure 3.  3D visualization of the topobathymetric DEM colored by depth with the above ground lidar point cloud colored by color infra-
red imagery.  The topobathymetric lidar reveals a rugged terrain under water with kelp beds that pose risk for marine traffic. 

Figure 4.  GPS survey set-up to collect a hard surface check point 
used in verifying the lidar elevation data’s vertical accuracy.  
Ground survey operations to support this project were largely 
accessible only by boat.
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ADVERTORIAL

Dewberry is a leading, market-facing firm with a proven history 
of providing professional services to public- and private-sector 
clients. Established in 1956 and headquartered in Fairfax, Virginia, 
Dewberry’s professionals are dedicated to solving clients’ most 
complex challenges and transforming their communities. The firm 
harnesses the power of geospatial science to offer complete 
end-to-end remote sensing and mapping services starting with 
state-of-the-art airborne lidar sensors to automated processing, 
surveying, web/mobile GIS, and advanced data analytics. Dew-
berry creates, analyzes, and builds geospatial data and tools, to 
help clients integrate, share, and simplify the use of information 
allowing for more effective and efficient decision making. 

Dewberry’s geospatial and technology services team includes 
more than 250 professionals who create, analyze, and build tools 
to share geospatial data, and help clients integrate these tools 
into their daily lives. By fusing multiple data sets together for more 
efficient data mining, Dewberry provides clients with easy-to-use 
tools that simplify the use of information to allow for more effec-
tive and efficient decision making. 

Dewberry recently purchased two airborne lidar sensors – the 
RIEGL VQ-1560 IIS topographic airborne lidar sensor and the Tele-
dyne CZMIL SuperNova, a powerful topobathymetric mapping 
sensor. This investment allows Dewberry to expand its mapping 
capabilities with current clients, keep the entire acquisition life-
cycle in-house, and monitor the quality of its products. The firm is 
excited to empower their clients with access to the most innova-
tive technology to meet their topographic/lidar needs, delivering 
hi-definition lidar datasets quickly and efficiently.  

Dewberry has also implemented two initiatives to facilitate client 
communication and data processing efficiency. The firm is using 
Esri-powered, client-facing dashboards combined with quick-
look technology, allowing clients to view data acquisition in near 
real-time and be an active partner in remote sensing activities. 
The second initiative focuses on improved feature extraction 
efficiency through automation. Dewberry’s IT-team built cus-
tom multi-threaded, extended-memory computers dedicated 
for artificial intelligence (AI)/machine learning (ML) processing. 
These computers are used for feature extraction and automated 
classification of lidar data. This AI/ML workflow increases efficien-
cy and decreases delivery time of geospatial products to clients. 

The firm’s solid performance processes in geospatial technolo-
gies and corporate IT services led to it being appraised at Level 
3 of the CMMI Institute’s Capability Maturity Model Integration 
(CMMI) in Services and Development Models. In 2021, Dewberry 
received industry-wide recognition, including five awards from 
Esri, the American Society for Photogrammetry and Remote 
Sensing (ASPRS), the Management Association for Private Pho-
togrammetric Surveyors (MAPPS), and the Grand Award and 
the Pinnacle Award from the American Council of Engineering 
Companies (ACEC).

Dewberry works seamlessly to provide geospatial mapping and 
technology services (GTS) across various market segments. With 
more than 48 years of GTS experience, the firm is dedicated 
to understanding and applying the latest tools, trends, and 
technologies. Dewberry employs the latest GIS software and 
database platforms, including the full suite of ESRI products. 
The firm’s products and services include application, web, and 
cloud-based development; system integration; database design 
mapping; data fusion; and mobile solutions. To learn more, visit 
www.dewberry.com. Dewberry 

Amar Nayegandhi
1000 North Ashley Drive, Suite 801, Tampa, FL 33602-3718 

813.421.8642   Ι   www.dewberry.com
anayegandhi@dewberry.com

http://www.dewberry.com
mailto:anayegandhi@dewberry.com
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GIS &Tips     Tricks By

Introduction
The United States Geological Survey (USGS) has over 140 
years of experience in providing high-quality topograph-
ic maps in the US. In 1879, the USGS began to map the 
Nation’s topography. This mapping was done at different 
levels of detail, to support various land use and other 
purposes. As the years passed, the USGS produced new 
map versions of each area. These maps were published at 
several scales, the most popular being the 1:24,000 scale 
which displayed 7.5-minute quadrangle published between 
1947 – 1992. 

In 2011, as a goal of the Historic Topographic Map 
Collection (HTMC), the USGS constructed a digital 
repository of USGS 1:250,000 scale and larger maps 
printed between 1884 and 2006. There are currently over 
178,000 maps in this historic collection in addition to the 
current digital US Topo series. Both the HTMC and the 
US Topo series are available as GeoPDFs through The 

National Map (https://www.usgs.gov/programs/national-
geospatial-program/national-map) and the USGS Store 
(https://store.usgs.gov/).

But … what if you need a topographic map for a small area, 
or a map for a specific app and do not want to download an 
entire 7.5-minute USGS quadrangle? Well… the USGS has 
a solution called “topoBuilder”.

Making a Custom Topo Map
“topoBuilder” is a USGS on-demand topo map application 
that can be accessed through The National Map or directly 
at: https://topobuilder.nationalmap.gov . The topoBuilder 
app permits the end-user to make your own topographic 
map, centered on your specified coordinates, in multiple 
formats, using the best available National Map data. The 
following steps demonstrate how to make a custom topo 
map for an area near Tallahassee, Florida starting at The 
National Map.

Need a Custom USGS Topo Map?  Here is How to Make it Yourself!

Al Karlin, Ph.D. CMS-L, GISP

Photogrammetric Engineering & Remote Sensing
Vol. 88, No. 10, October 2022, pp. 621-624.

0099-1112/22/621-624
© 2022 American Society for Photogrammetry and Remote Sensing

doi: 10.14358/PERS.88.10.624

Figure 1.  The topoBuilder (green) icon on the U.S. National Map.

Figure 2.  The topoBuilder introductory screen.

Step 1 
From “The National Map” web-viewer, select 
the topoBuilder app (upper right on banner)

Step 2 
That will get you to the topoBuilder app and 
selecting “Create an OnDemand Topo” will 
get you to the topoBuilder app. (You may 
need to read and then close any notifications.)
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Figure 3.  The topoBuilder interactive map interface.

Figure 4.  Selecting a custom area of interest on the topoBuilder map interface.

Figure 5.  The Cart resulting from a custom area of interest from topoBuilder.

Step 3
On the topoBuilder app, select the map type 
by clicking on the map-type you want to 
make (in this case there is only the 7.5-min-
ute topo) and click “NEXT” on the bottom 
center:

Step 4
Click on the “Custom Select” and using 
the mouse wheel, ZOOM-in to your area of 
interest. When you zoom-in, you will see a 
blue-shaded box that you can use to select a 
7-minute quad area. Position the box cen-
tered on your area of interest and click the 
mouse (left-click) to select that area. In this 
case, I selected an area around Tallahassee, 
Florida that is centered on four x 7.5-minute 
quadrangles.

At this point, you can also choose your export 
options (PDF is the default, but you can use 
the dropdown to choose TIF) and choose the 
amount of Contour Smoothing (default is 
Medium) by sliding the slider.

Clicking “ADD” will put the map into your 
cart and go to the next step.

Step 5 
Selecting the EDIT MAPS option will let you 
review your choices and then pressing SAVE 
will save your map
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Figure 6.  The confirmation and checkout screen from topoBuilder.

Figure 7.  The Checkout Screen from topoBuilder.  You need to enter your e-mail address to 
be used for sending the link to your quadmap.  Once your e-mail address is entered, press 
“CHECKOUT” to complete.

Figure 8.  The Export Succeeded screen topoBuilder generates when your map has been 
successfully generated.

The app will process your request, and after a short time, will return:

Step 6
Use the CHECKOUT button to finalize your 
order and get to the Check Out screen where 
you will enter your e-mail address and press 
CHECKOUT (again):
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Figure 9. The final topoBuilder map for the area of interest.  Note (1) the area of interest is 
shown in the red box on the map collar, and (2) that the collars of the four USGS quadmaps 
have been removed to make a single mosaic.

You can CLOSE this notice and you will 
receive an e-mail message that your map is 
being processed. When your map is ready, 
you will receive another e-mail with a link 
and download instructions.

Here is my finished map. Notice that there 
are no collars around the four 7.5-minute 
quadrangles that comprise my map and you 
can see the specific area (red rectangle) on 
the map collar,

Additional help is available at: https://www.
usgs.gov/programs/national-geospatial-
program/topobuilder and tnm_help@usgs.
gov. Special thanks to Alexandra “Xan” 
Fredericks (AFredericks@USGSgov). Xan is 
the USGS National Map Liaison to Florida, 
Puerto Rico and the US Virgin Islands and 
demonstrated the topoBuilder application 
during the Spring 2022 Fl-ASPRS/UF Lidar 
Workshop. She is also a past president of the 
Florida Region – ASPRS.

Send your questions, comments, and tips to 
GISTT@ASPRS.org.

Al Karlin, Ph.D., CMS-L, GISP is with Dew-
berry’s Geospatial and Technology Services 
group in Tampa, FL. As a senior geospatial 
scientist, Al works with all aspects of Lidar, 
remote sensing, photogrammetry, and GIS-re-
lated projects. He also teaches beginning map 
making at the University of Tampa.

The 4th Edition of the Manual of Remote Sensing!

The Manual of Remote Sensing, 4th Ed. (MRS-4) is an “enhanced” electronic publication available online from 
ASPRS. This edition expands its scope from previous editions, focusing on new and updated material since the 
turn of the 21st Century. Stanley Morain (Editor-in-Chief), and co-editors Michael Renslow and Amelia Budge 
have compiled material provided by numerous contributors who are experts in various aspects of remote 
sensing technologies, data preservation practices, data access mechanisms, data processing and modeling 
techniques, societal benefits, and legal aspects such as space policies and space law. These topics are orga-
nized into nine chapters. MRS4 is unique from previous editions in that it is a “living” document that can be 

updated easily in years to come as new technologies and practices evolve. It also is designed to include animated illustrations and 
videos to further enhance the reader’s experience.

MRS-4 is available to ASPRS Members as a member benefit or can be purchased
by non-members. To access MRS-4, visit https://my.asprs.org/mrs4. 

Available on the ASPRS Website

MANUAL OF REMOTE SENSING
Fourth Edition

edited by: Stanley A. Morain,
Michael S. Renslow and Amelia M. Budge
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ADVERTORIAL

Surdex Corporation is a full-service 
photogrammetric mapping firm in St. 
Louis, Missouri, that has served public 
and private sectors for over 65 years. Our 
focus is to consistently deliver premium 
quality geospatial products. Our extensive 
acquisitaon and processing resources 
provide a significant production capacity, 
ensuring we have the ability to meet your 
schedule without compromising quality. 
Our experience, communications and 
production procedures ensure every project 
is given a custom design and executed 
in a manner that will meet all project 
specifications – first time right, on time.

Our services include:
• Aerial imagery and lidar 

acquisition
• Lidar processing
• Digital orthoimagery 

production
• Planimetric mapping
• Topographic mapping
• Disaster mapping  

We serve a wide range of both public and private sector clients:
• Municipal, county, state and federal government entities 

(including DOTs)
• Surveyors
• Engineering and construction firms
• Energy firms (oil and gas, solar, and wind)

Surdex’s aircraft, supported by in-house maintenance personnel, 
and sensors are key to successfully completing numerous 
simultaneous projects across the country. Our acquisition assets 
include:

• A fleet of 10 Cessna aircraft
• 9 digital image sensors – 5 Leica ADS100s and 4 DMC-Is
• 3 lidar sensors – 2 Galaxy T2000s and 1 Galaxy Prime

We maintain a staff of approximately 100 employees including 
many with degrees in mapping or engineering fields. Our 
staff includes 8 ASPRS Certified Photogrammetrists, 1 ASPRS 
CMS-Lidar, 1 ASPRS CMT-GIS, 1 GISP certification, 2 Registered 
Land Surveyors and 1 Project Management Professional (PMP) 
certification. This depth of skilled professionals enables us to 
carefully design a custom plan for each project, to avoid issues 
and to mitigate them if they do occur.

In addition to completing numerous county/municipal 
government projects annually, Surdex is a prime contractor on 
several national multi-year programs such as the USDA PINE and 
the USGS GPSC4 program, and we have an IDIQ contract with 
the US Army Corps of Engineers for Surveying and Mapping. We 
also have a GSA contract for Earth Observation Solutions and 
numerous state DOT contracts. 

Surdex routinely undertakes projects ranging in size from a single 
development site to an entire state. Our production capacity 
and project management enable us to manage numerous 
concurrent projects – and to deliver a quality product that 
meets each project’s specifications and schedule. We institute 
redundant quality control processes and inspections at every 
major production phase, assuring that no work proceeds to 
the next step until it is validated against project standards. 
Consequently, Surdex’s products live up to our clients’ 
expectations for quality and accuracy. 

If receiving a quality product in a timely manner is important to 
you, call Surdex to see how we can help.

Surdex Corporation
520 Spirit of St. Louis Boulevard

Chesterfield, MO 63005
(636) 368-4400  І  www.surdex.com

Surdex Corporation: 
Your StrategiC geoSpatial reSourCe
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STAND OUT FROM THE REST
earn aSprS certification

ASPRS congratulates these recently Certified and Re-certified individuals:

RECERTIFIED PHOTOGRAMMETRIST

Charles E. Meyers, Certification #R1329CP
Effective May 23, 2022, expires May 23, 2027                                                

Bryan O’Malley, Certification #R1326CP
Effective May 2, 2022, expires May 2, 2027                                       

Edward Rodrigue, Certification #R968CP
Effective April 3, 2022, expires April 3, 2027                                     

Jason Dolf, Certification #R1488CP
Effective April 19, 2021, expires April 19, 2026                                          

Matthew Doty, Certification #R1580CP
Effective March 16, 2020, expires March 16, 2025                                                

Craig Fry, Certification #R1336CP
Effective October 7, 2022, expires 7, 2027                            

RECERTIFIED LIDAR TECHNOLOGIST

Matthew Doty, Certification #R043LT
Effective May 13, 2022, expires May 13, 2025                                        

RECERTIFIED MAPPING SCIENTIST GIS/LIS

William M. Stiteler, Certification #R190GS
Effective April 11, 2022, expires April 11, 2027                                    

RECERTIFIED REMOTE SENSING TECHNOLIGIST

Kevin F. May, Certification #R202RST
Effective March 12, 2021, expires March 12, 2024                                    

RECERTIFIED MAPPING SCIENTIST – REMOTE SENSING

William M. Stiteler, Certification #R154RS
Effective April 4, 2022, expires April 4, 2027                                                

CERTIFIED MAPPING SCIENTIST GIS/LIS

Wesley Street, Certification #GS268
Effective July 13, 2022, expires July 13, 2027                                             

Hurmain Ariffin, Certification #GS312
Effective July 29, 2022, Expires July 29, 2027     

ASPRS Certification validates your professional practice and experience. It differentiates you from others in the profession. For more information on the 
ASPRS Certification program: contact certification@asprs.org, visit https://www.asprs.org/general/asprs-certification-program.html.

 

Too young to drive the car? Perhaps!

But not too young to be curious about geospatial sciences.
The ASPRS Foundation was established to advance the understanding and use of spatial data for the 
betterment of humankind. The Foundation provides grants, scholarships, loans and other forms of aid to 
individuals or organizations pursuing knowledge of imaging and geospatial information science and 
technology, and their applications across the scientific, governmental, and commercial sectors.

Support the Foundation, because when he is ready so will we.

asprsfoundation.org/donate
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by Clifford J. Mugnier, CP, CMS, FASPRS

Discovered by Christopher Columbus in 
1498 on his third voyage, the island was 
not settled until 1609 when the English 

attempted to establish tobacco plantations. Native 
Carïb Indians made numerous raids on the 
English settlers and convinced them to abandon 
the island. In 1650, the governor of Martinique 
purchased Grenada from the Carïbs, and resettled 
the island with about 200 French citizens. After 
a year of subsequent raids by the Carïbs, a 
contingent of French soldiers was sent to Grenada 
to secure the island. The Carïbs were routed at 
Sauteurs Bay, but rather than surrender, the 
entire Carïb population leaped to their deaths 
from the island cliffs. Thanks to Lonely Planet 
2004: “The French then set about establishing 
plantations of indigo, tobacco, coffee, cocoa and 
sugar, which were worked by African slaves. 
Grenada remained under French control until 
captured by the British in 1762.

Over the next two decades it teetered between the two 
colonial powers until it was ceded to the Brits in 1783. It 
remained under British rule until independence, though 
animosity lingered between the British colonialists and the 
minority French settlers, with violence erupting periodi-
cally. In 1877, Grenada became a Crown Colony. In 1967, 
Grenada became an associate state within the British 
Commonwealth. Grenada and the neighboring Grenadine 
Islands of Carriacou and Petit Martinique adopted a consti-
tution in 1973 and became an independent nation in 1974.”

Dubbed the “Spice Island” because of its impressive produc-
tion of nutmeg, mace, cinnamon, ginger, and cloves, Gre-
nada has a rugged mountainous interior of rainforests and 
waterfalls and an indented coastline with protected bays 

and secluded beaches. Grenada is comprised of the islands 
of Grenada, Carriacou, and Petit Martinique. Located just 
north of Trinidad and Tobago (PE&RS, November 2000), 
and just south of St. Vincent (PE&RS, February 2004), the 
area of Grenada (340 km2), is twice the size of Washington, 
D.C. With a coastline of 121 km, the terrain is volcanic in 
origin with central mountains. The lowest point is the Carib-
bean Sea, and the highest point is Mount Saint Catherine 
(840 m).

The British Directorate of Colonial Surveys (DCS) flew the 
first aerial photography of Grenada in 1951. The original 
geodetic surveys of the island were performed by DCS in 
1953, and the origin point is the astronomical station GS 8, 

The Grids & Datums column has completed an exploration of 
every country on the Earth. For those who did not get to enjoy 
this world tour the first time, PE&RS is reprinting prior articles 
from the column. This month’s article on Grenada was origi-
nally printed in 2005 but contains updates to their coordinate 
system since then.

GRENADA
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Santa Maria (at the Santa Maria Hotel yard), where: Φo = 
12º 02´ 36.56˝ N and Λo = 61º 45´ 12.495˝ West of Greenwich. 
The defining azimuth to G5 North Extension is αo = 207º 
30´ 46.55˝ East of North, and scale is defined by the length 
from G1 West Base (Grand Anse Rum Distillery Hill) to G2 
East Base (SE of the Grand Anse Rum Distillery chimneys) 
of 1991.394 meters. The height of Santa Maria (Ho) = 160.24 
feet, determined by leveling from the Colony bench mark 
at St. Georges Harbor which is 3.17 feet above mean sea 
level. The ellipsoid of reference is the Clarke 1880 where: a = 
6,378,249.145 m, 1/f = 293.465. The grid system used for Gre-
nada is the BWI Transverse Mercator Grid where the central 
meridian, lo = 62° W, the latitude of origin jo = equator, 
the scale factor at the latitude of origin mo = 0.9995, False 
Easting = 400 km, and False Northing = nil. The formulae 
are the Gauss-Krüger, but for such a small span of latitude 
and longitude that includes all three islands; the distinction 
in this case is irrelevant. As is common with the BWI Grid 
usage, the grid is used as an “atlas index” numbering system 
for the popular tourist maps, and is not numbered with coor-
dinate values but with an alphanumeric system for facile use 
to locate tourist interest points. The grid is easy to recover if 
one is familiar with the standard BWI grid conventions, but 
the defining parameters are unfortunately obscure to many. 

“In Grenada, four Navy A-7 Corsair aircraft strafed a U.S. 
Army command post, inflicting 17 American casualties 
(Doton, Acquisition Quarterly Review, 1996). That tragedy 
highlighted the Services’ failure to establish a common 
positional picture. Each Service brought its own maps and 
map systems to the fight. The ground forces were unable to 
accurately describe a point on the ground to the supporting 
pilots. Air, ground, and sea Services planned and operated 
using separate maps referenced to three distinctly different 
coordinate systems. Accustomed to large-scale maps depict-
ing terrain in familiar grids, Army units deploying from Fort 
Bragg used maps constructed by the Army’s 100th Engineer 
Company (Cartographic), from a tourist map with an arbi-
trary grid overlay. Despite pictures of palm trees in the mar-
gins, the map was excellent. Constructed by British military 
engineers, the base map included highly accurate survey 
data replete with topographic contours. The American Army 
engineers merely added black grid lines for ground troops to 
use as a grid reference system. While this worked well for 
the Army, coordinates from the gridded overlay were useless 
to any combatant without a copy of the modified tourist map. 
Some historians link the strafing of the U.S. Army command 
post to this lack of a common positional picture. 

“Ground units experienced difficulty in orienting themselves 
and in directing supporting gunfire and airstrikes. [This] 
inadvertent airstrike…has been blamed partly on this 
chart confusion problem” (Rivard, DTIC 1985). The failure 
to create a common reference for planning highlighted the 
Services’ utter lack of attention to planning the joint fight. 
The ‘tourist map’ debacle merited considerable media atten-

tion, providing further grist for 1986 Goldwater-Nichols Act 
proponents.’’ (Gruetzmacher, Holtery, and Putney , Joint 
Forces Staff College Joint and Combined Staff Officer School, 
#02-02, 2002). A GPS survey by the U.S. National Geodetic 
Survey (NGS) occupied the station GS 15, Fort Frederick 
in 1996. I computed a singlepoint datum shift relation from 
Grenada 1953 Datum to WGS 84 Datum as: ∆X = +72 m, 
∆Y = +213 m, and ∆Z = +93 m. Thanks to Dennis McCleary 
of NGA for validation that the Santa Maria ‘‘astro’’ position 
was the same as the geodetic position I received from Dave 
Doyle of NGS.

UNAVCO installs COCONet cGPS site 
CN46 in Carriacou, Grenada
Determining how the Caribbean plate moves with respect to 
the neighboring North America and South America plates 
has been a major challenge. Geologic plate motion models 
using seafloor magnetic anomaly rates, transform fault 
azimuths, and slip vectors are challenging due to sparse 
data. The only rates come from the Cayman Spreading 
Center, and seismicity at the eastern boundary is low due to 
slow convergence. Moreover, the boundary geometry is still 
unclear, since the Caribbean plate’s north and south bound-
aries are complex deformation zones.

GPS data continue to provide key clues to the Caribbean 
region’s geologic faults. GPS stations are currently being 
installed as part of the Continuously Operating Caribbean 
GPS Observational Network (COCONet), strengthening the 
indispensible collection of data belonging to a region that 
faces many atmospheric and geologic natural hazards.

While most people in the Caribbean were enjoying their time 
off for Easter weekend, UNAVCO engineers Jacob Sklar and 
Michael Fend were installing COCONet GPS site CN46 on 
Carriacou Island, Grenada April 16 - 24, 2014.  Carriacou 
Island, not to be confused with Curacao, is a two-hour ferry 
ride north of Grenada. UNAVCO worked closely with Ter-
ence Walters of Grenada’s National Disaster Management 
Agency (NaDMA) and Stephen George from the University 
of the West Indies Seismic Research Centre (UWI). CN46 is 
co-located with UWI’s seismic vault; GPS, meteorological, 
and seismic data are all being transmitted via a satellite con-
nection. Collaborating with UWI will allow both UNAVCO 
and UWI personnel to monitor the health of the site.

https://www.unavco.org/highlights/2014/carriacou.html. 

The contents of this column reflect the views of the author, who is 
responsible for the facts and accuracy of the data presented herein. 
The contents do not necessarily reflect the official views or policies of 
the American Society for Photogrammetry and Remote Sensing and/
or the Louisiana State University Center for GeoInformatics (C4G).

This column was previously published in PE&RS.

http://coconet.unavco.org/
http://www.gov.gd/departments/nadma.html
http://www.gov.gd/departments/nadma.html
http://www.uwiseismic.com/
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https://www.unavco.org/highlights/2014/carriacou.html
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A Novel Residual Attitude Estimation Approach 
Using Georeferenced Satellite Imagery

Bhaskar Dubey and B. Kartikeyan

Abstract
This article presents an efficient novel approach estimating residual 
attitude based on geometrically corrected (GEO) satellite images. A 
technique is presented that uses orbital plane geometry to compute 
the rotation angle as a function of geographic latitude between GEO 
image space and radiometrically corrected (RAD) image space. First, 
a nonlinear forward model is established that translates the residual 
errors in roll, pitch, and yaw to scan errors and pixel errors in GEO im-
age space. Subsequently, the inverse problem is solved using Newton’s 
method of nonlinear optimization for estimating residual roll, pitch, 
and yaw. We demonstrate our results on data products of the high-
resolution Indian satellites Cartosat-2E and Cartosat-2F. Further, the 
superiority of the proposed method is established by comparing it with 
multiple existing methods in the literature. The R2 measures of good-
ness of fit for roll, pitch, and yaw estimation based on RAD and GEO 
products using the proposed method are 0.65, 0.99, and 0.65, respec-
tively; using the existing method, they are 0.074, 0.005, and 0.50.

Introduction
Attitude measurement of a satellite is carried out by the onboard sen-
sors, namely gyroscopes, magnetometers, and star sensors, which are 
part of the satellite’s attitude and orbit control system. Vast literature is 
available on precise real-time satellite attitude determination and cali-
bration (see, e.g., Grassi 1997; Crassidis et al. 2007; Soken et al. 2014; 
Pan et al. 2016; Yang et al. 2021; and the references therein). Often, 
there exists residual error in attitude estimation, which is compensated 
via ground-based calibration with the help of precise ground control 
points (GCPs; Davison 1986; Radhadevi et al. 2011; Chen et al. 2017).

The problem of estimating residual attitude of a remote sensing satel-
lite is one of the fundamental interests in accurate georeferencing and geo-
metric calibration (Ford and Zanelli 1985; Tommaselli and Tozzi 1996; 
Srivastava and Alurkar 1997). Georeferencing is carried out using a physi-
cal sensor model that relies on the knowledge of orbit and orientation 
parameters, both exterior and interior, and digital elevation models (DEMs; 
Westin 1992; Jiang et al. 2022). The geometric rectification can also be 
carried out through other methods—for instance, rational function model–
based methods (Xiong and Zhang 2009; Shen et al. 2017; Dubey et al. 
2019) and equivalent geometric sensor model–based methods (Cao et al. 
2019). Often, system level geometrically corrected (GEO) products (basic 
GEO products based on system knowledge alone) have high location errors 
for various reasons, namely orbit and attitude errors, micro-vibrations of 
the platform, terrain undulations, and errors in interior orientation param-
eters. In recent Indian Remote Sensing (IRS) missions, the system-level 
location error is on the order of 100 to 200 m (Srinivasan et al. 2008). A 
major part of this error is attributed to error in the measurement of satellite 
attitude by the onboard sensors. Thus, the precise estimation of residual 
attitude is very important for improving system-level location accuracy, 
and also for generating more accurate final products. A rigorous in-flight 
geometric calibration, which also involves compensation for residual 

attitude biases, is carried out in order to improve the geometric accuracies 
and overall system-level location errors (Leprince et al. 2007; Radhadevi 
and Solanki 2008; Zhang et al. 2014; Wang et al. 2017).

In the literature, residual attitude estimation has been explored by 
various authors in various ways (e.g., Mahapatra et al. 2004; Pulsule 
et al. 2008; Weser et al. 2008; Dubey and Kartikeyan 2018). Wahba 
(1965) aimed to find a best-approximating residual orthogonal matrix 
to minimize the location errors at a few conspicuous points. Mahapatra 
et al. (2004) forged discussions for computing residual attitude based 
on Taylor-series linearization of the collinearity equations. We (Dubey 
and Kartikeya 2018) recently established an improved approach for 
estimating residual attitude based on radiometrically corrected (RAD) 
products, wherein we directly model the effect of residual roll, pitch, 
and yaw in terms of scan errors and pixel errors at a few GCPs in RAD 
image space. Due to this, that approach becomes advantageous in 
many situations over other methods, especially when a user does not 
have orbit, attitude, and sensor-model parameters to perform full-
fledged geometric calibration for estimating residual attitude biases. 
The approach is also highly suitable to a data quality evaluation system 
where the end products are validated for quality norms, namely loca-
tion errors, targeting errors, internal distortion, and residual attitude, 
and necessary feedback is provided to concerned data-product genera-
tion and mission operations teams.

In this article, our aim is to extend those previous results to GEO 
products, as these are level 2 products which are frequently demanded 
by geospatial data users. The image space in GEO products is often 
rotated with a certain angle based on satellite heading angle and imaging 
area latitude with respect to the RAD image space, apart from different 
scales and other terrain-related local distortions. Due to these shortcom-
ings, our previous procedure (Dubey and Kartikeyan(2018), which is 
valid only for RAD (level 1) products, cannot be applied for residual atti-
tude estimation with GEO products. In this approach, first a conversion of 
image coordinates from GEO to RAD space is desired, which essentially 
requires a rotation matrix. The rotation matrix as a function of latitude 
is derived using the orbital plane geometry and analysis of the ground 
trace of the satellite. Subsequently, the forward and inverse models are 
developed for estimating residual attitude using GEO products.

The organization of the paper is as follows: in the next section, we 
briefly review the results for residual attitude estimation using RAD 
products that are extended in this article. The following section pres-
ents a methodology for estimating residual attitude using GEO products, 
including a method for estimating rotation angle that is required to 
conform the GEO image space to the RAD image space. In the section 
after that, experimental results using Cartosat-2S GEO data products are 
presented, as are several comparisons with existing results (Pulsule et 
al. 2008; Dubey and Kartikeyan 2018). Finally, we conclude the article.

Review of Residual Attitude Estimation Based on RAD Products
We previously explained in detail the process of residual attitude 
estimation based on radiometrically corrected products (Dubey and 
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Kartikeyan 2018); however, this method cannot be directly applied to 
GEO images. This is mainly because GEO images do not have the same 
orientation as RAD images and often are rotated by some angle with 
respect to RAD images. Contrary to RAD images, GEO images are not 
in the imaging plane of the satellite. The scan and pixel directions in a 
GEO image do not represent truth in along- and across-track directions. 
Thus, our forward model (Dubey and Kartikeyan 2018) describing the 
effect of residual attitude on the along- and across-track directions does 
not hold in GEO image space. This necessitates the development of a 
forward model that can establish a relationship between GEO image 
scan pixels and residual attitude.

We briefly discuss our previous model for residual attitude estima-
tion using RAD products in order to provide necessary background. We 
omit the proofs and present only the highlights.

Residual Roll Effect
Let r be the onboard measured roll value and δr the error in measure-
ment of roll. Due to this error, the true location P will be shifted to Q 
(see Figure 1) in the across-track direction toward the east for near-po-
lar descending satellites. Let P correspond to pixel p and Q to pixel p′ in 
the image. Let s be the scan-line number corresponding to points P and 
Q. Based on the geometry of Figure 1, we have the following equation:

  
′ = +p p H

d
δr
p  

(1)

where dp denotes the pixel dimension in meters in the across-track 
direction and H=|OP| is the altitude of the satellite. This equation can 
be expressed using a transformation r :R2 R2 defined as

  
Fr ps p s p, ,( ) = +( )μ δr

 
(2)

where μp = H/dp and μp is considered the inverse of the instantaneous 
ground field of view in the across-track direction. It is clear that 
Equation 1 holds good for the nadir or near-nadir looking satellite. 
Further, we established previously (Dubey and Kartikeyan 2018) that 
it will also hold good when the satellite is imaging under higher roll 
tilt—that is, when r is significantly different from zero.

Residual Pitch Effect
Let δp be the error in pitch measurement by the onboard sensors. 
Due to this error, the true location will be shifted in the along-track 
direction (toward the south for a near-polar descending satellite if δp 
is positive). The geometry for residual pitch effect is the same as for re-
sidual roll effect, except that the shift takes place in the scan direction 
(along-track) instead of the pixel direction (across-track).

Let s and s′ be the scan-numbers corresponding to pitch values of p 
and p + δp. Following the same steps as with the residual roll, we get 
the following equation:

  
′ = +s s H

d
δp

s  
(3)

where ds is the pixel dimension in meters in the along-track direction. 
This equation can also be expressed using a transformation p :R2 R2 
defined as

   (s,p) = (s + μsδp, p) (4)

where μs = H/ds

Residual Yaw Effect
Let Or with coordinates (s0, p0) be the origin of the reference frame 
and O with coordinates (s, p0) be the origin of rotation (see Figure 
2), where p0 is the center pixel of the detector array and s0 and s are, 
respectively, the initial and current scan number. Let δγ be the residual 
error in yaw measurement (in Figure 3, δγ is negatively oriented). The 

Figure 1. Residual roll effect.

Figure 2. Residual yaw effect.

(a)

(b)

Figure 3. Geometry of radiometrically and geometrically corrected 
images: (a) Rotation angle. (b) Maximum latitude.
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point M, whose coordinates are (s, p), is transformed to the point M1 
with coordinates (s', p') due to the residual yaw error δγ. This transfor-
mation y :R2 R2 is expressed by the following equation:

  y = (s,p) = (s + (p – p0)sin(δγ), p0 + (p – p0)cos(δγ)) (5)

Combined Effect of Residual Roll, Pitch, and Yaw
The total effect of residual roll δr, residual pitch δp, and residual yaw 
δγ on a pixel with image coordinates (s, p) acting in a sequence in 
which yaw follows roll and pitch is modeled by a function F(F1, F2):R2 

R2, where F1 and F2 are component functions of F from R2 to R, 
defined as

  F(s,p) = y p r (s,p) (6)

where r, p, and y are the mappings from R2 to R defined by 
Equations 2, 4, and 5, respectively. Since a pixel (s, p) is shifted to (s', p') 
due to the residual errors in attitude, the following equation holds:

  F(s,p) + (ηS(s,p), ηP(s,p)) = (s',p' ) (7)

where ηs(s, p) and ηp(s, p) are the modeling errors in scan and pixel, 
respectively. In expanded form, Equation 7 can be written as follows:

  ( )
( )′

′
= ( )

( )
+
+ +

−s
p

s
p

ps

p

1
0
sin
cos

sinδγ
δγ μ δ

μ δp
r

0 δγ
δγ

η
η−

+ ( )
( )p p
s p
s p0 0

s

pcos
,
,  

(8)

Without loss of generality, we assume μs = μp =
Δ μ throughout the 

rest of the article.

Residual Attitude Estimation Using GEO Products
In this section, we formulate the mathematical model and establish 
the procedure for the problem of estimating residual attitude using 
GEO products (level 2 products). These products are obtained from 
RAD products after applying the ground-to-image mapping over a map 
projected area followed by resampling of RAD space. Because of this, 
the RAD and GEO image spaces are not identical even if the resolution 
is kept the same in both. Therefore, a proper translation and rotation is 
required on a GEO image for conformation to RAD image geometry. It is 
often convenient to center the origin of the GEO image before perform-
ing rotation.

The residual attitude estimation procedure using GEO products com-
prises two steps: estimation of the rotation angle required to conform 
the GEO image to the RAD image and development of the forward and 
inverse models. Translation is required for centering the origin of the 
GEO image.

In the next subsection, the procedure for estimating the required ro-
tation angle is provided, and in the subsection after that, the necessary 
steps are provided for estimating residual attitude using GEO products 
and model equations are derived.

Estimation of Rotation Angle
The rotation angle essentially depends on the orbit inclination and 
varies with latitude. Although the rotation angle changes continuously 
with latitude, nevertheless in practical scenarios where the along-track 
scene length is not very high, it can be assumed constant throughout 
the scene (Anuta 1973)). For instance, for a scene with an along-track 
length of 20 km (~0.2° variation in latitude), the change in the rotation 
angle is not significant (see Figure 4d). Thus, the rotation angle cor-
responding to scene-center coordinates is considered for the transfor-
mation from GEO to RAD space. Now we shall formulate a method to 
compute the required rotation angle.

The Earth-centered, Earth-fixed coordinates in terms of latitude ϕ and 
longitude λ on the Earth’s ellipsoid are described by the following equations:

(a)

(b)

(c)

(d)

Figure 4. (a) Orbital ground trace considering Earth’s rotation. 
(b) Longitude-shift variation with longitude. (c) Longitude-shift 
variation with latitude. (d) Rotation-angle variation with latitude.
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x a

r
= ( ) ( )

2

0

cos cosϕ λ
 

(9)

  
s sy a

r
= ( ) ( )

2

0

co inϕ λ
 

(10)

  
z b

r
= ( )

2

0

sin ϕ
 

(11)

where r0 is given by

  r a b0
2 2 2 2= +cos sinϕ ϕ

in which a and b are the semi-major and semi-minor axis of the Earth. 
Further, let θ be the inclination of the orbital plane with respect to the 
equatorial plane, and let ω be the right ascension of ascending node. 
Then the equation of the orbital plane in the Earth-centered inertial 
frame will be given by

 z = –x sin(ω) tan(θ) + y cos(ω) tan(θ)

Therefore, the ground trace of the satellite orbit, assuming the Earth 
is stationary, is the intersection of the Earth surface with the orbital 
plane. Thus, the ground trace trajectory, under a fixed-Earth assump-
tion, is described by

  
( )b

r
a
r

2

0

2

0

sin cos sinϕ ϕ= ( ) −( ) ( )λ ω θtan
 

(12)

or, equivalently,

  
( )tan sin tanϕ = −( ) ( )a

b

2

2 λ ω θ
 

(13)

Since in a real scenario the Earth is rotating with constant angular 
velocity, Equation 13 has to be modified to compensate for that rota-
tion. We shall now provide those mathematical formulations.

Compensation for Earth’s Rotation
When the Earth’s rotation motion is considered, Equation 13 is no 
longer valid—that is, at any given latitude ϕ, the longitude λ will be 
shifted by an amount δλϕ

, which is to be determined. Thus, for a rotat-
ing Earth, the following relation will hold good for 0 ≤ ϕ ≤ ϕmax:

  
( )λ ω θ δλ= + ( )  −−

ϕ
sin tan cot1

2

2
b
a

ϕ
 

(14)

where ϕmax is the maximum latitude that can be attained for the given 
inclination θ of the orbit; we defer its computation to the next subsec-
tion. Without loss of generality, it can be assumed that initially at time 
t = 0, the satellite is crossing the equator—that is, δλϕ

 is 0 when ϕ is 0. 
Under this assumption, we shall compute δλϕ

; it can be done similarly 
for the other cases. Further, the ground-track velocity of the satellite is 
nearly constant due to the near-circular orbit. Now, the change in longi-
tude at a latitude ϕ due to Earth’s rotation can be obtained by multiply-
ing the Earth’s rotation rate by the time of flight from 0 to ϕ. Let δtϕ be 
the time of flight from 0 to ϕ; then we have

  
δ � δλϕ ϕ

=
43 200, t

 
(15)

Here, δtϕ is given by

  
δt

gv
ds
d
d

ϕ ϕ
ϕ

ϕ

= ∫1
0  (16)

where vg denotes the average ground-track velocity of the satellite. The 
integral in this equation denotes the arclength on the ground traversed 
by the satellite during its motion from 0 to ϕ. The term ds/dϕ can be 
expressed as
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The functions x(ϕ), y(ϕ), and z(ϕ) can be obtained by combining 
Equations 9, 10, and 11 with Equation 13. For the special case when ω 
= 0, they can be expressed as follows:
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for 0 ≤ ≤ϕ ϕmax.
Figure 3a shows the necessary geometry required to illustrate the 

rotation-angle computation. In the figure, ON points toward the north 
and OE toward the east; points A and B lie on the satellite’s ground 
trace and are separated by an infinitesimally small distance ds. The sat-
ellite is descending from north to south and overhead at A. The angle 
that the negative of the satellite’s heading direction makes from true 
north at A is the rotation angle Ψ that we seek in order to transform 
satellite imagery from GEO to RAD space. It is expressed by

  
( )tan limΨ Δ

Δ
= =

→ds

d
d0

λ λ
φ φ

That is, given a latitude ϕ, the rotation angle Ψ is given by

  
Ψ =







−tan 1 d
d
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Now, from Equation 14 we have
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which can be rewritten using Equations 15 and 16 as
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Computation of Maximum Latitude
In this subsection, we shall compute the maximum attainable latitude 
for the given orbit inclined at an angle θ. Figure 3b illustrates the 
geometry necessary for this computation. Points of extreme latitude 
are precisely at the intersection of the prime vertical (the intersection 
of the Earth’s ellipsoid with the y – z plane) and the line z = y tan(θ). 
Therefore, the coordinates (y0, z0) of the point P, where the maximum 
latitude ϕmax is attained, are expressed by the following equations:

  

y ab
b a

z
ab

b a

0 2 2 2

0 2 2 2
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(22)
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The latitude ϕmax is given by

  
( )tan

, ,

ϕmax = − =
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dy
dz
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yby z y z0 0 0 0

2

2
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where (y2 / a2) + (z2 / b2) = 1. Upon further simplification of Equation 
23, we get

 
( )tan tanϕmax = a

b

2

2 θ

Numerical Simulation
We have simulated rotation-angle estimation as a function of geograph-
ic latitude using Equations 20 and 21 for the near-polar retrograde orbit 
of Cartosat-2S with inclination approximately 98°. For a 98° inclined 
low-Earth near-polar orbit with vg taken as 6.9 km/s, the rotation-angle 
computation simulation is done using MATLAB 16. Figure 4a shows the 
ground trace of the orbit after considering the Earth’s rotation. Figure 
4b and 4c shows the shift in longitude against longitudes and latitudes, 
respectively. Finally, in Figure 4d the rotation angle against latitudes 
is shown in descending mode. Thus, for a given scene, the amount of 
rotation is calculated by computing the rotation angle at scene-center 
latitude.

Modeling of Residual Attitude for GEO Products
We shall now present the mathematical model for estimating residual 
attitude using georeferenced products. All the algorithm steps are 
described in a sequential manner. Figure 5 depicts the steps in coordi-
nate conversion from GEO to RAD image space. Let S be the number 
of scans and P the number of pixels in the GEO image. The following 
steps are performed:
1. First the origin of the GEO image is shifted to the center from the 

top left corner. That is, every pixel in the image is subjected to fol-
lowing transformation  :

  
, ,−s p s S p P s pT c cS ,( ) − ( )2 2

2. On this shifted image, a rotation TR: R2 R2 with rotation angle Ψ 
is performed. That is,

  s p R s p s pc c T c c
R
c

R
cR, , ,( ) ( ) ( )Ψ

where RΨ denotes the 2×2 rotation matrix with rotation angle Ψ.
3. Let (si, pi) be the GEO image coordinates of the ith control point and   

be the image coordinates of the same control point in the GEO im-
age obtained by ground-to-image affine transformation, where the 

ground coordinates of the control point are taken from the map or 
qualified reference image. Using steps 1 and 2, all the image-map 
quadruplets (si, pi, s†

i, p†
i), 1 ≤ i ≤ n, corresponding to the n control 

points in the GEO image are transformed to RAD image space with 
centered origin. Thus, we have the following linear transformation:

  ( ) , ,s p( )s p s p s pi i i i
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i
c
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This equation should be interpreted in the following sense:
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Note that TR°TS maps the GEO image coordinates to the RAD image 
space with centered origin. However, in the model (Equation 8), the 
actual image coordinates in RAD image space are required. Thus, we 
need to either convert the centered RAD image coordinates to the origi-
nal RAD space or Equation 8 needs to be changed in accordance with 
the centered RAD image coordinate system. Since the RAD image is not 
available, direct conversion from centered coordinates to the original 
RAD coordinates is not possible. However, under some reasonable as-
sumption, which is more often the case, forward-model equations with 
respect to the centered RAD coordinate system can be obtained from 
Equation 8. This is achieved by eliminating p0, a number that describes 
the center of yaw-rotation, from Equation 8. Usually, the center of yaw 
rotation is considered as half of the total number of detectors in a push-
broom imaging row, but in exceptional cases it can be slightly different 
from the center of the charge-coupled device (CCD) detectors. Thus in 
general we can have a safe assumption that p0 is the center of the CCD 
detectors. Therefore, Equation 8 can be expressed in p0-free form by 
considering the origin of the RAD image to be shifted to the center from 
the top left corner. Thus, by introducing variables sc = s – SR / 2 (resp., 
s'c = s' – SR / 2) and pc = p – PR / 2 (resp., p'c = p' – RR / 2)—where SR and 
PR denote the total number of scans and pixels, respectively, in the RAD 
image—Equation 8 can be expressed as follows:
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This is referred to as the forward model. Now, we can use this for-
ward model with inputs TR°TS (si, pi, s†

i, p†
i). It should be noted that the 

model equations remain valid for conditions of high roll or pitch tilt, 
and they can also be applied for large-swath satellites. For large-swath 
satellites, the Earth’s curvature needs to be taken in account for precise 
location of a pixel. The relative error in locating a particular pixel is 
almost negligible for a low Earth-orbiting satellite, and is around 1% 
(0.01 pixel) for 2° of roll for geostationary satellites. In Figure 6a, we 
show the variation of relative percentage change in pixel location due 
to a flat-Earth assumption for a satellite at an altitude of 600 km; in 
Figure 6b, the same is shown for a geostationary or geosynchronous 
satellite. We shall now formulate the inverse model. Let the residual 
function R: R2 R2 be defined as follows:
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where ηp(sc
iR, p

c
iR) and ηs(sc

iR, p
c
iR) are the modeling errors at the ith GCP in 

the pixel and scan direction, respectively, and are expressed by
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Figure 5. Conversion from GEO to RAD space. GEO = geometrically 
corrected; RAD = radiometrically corrected.
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Now our aim is to solve the following minimization problem: let 
Ω be a bounded open subset of R3 —more precisely, a bounded open 
cube around some suitable guess in R3 for residual attitude. Consider 
the problem

 
P r p

r p
( ) ( )

( )
min , ,

, ,δ δ δλ
δ δ δ γ

Ω 3

Problem (P) is referred to as the inverse model. This minimization 
problem can be solved using Newton’s method or the Levenberg–
Marquardt method (Ruszczyński 2006). We solve it using Newton’s 
method with an appropriate initial guess. In the following section, we 
invoke the results established in this section to compute the attitude 
residuals based on GEO products of the high-resolution Indian satellites 
Cartosat-2E and Cartosat-2F.

Experimental Results
In this section, we demonstrate our results on the high-resolution 
Indian satellites Cartosat-2E and Cartosat-2F. Cartosat-2S is a series 
of agile high-resolution Indian Earth observation satellites equipped 
with time-delay integration push-broom imaging technology capable of 
acquiring images with a resolution of 0.65 m in panchromatic and 1.50 
m in multispectral bands. To design a rigorous experiment, we chose 
a set of ten system-level GEO data products as well as corresponding 
RAD data products of Cartosat-2E and Cartosat-2F satellites. Using 

reference images, well-distributed control points are marked in the 
GEO image. Subsequently, using the proposed method, residual roll, 
pitch, and yaw are estimated. It is shown that after application of the 
residual attitude biases, location errors in all the test scenes are reduced 
significantly.

As there is a well-established method for residual attitude estima-
tion based on RAD products (Dubey and Kartikeyan 2018), estimated 
residual attitudes for GEO products are cross verified with the residual 
attitude estimates based on the corresponding RAD products. We expect 
that the residual attitude estimates using GEO products should not differ 
significantly from those obtained using RAD products. Through several 
comparisons, we establish that indeed there is no significant difference 
between the residual attitude estimates using GEO products and those 
obtained using RAD products. We also compare our results with exist-
ing results in the literature.

Preparation of Test Data Sets
A set of ten GEO products and corresponding RAD products of different 
geographic terrains were selected for the analysis of residual attitude 
estimation results. A typical RAD and GEO product pair, with GCP dis-
tribution corresponding to test 6, is shown in Figure 7. The RAD image 
size is approximately 16,000×16,000 pixels, with a resolution of 0.6 
m, whereas the size of a GEO image is approximately 20,000×20,000 
pixels, with 0.6-m spatial sampling. The chosen GEO products were 
generated with system-level accuracy alone, using no other informa-
tion related to accuracy improvement, alignment angle calibration, 
or attitude refinement using GCPs. This ensures that the accuracy of 
the GEO products is equivalent to that of the RAD products. The RAD 
and GEO data products are compared in terms of location accuracy 

(a) (b)

Figure 6. Relative change in pixel location due to Earth’s curvature: (a) Low Earth orbits (600 km altitude). (b) Geosynchronous orbits  
(36000 km altitude).

(a) (b) (c) (d)

Figure 7. RAD and GEO scenes and their GCP distributions for test 6. GCP = ground control point; GEO = geometrically corrected; RAD = 
radiometrically corrected. (a) RAD-image. (b) GCPs of RAD-image. (c) GEO-image. (d) GCPs of GEO-image.

636 October 2022 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



(root-mean-square error [RMSE]). Figure 8a shows 
the radial RMSE1 for both the RAD and GEO products. 
Tables 1 and 2 present the radial RMSE, mean location 
errors, standard deviation, and RMSE, both along track 
and across track, for, respectively, system-level GEO 
products and corresponding RAD products.

Two cases (tests 9 and 10) show relatively large 
differences in location accuracy (radial RMSE) between 
RAD and GEO products—87 and 204 m, respectively, 
which are much higher than in the other cases. This 
could be due to some incorrect processing option 
that led to the generation of accuracy-improved GEO 
products instead of system-level products. Since in 
subsequent analyses the attitude residuals estimated us-
ing system-level GEO products are compared with those 
from corresponding system-level RAD products, we do 
not consider tests 9 and 10 in those analyses. Figure 8b 
shows the radial RMSE comparison between the RAD 
and GEO products after tests 9 and 10 are dropped.

Residual Attitude Estimation Results and Discussion
The residual attitude (δr, δp, δλ) is estimated for GEO 
products using the proposed method. The estimated 
residual biases are uplinked to the satellite in a specific 
rotation sequence which modifies the roll, pitch, and 
yaw rotation matrices, and eventually improves the 
location accuracy. The complete steps of ground-to-
image transformation, which involve the computation 
of several rotation matrices, have been described previ-
ously (Dubey and Kartikeyan 2018).

The effect of residual attitude compensation is 
indeed in accordance with the forward model (Equation 
26). We shall now provide its precise formulation. 
Let Mr, Mp, and My be affine mappings from R2 to R2 
defined as follows: Mr(z) = Iz + b1, Mp(z) = Iz + b2, and 
My(z) = Rz, where I is the 2×2 identity matrix, b1 = (0, 
μδr), b2 = (μδp, 0), and

 
R =

( )
( )

1

0

sin
cos

δγ
δγ

1. Radial RSME is calculated as RMSE RMSEal ac( ) + ( )2 2 , where “al” and 
“ac” denote the along-track and across-track directions, respectively.

(a) (b)

Figure 8. Comparison of radial RMSE using RAD and GEO products. GEO = geometrically corrected; RAD = radiometrically corrected; RMSE = 
root-mean-square error. (a) Without outlayer rejection. (b) With outlayer rejection.

Table 1. System-level location accuracy for geometrically corrected products.

Test Satellite Place

Radial 
RMSE 
(m)

Location Accuracy (m)

Along Tracka Across Trackb

Mean SD RMSE Mean SD RMSE
1 Cartosat-2E Akhnur 31.55 31.04 2.39 31.13 −5.53 1.02 5.62
2 Cartosat-2F Anjar 11.26 −8.04 3.82 8.9 −3.4 7.6 8.32
3 Cartosat-2F Chatra 27.38 −24.67 4.84 25.14 −2.59 12.04 12.32
4 Cartosat-2E Fatehabad 88.99 −82.21 3.98 82.31 33.99 1.68 34.03
5 Cartosat-2F Indore 27.04 −26.29 4.01 26.60 −4.56 4.48 6.39
6 Cartosat-2E Jalalabad 92.92 −84.71 2.28 84.74 38.18 0.74 38.19
7 Cartosat-2E Kishangarh 111.56 −106.81 2.36 106.84 32.12 2.73 32.24
8 Cartosat-2E Mukerian 25.83 −23.34 1.04 23.36 −11.06 0.26 11.06
9 Cartosat-2F Gumla 29.78 −28.58 4.44 28.92 4.09 7.62 8.65
10 Cartosat-2F Imphal 17.27 0.64 5.53 5.57 −14.95 4.99 15.76
RMSE = root-mean-square error, aPositive values indicate north, negative values indicate south, 
bPositive values indicate east, negative values indicate west.

Table 2. System-level location accuracy for radiometrically corrected products.

Test Satellite Place

Radial 
RMSE 
(m)

Location Accuracy (m)

Along Tracka Across Trackb

Mean SD RMSE Mean SD RMSE
1 Cartosat-2E Akhnur 30.23 29.89 1.01 29.9 −4.3 1.43 4.53
2 Cartosat-2F Anjar 12.8 −3.06 4.88 5.76 −9.18 8.53 12.53
3 Cartosat-2F Chatra 38.04 −24.23 5.44 24.83 28.91 5.36 29.4
4 Cartosat-2E Fatehabad 87.68 −82.09 3.06 82.14 30.68 2.44 30.78
5 Cartosat-2F Indore 25.55 −25.13 4.01 25.45 3.38 3.22 4.67
6 Cartosat-2E Jalalabad 88.34 −82.96 2.0 82.98 30.32 1.86 30.38
7 Cartosat-2E Kishangarh 102.92 −102.43 2.38 102.5 9.32 2.97 9.80
8 Cartosat-2E Mukerian 31.41 −27.8 3.13 27.9 14.42 2.36 14.61
9 Cartosat-2F Gumla 116.6 −34.2 6.17 34.75 111.4 10 111.8
10 Cartosat-2F Imphal 221.86 −21.55 3.53 21.84 222.07 3.53 222.1
RMSE = root-mean-square error, aPositive values indicate north, negative values indicate south, 
bPositive values indicate east, negative values indicate west.
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Now, the residual bias compensation law in a GEO image is de-
scribed as follows: a given pixel (s, p) =Δ x in the GEO image obtains its 
new position   as per the following equation:

  y = (TR °TS)–1 MyMpMr(TR °TS)x (29)

After application of the computed attitude biases in accordance 
with Equation 29, the radial RMSE is shown to decline significantly. 
The reduction in GEO radial RMSE is also cross verified with the reduc-
tion in radial RMSE for corresponding RAD products, whose residu-
als are estimated using our previous method (Dubey and Kartikeyan 
2018). Table 3 presents the original and bias-compensated radial RMSE 
for both the GEO and RAD products. Figure 9a shows the original and 
attitude bias-compensated radial RMSE for GEO products, and Figure 9b 
shows the same for RAD products.

It is clear from Figure 9 that the reduction in RMSE after application 
of the residual attitude biases for both RAD and GEO products is almost 
the same. The original error vectors (ten times scaled) and along-track 
and across-track errors at GCPs for GEO product 6 (Jalalabad GEO scene) 
are shown in Figure 10, and the same are plotted for the corresponding 
RAD product 6 (Jalalabad RAD scene) in Figure 11. Similar plots are 
obtained for rest of the GEO-RAD product pairs.

Comparison with Existing Results
We now show the effectiveness of the proposed approach through 
several comparisons with existing approaches (Pulsule et al. 2008; 
Srinivasan et al. 2008; Dubey and Kartikeyan 2018). According to 
Pulsule et al., the model equations for residual attitude estimation 
are valid for polar nadir-looking satellites—that is, the along- and 
across-track directions are precisely the northing and easting direc-
tions on the map. The results of Pulsule et al. are not accurate for GEO 
products based on inclined orbits. Our study confirms that even for a 
98° inclined orbit, the net rotation angle that the along- and across-
track directions require to conform to northing and easting directions 
may be significantly large (see, e.g., Figure 4d: at least as large as 
27° for imaging at 60° latitude). If this rotation is not properly taken 
care of, as is the case in the study by Pulsule et al., the results may be 
misleading. Srinivasan et al. used plots of scan differences against scan 
numbers and pixel differences against scan numbers to derive pitch and 
roll biases, respectively, and plots of scan differences against 
pixel numbers to estimate residual yaw. However, their results 
cannot be directly applied to GEO products, and even for RAD 
products the combined effect of roll, pitch, and yaw needs to 
be further investigated.

A comparison of estimated residual attitude using GEO 
products and corresponding RAD products is carried out using 
the existing and proposed approaches. Ideally, the estimated 
residual attitude using RAD products should be approximately 
equal to that estimated using GEO products. The residual roll, 
pitch, and yaw for the GEO products and corresponding RAD 
products differ largely when estimated using the approach of 
Pulsule et al., whereas our approach shows reliable and prom-
ising results. Table 4 shows the estimated residual attitude 
for the GEO and the corresponding RAD products using the 
old method; Table 5 presents the estimated residual attitude 
using our approach. In Table 5, columns 2 through 4 show the 
estimation carried out using our previous approach for RAD 
products, and columns 6 through 8 show the estimation using 
the approach discussed in this article.

Figure 12 shows residual attitude differences between esti-
mation based on the GEO and RAD products using both the old 
and the proposed approaches. It is clear from the figure that with the 
new approach, the residual roll and pitch differences are almost close 
to zero, as desired, whereas residual yaw differences are within 0.02° 
for most cases and in no case are greater than 0.05°. For comparative 
analysis, regression lines on the same scale are fitted between the esti-
mated residual attitude for the GEO (y-axis) and RAD (x-axis) products 
using both approaches, and the slope, offset, and R2 (measure of the 
goodness of fit) are computed. Ideally, the slope and offset for the fitted 
regression lines should be 1 and 0, respectively. A small departure from 

the ideal slope and offset values can be attributed to inconsistency of 
location errors and internal distortion between the products; however, 
a drastic change in the values is undesired. It is shown that the fitted 
lines for roll and pitch deviate drastically from their expected behavior 
using the old approach, whereas following the proposed approach they 
show a close match.

Figure 13 shows scatterplots along with regression lines of esti-
mated residuals using the old method. The slopes and offsets of the 
fitted lines show huge departures from the expected values of 1 and 0. 
Figure 14 shows those scatterplots using the proposed method, and it 

Table 3. Original and bias-compensated radial root-mean-square error (m) for 
RAD and GEO products.

Test Satellite Place

RAD GEO

Original
Bias 

Compensated Original
Bias 

Compensated

1 Cartosat-2E Akhnur 30.23 2.10 31.55 1.68

2 Cartosat-2F Anjar 12.80 8.30 11.26 7.23

3 Cartosat-2F Chatra 38.04 5.40 27.38 11.75

4 Cartosat-2E Fatehabad 87.68 4.00 88.99 3.11

5 Cartosat-2F Indore 25.55 4.05 27.04 8.85 

6 Cartosat-2E Jalalabad 88.34 3.13 92.92 2.15

7 Cartosat-2E Kishangarh 102.92 4.08 111.56 4.49

8 Cartosat-2E Mukerian 31.41 3.38 25.83 1.48

GEO = geometrically corrected; RAD = radiometrically corrected.

(a)

(b)

Figure 9. Comparison of radial RMSE for GEO and RAD products 
before and after residual attitude correction. GEO = geometrically 
corrected; RAD = radiometrically corrected; RMSE = root-mean-
square error. (a) GEO products. (b) RAD products. 
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is observed that the slopes and offsets of the fitted 
lines are reasonably close to their expected values 
of 1 and 0.

In Table 6, the slope, offset, and R2 of regres-
sion lines for residual roll, pitch, and yaw are 
provided for both approaches. It is clear that R2 
estimates of residual attitude using the proposed 
method are significantly higher than using the 
existing method. In an ideal situation, when the 
GEO and RAD product accuracies are almost the 
same, the R2 value is expected to be greater than 
9. However, the GEO and RAD product accuracies 
are slightly different in our case, and the exact 
reasons for this need to be further investigated. 
Possible causes may include the use of different 
DEMs for RAD and GEO product generation, terrain 
distortions, and sampling- and time-related errors 
(Jiang et al. 2022). Nevertheless, through several 
comparisons it is evident that the proposed method 
is capable of estimating residual attitude more 
reliably and accurately than the existing methods 
in the literature.

Conclusions
In this article, a method for estimating residual 
attitude using georeferenced data products is de-
veloped. The main contributions of the article are 
summarized as follows:
1. Forward and inverse models for residual at-

titude estimation based on GEO products are 

(a) (b) (c)

Figure 10. Pre and post residual attitude bias-corrected location errors for geometrically corrected products at GCPs for test 6 (Jalalabad). GCP = 
ground control point. (a) Original error vectors. (b) Along-track error. (c) Across-track error.

(a) (b) (c)

Figure 11. Pre and post residual attitude bias-corrected location errors for radiometrically corrected products at GCPs for test 6 (Jalalabad). GCP = 
ground control point. (a) Original error vectors. (b) Along-track error. (c) Across-track error.

Table 4. Residual attitude (°) for RAD and GEO products using the old method.

Test
RAD GEO Difference (RAD − GEO)

Roll Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw
1 −0.0005 −0.0034 0.0098 −0.0064 0.0266 0.0330 0.0059 −0.03 −0.0232
2 −0.0011 0.0004 0.0071 0.0082 0.0129 0.0100 −0.0093 −0.0125 −0.0029
3 0.0033 0.0027 0.0920 −0.0920 0.0214 0.0331 0.0953 −0.0187 0.0589
4 0.0035 0.0092 0.0444 0.0003 0.0576 0.0450 0.0032 −0.0484 −0.0006
5 0.0004 0.0028 0.0410 −0.0520 0.0272 0.0209 0.0524 −0.0244 0.0201
6 0.0034 0.0093 −0.0196 −0.0007 −0.0124 −0.0303 0.0041 0.0217 0.0107
7 0.0011 0.0115 −0.0078 0.0185 0.0261 0.0149 −0.0174 −0.0146 −0.0227
8 0.0016 0.0031 −0.0331 0.0026 −0.0007 −0.0031 −0.001 0.0038 −0.03
GEO = geometrically corrected; RAD = radiometrically corrected.

Table 5. Residual attitude (°) for RAD and GEO products using the proposed method.

Test
RAD GEO Difference (RAD − GEO)

Roll Pitch Yaw Roll Pitch Yaw Roll Pitch Yaw
1 −0.0012 −0.0032 −0.0029 −0.0016 −0.0035 −0.0284 0.0004 0.0003 0.0255
2 −0.0011 0.0004 −0.0147 −0.0012 0.0008 −0.0515 0.0001 −0.0004 0.0368
3 0.0039 0.0020 −0.0931 0.0004 0.0029 −0.0476 0.0035 −0.0009 −0.0455
4 0.0052 0.0082 −0.0305 0.0063 0.0086 −0.0536 −0.0011 −0.0004 0.0231
5 0.0009 0.0027 −0.0662 0.00024 0.0029 −0.1115 0.00066 −0.0002 0.0453
6 0.0051 0.0086 0.0282 0.0069 0.0091 0.0281 −0.0018 −0.0005 0.0001
7 0.0032 0.011 0.0141 0.0066 0.0115 0.0111 −0.0034 −0.0005 0.003
8 0.0022 0.0028 0.037 −0.0006 0.0031 0.0126 0.0028 −0.0003 0.0244
GEO = geometrically corrected; RAD = radiometrically corrected.
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Table 6. Slope, offset, and R2 comparison between estimates using the old and proposed approaches.

Rotation
Old Approach Proposed Approach

Slope Offset R2 Slope Offset R2

Roll −5.63 0.01 0.074 1.18 0.00 0.65
Pitch 0.30 0.02 0.005 1.03 0.00 0.99
Yaw 0.41 0.01 0.50 0.82 0.02 0.65

(a) (b) (c)

Figure 12. Comparison of differences in residual attitude between RAD and GEO products using the old and new approaches. GEO = 
geometrically corrected; RAD = radiometrically corrected. (a) Difference in residual roll. (b) Difference in residual pitch. (c) Difference in 
residual yaw.

(a) (b) (c)

Figure 13. Comparison of GEO and RAD residuals using the old approach. GEO = geometrically corrected; RAD = radiometrically corrected. (a) 
GEO and RAD residual roll. (b) GEO and RAD residual pitch. (c) GEO and RAD residual yaw.

(a) (b) (c)

Figure 14. Comparison of GEO and RAD residuals using the proposed approach. GEO = geometrically corrected; RAD = radiometrically corrected. 
(a) GEO and RAD residual roll. (b) GEO and RAD residual pitch. (c) GEO and RAD residual yaw. 
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established. A procedure for estimating the GEO-to-RAD rotation 
angle as a function of latitude based on orbit geometry is presented.

2. The proposed technique is demonstrated on GEO products of 
Cartosat-2S, and it is established that after application of the 
attitude biases, location error declines significantly. Further, the 
validation of our results is carried out by estimating the residual at-
titude for corresponding RAD products using our previous approach 
(Dubey and Kartikeyan 2018).

3. The results obtained by our approach are further compared with 
those of other approaches to residual attitude estimation in the 
literature (Pulsule et al. 2008). The R2 estimates for residual roll, 
pitch, and yaw are 0.074, 0.005, and 0.50, respectively, using the 
old method, and 0.65, 0.99, and 0.65 using the proposed method.
The novelty of the proposed technique lies in the fact that it directly 

deals with widely available GEO (level 2) products for estimating 
residual attitude, which so far in the literature is investigated using 

only RAD (level 1) products. We feel that our proposed technique not 
only enriches our knowledge about residual attitude estimation but also 
is simple to implement in operational practice. Overall, the proposed 
technique has high accuracy and provides higher reliability than the 
existing methods.
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Efficient Building Inventory Extraction from 
Satellite Imagery for Megacities

Edmond Yat-Man Lo, En-Kai Lin, Velautham Daksiya, Kuo-Shih Shao, Yi-Rung Chuang, and Tso-Chien Pan

Abstract
Accurate building inventories are essential for city planning and 
disaster risk management. Traditionally generated via census or 
selected small surveys, these suffer from data quality and/or resolu-
tion. High-resolution satellite imagery with object segmentation 
provides an effective alternative, readily capturing large extents. 
This study develops a highly automated building extraction method-
ology for location-based building exposure data from high (0.5 m) 
resolution satellite stereo imagery. The development relied on Taipei 
test areas covering 13.5 km2 before application to the megacity of 
Jakarta. Of the captured Taipei buildings, 48.8% are at one-to-one 
extraction, improving to 71.9% for larger buildings with total floor 
area >8000 m2, and to 99% when tightly-spaced building clusters 
are further included. Mean absolute error in extracted footprint 
area is 16% for these larger buildings. The extraction parameters 
are tuned for Jakarta buildings using small test areas before cover-
ing Jakarta’s 643 km2 with over 1.247 million buildings extracted.

Introduction
The international disaster event database NatCatSERVICE (2019) 
reported USD $150 billion economic loss worldwide for the year 2018, 
arising from 820 natural hazard events, of which Asia accounts for 50%. 
Reliable estimates of the potential losses need to be developed to sup-
port effective risk management of such loss events, particularly those 
occurring in cities/megacities with consequent large socio-economic 
impacts. This in turn requires accurate descriptions of the exposures 
along with the hazard levels faced (Grossi et al. 2005). Such exposure 
data typically requires spatial maps on assets (e.g., buildings and infra-
structures) at risk of covering their location, size, and other characteris-
tics such as vulnerability, as depending on the hazard faced. Exposure 
maps for individual building location, height, and footprint area, and 
spanning the entire building inventory are needed for overlaying 
with hazard event maps in detailed loss assessment such as for floods 
and earthquakes, the two largest perils by loss magnitude for Asia 
(NatCatSERVICE 2019). However, such data in Asia and Southeast 
Asia is generally poor in quality, accessibility, and availability.

A detailed estimation of building inventory traditionally uses 
census data, conducting of surveys, and/or manual processing of 
satellite/aerial images. While rich in details at an individual building 
level, these are often expensive and time consuming processes, imply-
ing by necessity either coarseness in spatial resolution or in overall 
coverage (Figueiredo and Martina 2016; Silva et al. 2015). Automatic 

building footprint (BFT) extraction from high-resolution satellite and 
aerial imageries are attractive alternatives in terms of data availability, 
acquisition cost, and the ability to cover large geographical extents (De 
Angeli et al. 2016; Gunasekera et al. 2015). However, challenges arise 
from the close proximity of buildings in dense cities, the diversity of 
building forms, and the level of differentiation from other background 
objects (Li et al. 2019). Different approaches are reported (Chen et al. 
2018; Gavankar and Ghosh 2018; Li et al. 2019; Ok 2013; Huang and 
Zhang 2012), with multi-resolution segmentation being the most wide-
ly used (Belgiu and Drǎguţ 2014; Im et al. 2014). More recent studies 
involve deep learning applied to semantic segmentation algorithms (Lu 
et al. 2018; Xu et al. 2018; Sun et al. 2018; Im et al. 2014), though a 
large scale, city-wide application has yet to be reported.

Besides BFT, building height along with spatial location are also 
needed for building exposure development. Use of aerial imagery 
and lidar from low-flying aircraft and/or UAVs for generating Digital 
Surface Models (DSM) and extracting BFT and height have been re-
ported (Haithcoat et al. 2001; Sahar et al. 2010; Awrangjeb et al. 2010; 
Yuan 2018; Lu et al. 2018; Xu et al. 2018; Sun et al. 2018). While such 
imagery offers increased resolution, there are inherent difficulties in 
securing permission to fly over dense, urban areas. It should also be 
noted that global commercial technology companies, e.g., Google have 
developed in-house, proprietary algorithms for extracting BFTs and 
heights from aerial imagery. There have also been recent, major ad-
vances in computer vision, and particularly in image segmentation us-
ing Deep Learning (DL) techniques (recent reviews are given in Garcia-
Garcia et al. (2017) and Minaee et al. (2021)) applied to deep neural 
networks (DNN) (the most popular being convolution neural networks). 
Applications are reported for object detection and classification in both 
urban and nonurban settings (e.g., Zhang and Zhang 2018; Maltezos et 
al. 2019; Zhang et al. 2019). The specific works for building classifica-
tion in urban areas are predominantly based on images from low flying 
platforms such as airborne laser scanning (ALS) or lidar (Maltezos et 
al. 2019) or multi-view images (Yu et al. 2021). Building footprint de-
lineation over large areas (Wei et al. 2020) and building reconstruction 
at Level-of-Detail 1 (LoD-1) for small areas (Zhang and Zhang 2018; 
Yu et al. 2021) has been reported. Most recently (Gui and Qin 2021) 
applied DL techniques on very high resolution multi-view satellite 
images (0.3 to 0.5 m ground sampling distances) and orthophotos to 
achieve up to LoD-2 level of building reconstruction as demonstrated 
for small areas (0.5 to 2.25 km2) in three cities. Optional incorporation 
of the public OpenStreetMap building data further enabled refinement 
in building orientation. Although DL techniques and DNN have exhib-
ited excellent capability for building extraction and reconstruction, its 
performance is highly correlated with the size and diversity of labelled 
training data as appropriate for the city scene. Therefore, building 
footprint and height reconstruction in complex, diverse, and dense city 
scenes using DNN remains an active area of research with a variety of 
data types (e.g., ALS, lidar, multispectral), pre- and post-processing 
strategies (e.g., Gui and Qin 2021), footprint regularization techniques 
(e.g., Wei et al. 2020), and fusion of networks (e.g., Bittner et al. 2018) 
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proposed, with building footprint and height extraction at whole-city 
scale yet to be demonstrated. An accuracy-quantified, low-cost, highly-
automated, and scalable methodology using readily available high-res-
olution satellite imagery for extracting location based BFTs and heights 
as demonstrated here for a megacity have yet to be reported.

In the work here, an efficient, scalable BFT and height extraction 
methodology is developed and piloted over a 27.9 km2 area in Taipei, 
Taiwan and further applied to cover the entire megacity of Jakarta, 
Indonesia covering an area of 643 km2. The recently developed rational 
polynomial coefficient (RPC) stereo processor (RSP) (Qin 2016) for 
DSM generation, and the commercial eCognition software (http://www.
ecognition.com/) for image segmentation are applied on high (0.5 m 
pixel) resolution satellite stereo imagery. Over 1.247 million buildings 
in Jakarta are extracted. It is further shown that only a small fraction of 
the extracted BFT require manual adjustment, typically larger buildings 
as comprising less than 10% of the total building count. This represents 
huge cost and time savings over traditional methods.

The study areas in Taipei and Jakarta along with data used are 
presented in the section “Study Areas and Data”. A description of the 
BFT extraction methodology and performance evaluation are in sec-
tions “Building Footprint and Height Extraction” and “Performance 
Evaluation”. Results from the Taipei pilot area are presented in the 
section “Taipei Test Areas”, while the application to Jakarta presented 
in the section “Jakarta City”, followed by the Conclusion section.

Study Areas and Data
The Taipei 27.9 km2 pilot area is located in downtown Taipei (Figure 
1a), which spans various building types, including residential, com-
mercial, and public buildings. Two test areas comprising 13.52 km2 
within the pilot area are used for building extraction methodology 
development and validation. These two test areas represented different 
building characteristics, with the first test area of 8.43 km2 being in a 
newer part of the city, while the second area of 5.09 km2 is in an older 
part. The test areas include modern, low- to high-rise buildings, and 
important landmarks, such as the Taipei Train Station and the supertall 
101-storey Taipei 101. Parameters in the developed building extrac-
tion methodology are tuned for Jakarta’s building using Jakarta’s two 
test areas comprising 9.80 km2 (Figure 1b), before being applied to the 
whole city covering 643 km2. The tuning is needed due to the differ-
ent building characteristics between Taipei and Jakarta. Jakarta’s test 
areas are chosen from Central (Pusat) Jakarta that covers a variety of 
residential, commercial, and public buildings, and from north (Utara) 
Jakarta to further cover industrial buildings. The tallest building in-
cluded is the 47-storey Menara Astra.

Taipei vector data (TVD) developed by Taipei city government 
in 2010 is available for both Taipei test areas and served as highly 
accurate ground reference data for accuracy assessment. The TVD is 
constructed via stereo-plotting of aerial stereo photos, and is continu-
ally updated by Sinotech Engineering Consultants Inc. The data con-
tains detailed (1/1000 scale) boundaries of surface structures including 
building rooftops in vector format and rooftop height values. Figure 
2 (upper panels) show histograms of the 13,208 TVD buildings’ BFT 
areas and heights over the test areas. Only footprint areas >50 m2 are 
considered, as Taipei government regulations deem land plots ≤67 m2 
as nonbuildable. The first and second test areas have 6745 and 6459 
buildings, respectively, with most having BFT areas ≤2000 m2.

Similar ground reference data did not exist for Jakarta. Therefore, 
satellite images are manually stereo-plotted to extract accurate indi-
vidual building BFT and height for use as ground reference data. The 
accuracy of the manual extraction was confirmed by two independent 
polygon extractions done on a small subset of 114 buildings (BFT areas 
up to 4200 m2) with the mean absolute difference in extracted BFT 
areas being <5%. The ground reference set has 11,626 buildings with 
BFT areas mostly ≤2000 m2 as in Taipei but with the peak shifted to 
smaller BFT values (Figure 2, lower panels). Most of the buildings are 
also lower, ≤3 stories.

Regarding sources of satellite stereo images, images from 
WorldView series, GeoEye-1, QuickBird, Pleiades 1A/1B series, 
KOMPSAT-3A/3A, CARTOSAT, and DMC3/Triple Sat were evaluated 
for suitability. The Pleiades 1A/1B series were chosen as it allowed 
tight stereo angle specifications, providing ortho-rectified color data at 
0.5 m resolution with high revisit interval of ~two days over Southeast 

(a)

(b)

Figure 1. Study areas comprising (a) Taipei pilot area and (b) Jakarta 
city with its five regions. Test areas are indicated in red.

Figure 2. Distribution of building footprint (BFT) area and building 
height in ground reference data for test areas of Taipei (upper panels) 
and Jakarta (lower panels). An inter-story height of 3.45 m was used 
to covert height values to stories.
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Asia. A tight stereo angle control was needed to capture tall buildings, 
while a high revisit rate allowed for cloud/mist free images even in 
wet, tropical regions, such as that for Jakarta. However, it should be 
noted that with the rapid advances in commercial satellite imaging, 
other satellite imagery that meet or exceed these requirements can 
equally be used.

Building Footprint and Height Extraction
Figure 3 shows a schematic of the BFT extraction methodology. A high 
degree of automation was achieved via use of RSP, eCognition and 
Geographical Information System (GIS) software, augmented with in-
ternally developed software. For DSM generation, the recently available 
RSP software shown to be particularly suited for use with large scale 
satellite stereo images (Qin 2016), and the more conventional SOCET 
GXP (GXP) are assessed with improved results using RSP obtained. In 
particular, DSM generation in RSP was performed by applying aerial 
triangulation, referring to ground control points and image matching.

The BFT shape extraction comprise automated segmentation 
with edge regularization along with a manual adjustment on a small 
percentage of extracted polygons (Figure 3). The segmentation and 
regularization procedures followed that of Kuo et al. (2018) and Su et 
al. (2015). Segmentation was applied only on preprocessed, built-up 
areas with roads and vegetation surfaces removed. Road surfaces were 
defined using road vectors from Open Street Map (OSM), with a road 
buffer width ranging from 1 m (small alleys) to 60 m (arterial road) 
applied as depending on the road type. Vegetation areas were classi-
fied using a Normalized Difference Vegetation Index (NDVI) (Huete 
et al. 2002), which is a normalized ratio of near infrared (IR) and red 
bands. Here a calibrated cut-off NDVI value of 0.25 was applied. The 
eCognition software was used for image segmentation on an Object 
Height Model (OHM), being the difference between DSM and DEM, for 
high-rise building, and on ortho-rectified images for low-rise buildings, 
following the segmentation algorithm of Baatz and Schäpe (2000). 
The first segmentation was exercised on an edge-preserving Kuwahara 
filtered (sharpened) OHM covering the built-up area following a 

Figure 3. Building footprint (BFT) shape and height extraction methodology flow chart. Parameters, unless separately indicated for Jakarta, are 
same for Taipei and Jakarta.
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building categorization based elevation values (see Figure 3). Regions 
with high elevations corresponded to larger building objects, which 
necessitated a larger scale parameter. For low elevation buildings, use 
of OHM consistently produced over-segmentation with many small 
objects identified. Rather segmentation on ortho-rectified color images 
produced satisfactory results for the low elevation buildings. Since the 
segmentation was based roof top elevations (high- and mid-elevation 
regions) and roof top features (low elevation region), the segmented 
objects were found to be sensitive to smaller roof top structures such as 
lift shafts, water tanks, or in the case of low residential buildings, small 
(often illegal) roof top additions. As these roof top features did not 
signify distinct buildings, adjacent polygons in mid- and low-elevation 
regions are merged if the height difference is less than 1.5 m. Polygons 
with BFT area ≤50 m2 (nonbuildable land lots) or height ≤2 m (i.e., 
nonbuilding objects of low height) were also removed.

The regularization step following Kuo et al. (2018) is to partially 
correct for jagged lines in the segmented polygon shapes, remov-
ing/merging small, extraneous extracted polygons, and straightening 
of polygon edges. In dense urban areas such as Taipei and Jakarta, 
many buildings are connected to each other and edges between such 
adjacent buildings would share the same geometry. These shared edges 
were simplified and regularized simultaneously to retain the shared 
edge. A small percentage of the polygons required manual adjustment 
on footprints by cross-comparison with Google maps and Google 
Streetview. Manual polishing is conducted on larger size buildings as 
defined by total floor area (TFA) being ≥8000 m2 for Taipei and ≥2500 
m2 for Jakarta. This comprised less than 10% total number of buildings 
and indeed this 10% value was used as a guide in setting the TFA cutoff 
values for the city-specific larger buildings and thus, the manual effort 
required. After BFT shape extraction, building height was determined 
by averaging the OHM values within the extracted polygon shape with 
allowance of a boundary buffer and removal of outliers. In setting 
the TFA, an inter-story height of 3.45 m representing an average story 
height (residential 3.3 m and commercial 3.6 m) in Taipei and Jakarta 
is used for converting extracted building height to number of stories, 
which when multiplied by the BFT area gives the TFA.

The extraction methodology development involved a trial-and-error 
process as guided by a comparison of the extracted building polygons 
with the ground reference TVD data from Taipei first test area and using 
Taipei second test area as verification. The parameters of the extraction 
methodology are expected to have values for Jakarta different from 
Taipei’s due to their different building characteristics (see Figure 2). 
These are tuned as guided by results from the Jakarta test areas. The 
notable differences are: <9 m building height is defined as low rise 
buildings in Jakarta while <12 m is used for Taipei. The segmentation 
scale for middle and low rise are, respectively, 40 and 80 for Jakarta, 
while they are 30 and 50 for Taipei. All processing unless otherwise 
indicated, are done within an ArcGIS environment. The most time inten-
sive step is in the manual polishing performed on the small number of 
large, extracted building polygons. This required a modest 40 man-
weeks (four summer interns were deployed) to cover whole Jakarta 
spanning 643 km2.

Performance Evaluation
The detected building polygon areas are first assessed for an overall 
building area detection performance via standard metrics of True 
Positive/Negative (TP/TN) and False Positive/Negative (FP/FN). Here 
TP/TN denote areas correctly classified as spanning buildings/non-
building areas, FP denotes area incorrectly classified as building area, 
and FN as area incorrectly classified as nonbuilding area. From these, 
quality metrics of quality percentage (QP), detection rate (DR), and 
overall accuracy (OA) are computed. QP accounts for both bound-
ary delineation accuracy and building detection rate, DR denotes the 
percentage building area correctly detected, and OA the percentage of 
building and non-building areas correctly detected.

  
(1)

However, beyond such metrics on overall building area being ac-
curately detected, the individually extracted buildings (or polygons) do 
not necessarily have one-to-one match with the actual, with a common 
challenge of closely spaced buildings being extracted as one building 
in dense urban settings. This necessitated a more detailed object-level 
accuracy assessment, as achieved here by categorizing the extracted 
polygons into five cases below:
• Case 1 (extraneous): An extraneous polygon when the centroid 

of the extracted polygon does not fall within the boundary of any 
ground reference polygon.

• Case 2 (one-to-one): One-to-one (desired) match between an ex-
tracted polygon and a ground reference polygon. Here the centroids 
of extracted polygon and ground reference polygon fall within the 
boundaries of each other.

• Case 3 (one-to-many): The extracted polygon enclosed several 
ground reference polygons as defined by the centroids of the ground 
reference polygons falling within the boundary of the extracted 
polygon.

• Case 4 (many-to-one): Multiple polygons are extracted from one 
single ground reference polygon, and the boundary of the ground 
reference polygon encompasses the centroids of several extracted 
polygons.

• Case 5 (missed): Polygon missed in extraction.
Case 3 occurs when a cluster of tightly spaced ground reference 

buildings of similar height and inseparable from aerial views are 
grouped together in the extracted polygon (see Figure 4a). This often 
happens in dense urban settings with a prevalence of rows of tightly-
spaced, inseparable buildings. Case 4 corresponds to buildings with 
complex roof top configurations or features resulting in multiple poly-
gons being extracted within a single ground reference polygon (Figure 
4b). As such, a count accuracy analysis across the five cases is first 
performed before an accuracy evaluation on the values of extracted 
BFT area and height. The analysis is performed separately for Taipei 
first test area (used for methodology development, i.e., a calibration) 
and tested independently over the second test area (i.e., a verification).

Results and Discussion
DSM generation using RSP and the more conventional GXP were first 
quantitatively compared for the Taipei test areas. Building rooftop 
elevations from TVD (subset of 125 buildings) are used to determine 
convergence angle requirements in the satellite stereo imagery needed 
for capturing tall buildings. The 125 TVD elevation values ranged up 
to 174 m, with a further value at 391 m corresponding to the super tall 
Taipei 101. Building rooftop elevation values calculated using RSP are 
more accurate than using GXP with regions of higher elevation having 
better delineation. Over 92% of the 125 buildings have elevation error 
<3 m at 14° convergence angle, this improving to 94% at 10°. The sole 
exception is Taipei 101, where RSP significantly underestimated and 
GXP even more so. The subsequent images used below for Jakarta are 
at 12° convergence angle. For OHM generation, a DEM was derived by 
sampling the RSP generated DSM ground points in free space such as 
parks and roads. A total of 432 ground points within and around the 
Taipei test areas are interpolated for DEM generation.

Figure 5 shows the extracted BFT polygons for the Taipei and 
Jakarta test areas. QP, DR, and OA values for Taipei first test area 
are 71.4%, 83.9%, and 87.5%, respectively, and 73.6%, 85.6%, and 
86.8%, respectively, for the second test area. These values are within 
reported ranges for building detection applications from satellite 
imagery (Hermosilla et al. 2011; Ghandour and Jezzini 2018; Jin and 
Davis 2005; Lee et al. 2003), though higher ranges are reported by 
Khoshelham et al. (2010) who used multi-source (including lidar) data. 
The QP, DR, and OA values are 79.3%, 88.3%, and 91.4%, for the 
Jakarta test areas, slightly better than Taipei’s.
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(a)

(b)

Figure 4. Buildings categorized as (a) Case 3: unseparated buildings due to small separation and small difference in roof height and (b) Case 4: 
over-segmented due to various rooftop structures. Examples shown are from Taipei test areas.

(a) Extracted BFT - Taipei 1st test area (b) Extracted BFT - Taipei 2nd test area

 
(c) Extracted BFT – Jakarta test areas

Figure 5. Samples of extracted building footprint (BFT) from Taipei and Jakarta test areas.
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Taipei Test Areas
The number of building polygons falling in each Case 1 to 5 are shown 
in Table 1 for Taipei’s two test areas individually and combined. 
Focusing on the first test (calibration) area, 46.9% of the extracted 
polygons have a one-to–one (Case 2, ideal) extraction, while Cases 
2 and 3 combined totals 67.0%. For estimating total building value 
exposed to hazards, Cases 3 and 4 as representing dense building 
clusters would also be considered as correct extraction. This is because 
Case 3 has one extracted building (polygon) encompassing several 
tightly-spaced, i.e., essentially inseparable buildings that would be 
very similar in height and in structural characteristics, and therefore in 
building exposure and vulnerability characteristics. This also applies 
for Case 4 where several extracted building polygons with very similar 
characteristics collectively represent one actual building. With this, 
the combined polygons over Cases 2, 3, and 4 comprise 95.07% of the 
extracted. Only a small percentage at 4.93% are in Case 1 (extraneous) 
polygons. It is noted these percentage counts are based on the total ex-
tracted polygon count (i.e., Sum Cases 1 to 4). The number of missed 
polygons (Case 5) is 713, i.e. 13.5% relative to the total number of 
extracted polygons. Similar extraction performance is seen for Taipei 
second test (verification) area. The extracted have 50.7% one-on–one 
(Case 2), and 95.3% in combined Cases 2, 3, and 4, with only a small 
4.71% Case 1 (extraneous polygon). The number of missed polygons 
(Case 5) is 440, i.e., 8.5% relative to the total number extracted.

The extraction performance, particularly Case 2, is improved for 
the larger TFA building polygons (Table 1). For building TFA >4000 m2, 
Case 2 extraction is slightly improved at 51.8% from 48.8% for the 
combined Taipei test areas and improving significantly to 71.9% for 
TFA >8000 m2. Thus, progressively more of the larger buildings, and 
thus building values exposed to hazards, are extracted on one-to-one 
basis. The percentage in extracted Cases 3 and 4 (i.e., building clusters) 
is essentially unchanged for TFA >4000 m2, but notably reduced for TFA 
>8000 m2 at 27.4%. Greater than 99% accuracy over combined Cases 2 
to 4 is achieved for the larger buildings with TFA >4000 m2 and >8000 
m2 (Table 1); this also holds for the individual test areas (not shown).

The percentage distribution of building polygon counts across 
Cases 1–5 and cumulative for Taipei’s combined test areas are plotted 
in TFA bins (Figure 6). It is evident that Case 2 (one-to-one) extraction 
(red bars) becomes dominant at larger building TFA bins. In contrast, 

Case 1’s 506 extraneous polygons (Table 1) and Case 5’s 1153 missed 
polygons were mostly confined to buildings with small TFA of <1000 
m2. This again indicates that the larger buildings are better extracted. 
Successfully capturing such large buildings is key towards capturing 
the city’s entire built-up TFA, and thus a city’s inventory of building 
values and exposure. Thus Figure 6 shows that the larger TFA>8000 m2 
buildings contributing 43% of the test areas’ cumulative TFA.

Detailed error analysis on extracted BFT area and height values 
are next discussed considering Cases 2, 3, and 4 individually, and 
covering Taipei first (calibration) and second (verification) test area 
separately. Table 2 summarizes the BFT area error, dA, for all buildings 
and building with large TFA >4000 m2 and >8000 m2. The results show 
that 67–74% of all buildings in Cases 2 and 3 had error abs(dA) <30% 
across the two test areas. In this error calculation, Case 3 used the total 
BFT areas of the encompassed ground truth (TVD) buildings as these 
are corresponded to tightly-spaced, inseparable buildings. As expected, 
there is a significant improvement for the larger TFA buildings where 
71–89% in Cases 2 and 3 has abs(dA) <30% for building with TFA 
>4000 m2, and >92% for TFA >8000 m2. By comparison, the errors for 

Table 1. Count Analysis across Cases 1 to 5 building polygons for Taipei and Jakarta test areas. Percentage numbers in parentheses are based on 
number of extracted polygons (sum Cases 1 to 4).

Case

Taipei Jakarta Test Area 
First Test 

Area 
(Calibration)

Second 
Test Area 

(Verification)

Combined Test Areas

All
TFA 

>4000 m2
TFA 

>8000 m2All TFA >4000 m2 TFA >8000 m2

1 (extraneous), n (%) 261 (4.93) 245 (4.71) 506 (4.82) 24 (0.96) 6 (0.75) 642 (6.49) 3 (0.53) 1 (0.28)
2 (one-to-one), n (%) 2485 (46.9) 2635 (50.7) 5120 (48.8) 1301 (51.8) 577 (71.9) 4851 (49.0) 481 (85.1) 299 (84.2)
3 (one to many), n (%) 1065 (20.1) 928 (17.9) 1993 (19.0) 834 (33.2) 145 (18.1) 1793 (18.1) 61 (10.8) 46 (13.0)
4 (many to one), n (%) 1483 (28.0) 1390 (26.7) 2873 (27.4) 352 (14.0) 75 (9.3) 2606 (26.3) 20 (3.5) 9 (2.5)
5 (missed) [713] [440] [1153] [23] [12] [1043] [8] [1]

Total Extracted (Sum Cases 1 to 4) 5294 5198 10,492 2511 803 9892 565 355
Sum Cases 2 to 4/Total Extracted (%) 95 95.3 95.2 99.0 99.3 93.4 99.5 99.7
TFA = total floor area.

Table 2. Count and percentage of buildings in Taipei test areas with building footprint error abs(dA) < 20% and < 30%.

Case

Taipei First Test Area Taipei Second Test Area
All buildings TFA >4000 m2 TFA >8000 m2 All buildings TFA >4000 m2 TFA >8000 m2

Count % Count % Count % Count % Count % Count %

Case 2
abs(dA) < 20% 1345/2485 54 600/783 77 330/376 88 1493/2635 57 376/518 73 160/201 80
abs(dA) < 30% 1672/2485 67 678/783 87 356/376 95 1864/2635 71 459/518 89 188/201 94

Case 3
abs(dA) < 20% 580/1065 54 274/505 54 92/118 78 514/928 55 185/329 56 14/27 89
abs(dA) < 30% 759/1065 71 359/505 71 108/118 92 685/928 74 244/329 74 27/27 100

Case 4
abs(dA) < 20% 121/1483 8 47/230 20 8/40 20 114/1390 8 23/122 19 6/35 17
abs(dA) < 30% 204/1483 14 69/230 30 11/40 28 176/1390 13 36/122 30 7/35 20

TFA = total floor area.

Figure 6. Building count (%) over Cases 1–5 with buildings grouped 
in total floor area (TFA) bins for combined Taipei test areas. Upper 
horizontal axis indicates number of buildings in each TFA bin. Solid 
blue line and right vertical axis indicates the cumulative TFA (%) 
spanned over the test areas.
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Case 4 buildings are much larger, as expected, since the one extracted 
polygon encompassed several TVD polygons, but only one TVD poly-
gon was matched with the extracted for the dA error calculation.

Table 3 shows the errors dH in the extracted building heights. For 
Taipei first (calibration) test area, 91% and 94% of all buildings in 
Case 2 and 3, respectively had abs(dH) <3 m and with the accuracy 
being essentially unchanged for the larger TFA buildings, whilst 81% 
of all buildings in Case 4 had abs(dH) <3 m. The height accuracy for 
the second (verification) test area was less by comparison, which was 
attributed to the TVD height values being less accurate due to this area 
being in an older part of Taipei with older TVD.

The Mean Absolute Errors (MAE) for BFT area, height, and TFA are 
listed in Table 4 for the combined Taipei test areas. Results at four 
TFA ranges are shown, comprising all TFA values, TFA ≤4000 m2, TFA 
between 4000 m2–8000 m2, and TFA >8000 m2. While the MAE values 
on both BFT area and TFA over all buildings (all TFA values) are high 
at 37%–40%, the values are much reduced for buildings with TFA 
between 4000–8000 m2 and TFA >8,000 m2, with the MAE in TFA being 
at 29% and 17%, respectively.

The scalability of the building extraction algorithm is next dem-
onstrated by applying the extraction framework to the full Taipei pilot 
area of 27.9 km2 (see Figure 7a). In total, 20,597 building polygons 
are extracted, of which 2355 are with large BFT area (>1000 m2) and 
1957 have height >10 floors. Also 47% (i.e., almost half) of the entire 
TFA over the pilot area is contributed by the larger buildings (TFA 
>8000 m2); these buildings comprise only 9% of total building count. 
Furthermore, these buildings are expected to have small MAE as their 
extracted BFT area, height, and TFA (Table 4).

Jakarta City
The full scalability of the building extraction is demonstrated for 
the megacity of Jakarta covering an area of 643 km2. The extrac-
tion algorithm parameters are first tuned using the Jakarta test areas’ 
ground reference to account for building characteristics being different 
from Taipei’s. The earlier Table 1 also shows the number of extracted 
building polygons from Jakarta test areas as falling into Cases 1 to 
5. Compared to the Taipei test areas, the algorithm had comparable 
performance in Case 2 (one-to-one) extraction, and with a better 
improvement for the larger TFA buildings at 84%–85% extraction, with 
the percentages for Cases 3 and 4 correspondingly reduced. Case 1 ex-
traneous and Case 5 missed polygons remain small as with Taipei’s test 

areas. Figure 8 plots the percentage distribution of building polygons 
counts across Cases 1–5 and cumulative for Jakarta’s combined test 
areas against TFA bins (i.e., as shown earlier in Figure 6 for Taipei test 
areas). As with the Taipei test area results, Case 2 (one-to-one) extrac-
tion becomes dominant at large TFA bins, while Case 1 (extraneous) 
polygons and Case 5 missed polygons are mostly confined to small TFA 
bins. Similarly, the larger building contributed disproportionally to the 
cumulative TFA, e.g., building with TFA >4000 m2 contributed 70.5% of 
Jakarta’s test areas cumulative TFA.

In terms of dA errors on BFT area, 52.4% of all buildings are 
extracted with abs(dA) < 30%, and further improved for larger TFA 
(>4000 m2) buildings at 92.9%. The error in building height dH has 
75.7% of extracted buildings having abs(dH) < 3 m, and 75.4% (i.e., 
essentially unchanged) for the larger TFA (>4000 m2) buildings. The 
MAE values (Table 4) are comparable to that achieved for Taipei test 
areas, and better for the larger TFA buildings.

The algorithm extracted over 1.247 million buildings for the 
megacity of Jakarta (Figure 7b). Extracted BFT area, height, and TFA 
statistics are shown in Figure 9. Jakarta’s buildings largely are low 
rise with 59% (32%) of the buildings are at one (two) story (Figure 
9a), and only 1744 buildings having >10 stories. 78% of the buildings 
have BFT areas of 50–300 m2, while only 13,302 buildings have BFT 
>1000 m2 area (Figure 9b). Small TFA <4000 m2 buildings contributes 
to 76% of Jakarta’s entire TFA (Figure 9c), this representing 99% of 
the total number of buildings, whilst large buildings of TFA >8000 m2 
contributes 18% of Jakarta’s entire TFA, i.e., a smaller percentage when 
compared to the Jakarta (also Taipei) test areas. This is because these 
test areas, being in their respective downtown core, are more populated 
with high-rise and large footprint buildings.

Conclusion
The work demonstrates a highly efficient and automated BFT and 
height extraction methodology using high-resolution satellite stereo 
images and off-the-shelf software, with an application to the megacity 
of Jakarta. The methodology is developed using small Taipei test areas 
where accurate ground reference TVD is available. Differences in build-
ing characteristics between the two cities are accounted for via tuning 
of algorithm parameters using small Jakarta test areas.

The results on extracted buildings are analyzed over the test areas, 
both on the extraction count over buildings, which can be closely 

Table 3. Count and percentage of buildings in Taipei test areas with height error abs(dH) < 2 m and < 3 m.

Case

Taipei First Test Area Taipei Second Test Area

All buildings TFA >4000 m2 TFA >8000 m2 All buildings TFA >4000 m2 TFA >8000 m2

Count % Count % Count % Count % Count % Count %

Case 2 abs(dH) < 2 m 2113/2485 85 675/783 86 316/376 84 1703/2635 65 312/518 60 101/201 50

abs(dH) < 3 m 2263/2485 91 699/783 89 331/376 88 2116/2635 80 371/518 72 126/201 63

Case 3 abs(dH) < 2 m 959/1065 90 457/505 90 99/118 84 729/928 79 269/329 82 23/27 85

abs(dH) < 3 m 1001/1065 94 473/505 94 104/118 88 832/928 90 299/329 91 24/27 89

Case 4 abs(dH) < 2 m 1045/1483 70 187/230 81 26/40 65 817/1390 59 62/122 51 14/35 40

abs(dH) < 3 m 1201/1483 81 199/230 87 28/40 70 996/1390 72 76/122 62 18/35 51

TFA = total floor area.

Table 4. Mean Absolute Errors (MAE) (%) in building footprint (BFA), height, and total floor area (TFA) for buildings in the combined test areas 
of Taipei. 

Parameter

Taipei Jakarta

All TFA 
buildings TFA ≤4000 m2

TFA:  
4000–8000 m2 TFA >8000 m2

All TFA 
buildings TFA ≤4000 m2

TFA:  
4000–8000 m2 TFA >8000 m2

BFT MAE 37 42 27 16 37 39 9 8

Height MAE 12 14 8 7 28 29 14 8

TFA MAE 40 45 29 17 48 49 20 15
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spaced in dense urban areas, and on errors in the extracted BFT area, 
height, and TFA. It is shown that buildings captured in Taipei test areas 
are at one-to-one (Case 2) extraction for 48.8% of the captured build-
ings, improving to 71.9% for larger buildings with TFA >8000 m2, and 
further reaches 99% accuracy when closely-spaced, inseparable build-
ing clusters of similar height and structural characteristics are included, 
as appropriate for building exposure development. Extraneous and 
missed building were small in number, and notably are largely con-
fined to small TFA buildings. The MAE in BFT area, while being at 37% 
over all captured buildings, reduced significantly to 27% for larger TFA 
buildings (TFA between 4000–8000 m2), and to 16% for buildings with 

TFA >8000 m2. Similar extraction performance and accuracies hold 
for the Jakarta test areas. It is also shown that the larger TFA build-
ings, while small in count number, contributes disproportionally to the 
cumulative TFA for both Taipei and Jakarta test areas, e.g., Jakarta’s 
test areas located in the downtown core have buildings with TFA >4000 
m2 contributing to 70.5% of the cumulative TFA, whilst over the entire 
Jakarta of 643 km2, such buildings with >4000 m2 TFA contributes 24% 
of the cumulative TFA.

The analyses indicate that the extraction methodology is effective, 
even for megacities, accurately capturing building inventory covering 
areas and heights via readily available satellite imagery. This provides 

(a)

(b)

Figure 7. Building polygons extracted from (a) Taipei 27.9 km2 pilot area and (b) Jakarta over 643 km2. Solid blue lines in upper left inset 
indicate the full areal extent covered, and solid red lines show the areal extent of an expanded two-dimensional view with further detailed three-
dimensional views shown in the left panels at locations indicated by the red arrows.
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a cost-effective, readily deployable option for quantifying city-wide 
building inventory needed in city planning, and for risk analysis under 
hazards. It would therefore find use in national and regional govern-
ment units involved in disaster planning and management. Lastly, the 
extraction methodology can readily take advantage of increasingly 
more accurate satellite imagery or aerial/UAV images as they become 
available.
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A Semi-Supervised Learning Method for 
Hyperspectral-Image Open Set Classification

Zhaolin Duan, Hao Chen, Xiaohua Li, Jiliu Zhou, and Yuan Wang

Abstract
We present a conceptually simple and flexible method for hyperspectral-
image open set classification. Unlike previous methods, where the 
abundant unlabeled data inherent in the data set are ignored completely 
and unknown classes are inferred using score post-calibration, our 
approach makes the unlabeled data join in and help to train a simple 
and practical model for open set classification. The model is able to 
provide an explicit decision score for both unknown classes and each 
known class. The main idea of the proposed method is augmenting 
the original training set of K known classes using the pseudo-labeled 
unknown-category samples that are detected elaborately from the 
unlabeled data using modified OpenMax and semi-supervised itera-
tive learning. Then a (K + 1)-class deep convolutional neural network 
model is trained based on the augmented training set with (K + 1) 
class samples. The model can not only classify instances of each known 
class but also refuse instances of unknown class explicitly. We vali-
dated the proposed method on four well-known hyperspectral-image 
data sets, obtaining superior performance over previous methods.

Introduction
A hyperspectral image (HSI) consists of hundreds of narrow contig-
uous-wavelength bands carrying a wealth of spectral information. 
Taking advantage of the rich spectral information, hyperspectral data 
are extremely useful in a wide range of applications in remote sensing, 
such as urban monitoring (Fauvel et al. 2008), agriculture (Lanthier 
et al. 2008), change or target detection (Mercier and Girard-Ardhuin 
2006; Bovolo 2009). Hyperspectral-image classification, which assigns 
each pixel to one certain category based on its characteristics, is the 
most vibrant field of research in the hyperspectral community and has 
drawn broad attention in the remote sensing field (S. Li et al. 2019).

Hyperspectral-image classification (HSIC) methods can be divided 
into those based on spectral features and those based on spectral-spatial 
features, according to the input information used. In early research 
attempts, the spectral vector of the pixel was intuitively used for classi-
fication to take advantage of abundant spectral bands (Jia and Richards 
1994; Murat Dundar and Landgrebe 2002; Bazi and Melgani 2006; J. 
Li et al. 2010). With the development of imaging technology, hyper-
spectral sensors can provide higher spatial resolution. As a result, de-
tailed spatial information has become available. It has been found that 
spectral-spatial-based methods can provide good improvement in terms 
of classification accuracy (He et al. 2018). More and more spectral-
spatial feature-based classification frameworks have been developed 
(Benediktsson et al. 2005; Camps-Valls et al. 2006), which incorporate 
the spatial contextual information into pixel-wise classifiers.

Recently, deep convolutional neural networks (DCNNs) have begun 
to dominate the classification of hyperspectral images, and manual 

feature engineering has been replaced by automatic deep learning, such 
as with 3D-CNN (Y. Chen et al. 2016), CNN-PPF (W. Li et al. 2017), and 
DFFN (Song et al. 2018). Now, HSIC has entered a stage of 99% classifi-
cation accuracy (Zhong et al. 2018; Paoletti et al. 2019). However, this 
high accuracy is achieved under the closed set assumption, in which 
the classes of all test samples are seen in training time. However, the 
closed set assumption is easily violated in HSIC, where collecting all 
possible classes for training is almost impossible. Due to budget limits, 
sample collection based on a field survey usually covers only a small 
portion of the study area, and only finite classes of interest are anno-
tated (H. Chen et al. 2021). Classifiers with the closed set assumption 
are prone to errors with samples of unknown classes not of interest, 
and this limits their usability in HSIC. For example, if a closed set clas-
sifier is used to map certain crop types in a real HSI that contains other 
unknown land covers, it will inevitably overestimate crop area and 
therefore the total amount of food supplies.

In contrast, open set classification (OSC) assumes that for those test 
instances that do not belong to any known classes (seen by the clas-
sification model in training stage), the classifier must correctly identify 
them as an extra unknown class, as opposed to incorrectly classifying 
them as one of the known classes. Multi-class open set classification 
is challenging because it requires correct probability estimation of all 
known classes together with simultaneous precise refusal of unknown 
classes. To tackle this challenge, a number of approaches have been 
proposed for everyday images (Scheirer et al. 2013, 2014; Jain et al. 
2014; Bendale and Boult 2016; Ge et al. 2017; Yoshihashi et al. 2019). 
However, for HSI this research is just getting started. Only a few at-
tempts have been made. Y. Liu et al. (2020) directly used OpenMax 
(Bendale and Boult 2016) for open set HSIC. S. Liu et al. (2021) argued 
that the existing centroid-based method for everyday images was not 
suitable for few-shot HSIC, and proposed a multi-task deep-learning 
method based on the idea that the unknown should be poorly recon-
structed using the classification feature.

In addition to few-shot mentioned by S. Liu et al. (2021), there 
are other notable differences between hyperspectral-image classifica-
tion and everyday-image classification. First, the spatial resolution of 
hyperspectral images is much lower than that of everyday images, as 
hyperspectral images are remote sensing whereas everyday images are 
sensing at close range. For example, the India Pines data set, one of the 
most popular hyperspectral benchmarks, records 16 land cover classes 
in a region of 4350×4350 m2 with a 30-m ground sampling distance. As 
a direct result of low spatial resolution, not all pixels in a hyperspectral 
image can be annotated with an explicit label. In this article, we borrow 
the term in the HSI unmixing task and divide the pixels of an HSI into 
two categories: pure and mixed; we deem only pure pixels suitable as 
examples for training a classification model. Second, there are more 
unlabeled than labeled pixels in the existing HSI data sets; for example, 
the Pavia University data set consists of 42 776 labeled pixels and 164 
624 unlabeled pixels. These unlabeled pixels are ignored completely 
in existing HSIC work. Does that mean that unlabeled data are use-
less for classification tasks? Certainly not! In this article, we will use 
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them to help train the HSI open set classification model. Based on these 
two notable differences between hyperspectral-image classification 
and everyday-image recognition (low spatial resolution and abun-
dant unlabeled pixels), we present a novel HSI open set classification 
method based on semi-supervised learning. As shown in Figure 1b, the 
proposed approach focuses on finding unknown-class examples from 
the inherent unlabeled data and then mixing them with original samples 
with explicit labels to create an augmented training set. After that, a 
standard (K + 1)-class DCNN is trained for HSI open set classification.

The existing framework, as shown in Figure 1a, trains a K-class deep 
convolutional neural network model (DCNNK) model, fits a group of out-
lier distribution functions at the training stage, and calibrates the K-score 
to a (K + 1)-score for open set HSIC at the prediction stage. In contrast, in 
our framework (Figure 1b), the K-class training set is augmented to a  
(K + 1)-class set in advance by a semi-supervised learning method, and 
a (K + 1)-class deep convolutional neural network (DCNNK+1) model is 
trained, which is used directly for open set HSIC at the prediction stage.

The contributions of this article are as follows:
1. A novel framework is proposed to tackle the challenge of HSI 

classification in open sets. Different from existing framework, 
which convert open set classification into a posterior probability 
calibration task based on the extreme value theory, the proposed 
framework directly trains a (K + 1)-class DCNN model for open set 
classification based on semi-supervised learning.

2. We let the unlabeled data join in the model training, leading to a 
simple and effective open set classification model for HSI.

3. A data-augmentation method based on semi-supervised learning is 
presented, in which OpenMax (Bendale and Boult 2016) is imple-
mented iteratively to pseudo-label the samples in the unlabeled data 
and then an augmented training set is created by combining the 
pseudo-labeled samples with the original samples with true labels.

4. Comprehensive experiments are conducted on four typical HSI data 
sets to evaluate the effectiveness of the proposed method.

Related Work
Open Set Classification
In closed set classification tasks, researchers assume that they have 
samples from all possible classes (Scheirer et al. 2013). However, in 
practice, enumerating and labeling all classes is impossible; deal-
ing with instances that do not belong to the labeled known classes is 

inevitable in the prediction stage. This is the problem OSC is faced with 
(Scheirer et al. 2013).

OSC can be described as follows: there is a labeled training set A 
and a test set B. The training set A consists of labeled examples of 
K known classes, and the test set B contains M (>K) classes which 
include instances of one or more unknown classes in addition to the 
instances of K known classes. OSC requires a solution which can 
identify each known class accurately while simultaneously rejecting 
the unknown classes correctly instead of assigning any such instance 
to one of the K known classes. This means we can pose the open set 
classification problem as a classification of K +1 classes, where all 
instances of the M − K unknown classes must be assigned to one ad-
ditional class.

To tackle the challenge, a number of approaches have proposed. 
Early attempts involved adapting closed set classifiers based on sup-
port vector machines (SVM). Scheirer et al. (2013) proposed the 1-vs-
Set Machine, which detects an unknown class by exploiting a decision 
space from the marginal distances of a binary SVM classifier. Later, 
Scheirer et al. (2014) proposed a compact abating probability model 
that extended the 1-vs-Set Machine to a nonlinear Weibull-calibrated 
SVM (W-SVM) for a multi-class open set scenario. Meanwhile, a few 
works have explored non-closed set methods for open set tasks. Jain 
et al. (2014), based on statistical extreme value theory, used a Weibull 
distribution to model the posterior probability of inclusion for each 
known class and classified an example as having unknown class if the 
probability was below a rejection threshold.

The origin of deep open set classifiers was OpenMax (Bendale and 
Boult 2016). Since then, a few deep open set classifiers have been re-
ported. G-OpenMax (Ge et al. 2017), a direct extension of OpenMax, 
trains a network with synthesized unknown data by using genera-
tive models. However, it cannot be applied to multi-channel images 
other than handwritten characters, due to the difficulty of generative 
modeling. CROSR (Classification-Reconstruction learning for Open-Set 
Recognition; Yoshihashi et al. 2019), another extension of OpenMax, 
uses latent representations for reconstruction to enhance detection of 
unknowns. Recently, MDL4OW (S. Liu et al. 2021), which is designed 
for few-shot HSI classification following CROSR’s classification and 
reconstruction joint learning paradigm, used the reconstruction error of 
whole training data to fit the distribution function of outliers. Among 
these methods, G-OpenMax share with ours the idea of training a 
(K + 1)-class classifier. The difference is that our approach finds 

Figure 1. Overview of existing methods and our deep frameworks for HSI open-set classification. (a) Existing deep HSI open set classification 
(OpenMax, MDL4OWs); (b) Semi-Supervised Learning for HSI Open-Set Classification (SSLOSC). HSI = hyperspectral image.
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unknown-class examples from the inherent unlabeled data, whereas 
G-OpenMax synthesizes them by using generative models based on the 
original known-class data.

OpenMax
OpenMax (Bendale and Boult 2016), which was initially developed 
for natural-image OSC and then introduced to HSI (Y. Liu et al. 2020), 
is the origin of existing deep open set classifiers. It is an extension of 
Softmax that uses extreme value theory to define a compact abating 
probability model to limit open space risk. The schematic diagram of 
OpenMax in deep networks is shown in Figure 2, and involves two key 
modules described in the square area with a yellow background.

Given a set of known classes  = {c1, c2, …, cK}, a basic K-class 
DCNN (DCNNk) is first trained with the normal Softmax layer to mini-
mize cross entropy loss. For each correctly classified training sample, 
the activation vector, which represents the output of the deep network’s 
penultimate layer, is then computed, and the mean per-class activation 
vector μ is calculated using these activation vectors. The distances be-
tween these correctly classified training samples’ activation vectors and 
their corresponding class’s μ are calculated and used to fit the Weibull 
distribution of their own class and obtain the corresponding Weibull 
cumulative distribution function CDFi

Weibull with hyperparameters   
based on extreme value theory:
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Here, f denotes the deep CNN as a function, f(x) represents the acti-
vation vector of an input x, and D(,) denotes the distance measure.

At the test stage, which is critical in OpenMax, the activation vector 
y of an input instance x is revised as ŷ using the CDFi

Weibull, and then a 
pseudo-activation value ŷK+1 is computed for unknown classes, which 
are labeled as cK+1. The process is formulated as

  y = [y1, y2, …, yk] = f(x) (2)

  wj = 1; sj = argsort(yj); j = 1, 2, …, K (3)

  
w i f is s si i i
= − − ( )( )( ) = …1 1 2α

α
μ ρ αCDF D xWeibull

si , ; ; , , ,
 

(4)

  ŷ = yi * wi; i = 1, 2, …, K (5)

  
y yˆ wi i

i

K

K +
=

= −( )∑1
1

1
 

(6)

where sj is the index in the activation vector sorted in descending order.
Finally, the probability P(ci|x) of the input x for each known class ci 

(i = 1, 2, …, K) and the unknown class cK+1 is computed using Softmax 
on the revised (K + 1)-dimension activation vector ŷ; the maximum 
score will yield a corresponding predicted class c*:

   
(7)

  c* = argmaxci
P(ci|x); i = 1, 2, …, K, K + 1 (8)

Method
In this section, we will first provide an overview of our semi-super-
vised learning-based HSI open set classification (SSLOSC), followed by 
a deep insight into the inherent nature of existing hyperspectral data 
sets and a detailed description of our semi-supervised learning method 
for training-data augmentation.

Overview of the Proposed Approach
The proposed approach is conceptually simple, as shown in Figure 1b. 
Different from the existing OSC methods (Figure 1a), which follow a 
framework of score post-calibration, our approach adopts a framework 
of training-set pre-augmentation, which aims to augment the origi-
nal training set with the pseudo-labeled samples and then train a (K 
+ 1)-class DCNN model for HSI open set classification. The proposed 
approach is a semi-supervised learning method, which combines both 
unlabeled and labeled data for training the classification model, su-
pervised only by the labeled known-class data. Existing OSC methods 
are based on supervised learning, which train the classification model 
using only the known-class labeled data.

The essence of our approach is to make the unlabeled pixels in the 
HSI data set join in and help train the open set classification model as 
much as possible. First, a modified OpenMax deep model is trained 
based on semi-supervised iterative learning. Then the trained model is 
used to predict the unlabeled data, thus creating pseudo-labels for unla-
beled data. An augmented training set is created by combining the orig-
inal known-class samples with true labels and the new samples with 

Figure 2. Schematic diagram of OpenMax in deep networks.
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pseudo-labels. Finally, a (K + 1)-class DCNN model (DCNNK+1) is trained 
based on the augmented training set for HSI open set classification.

Understanding HSI Data Sets
As we known, the spatial resolution of a hyperspectral image is much 
lower than that of an everyday image, as hyperspectral images are 
remote sensing. Low resolution means the spectral vector of a pixel 
could be either a pure constituent spectrum or a mixture of several pure 
constituent spectra. In general, a hyperspectral image can be represent-
ed as R = [r1, r2, …, rNp

], where Np is the number of pixels and ri is the 
ith pixel, represented as a spectral vector with Nb components, Nb being 
the number of bands in the hyperspectral image. In the linear mixing 
model (Guerra et al. 2015), each pixel in R can be represented as a 
linear combination of a set of spectrally pure pixels or endmembers e, 
weighted by an abundance factor a, which establishes the proportion of 
each endmember in the pixel under inspection:

   
(9)

where ej represents the jth endmember signature, Ne is the number of 
endmembers in the image, and ai,j is the abundance of endmember ej in 
the pixel ri. The noise present in ri is contained in the vector ni.

According to the distribution characters of the abundance factor a, 
we divide the pixels in R into two categories: if ai is a one-hot vector 
or an approximate one-hot vector, ri is called a pure pixel; otherwise 
ri is called a mixed pixel. The scope of the ground that a pure pixel 
covers would consist of a single land cover, whereas the scope of the 
ground a mixed pixel covers would consist of several land covers. 
When it comes to HSI classification, we think only pure pixels are suit-
able as examples for classifier training, because the class label of an 
example should be explicit rather than ambiguous.

In HSI classification, almost all data sets consist of one hyperspec-
tral image and a corresponding land cover reference map. Furthermore, 
the reference map covers only some of the pixels—for example, 50% 
in the Indian Pines data set, 20% in the Pavia University dataset (for 
detailed descriptions of the data sets, please see later)—since labeling 
each pixel is laborious and impossible for an HSI. Given a hyperspec-
tral data set with Nl labeled pixels and Nu unlabeled pixels, the labeled 
data set and the unlabeled data set can be represented respectively as

   (10)

where xi∈Zm×m×Nb is the ith element in the labeled data set X, which 
represents the spectral-spatial information of the ith labeled pixel, and 
yi∈{1, 2, … K} is the corresponding class label of the ith labeled pixel, 
x̌i∈Zm×m×Nb  is the ith element in unlabeled data set X̌, Nb represents the 
number of bands, K represents the number of known classes, and m is 
the size of the spatial neighborhood.

The existing HSI classification approaches usually train their models 
based only on the labeled data set X, completely ignoring the unlabeled 
data set X̌, although it is always there.

In this article, we try to use the unlabeled data X̌ to help train our 
HSI open set classification model based on semi-supervised learning—
combining both unlabeled and labeled data for model training.

Considering the mixing model in Equation 9 and the concept of 
the pure pixel, we think that all the labeled pixels are pure pixels with 
noise, since the domain experts have labeled them as ground truth. 
At the same time, we deem that three cases can occur for unlabeled 
pixels: a pure pixel belonging to one of the known classes, a pure pixel 
belonging to the unknown class, or a mixed pixel.

It is clear that finding the pure pixels, especially pure pixels of 
unknown class, from the unlabeled data X̌ will be the key step of our 
proposed method. After that, a standard (K + 1)-class DCNN model will 
be easily trained for HSI open classification based on the augmented 
training set, which combines the original known-class examples with 
true labels and the pseudo-labeled endmember examples.

Training-Data Augmentation Based on Semi-Supervised Learning
Instinctively, we can use OpenMax to get the predicted labels on 
unlabeled data X̌. However, it is unrealistic to directly use the pseudo-
labeled examples to augment the original training set. Specifically, the 
unlabeled data in an HSI data set, as described in the previous section, 
consists of K + 2 classes (K known classes, one unknown class, and an-
other class made up of mixed pixels) rather than K + 1. That means the 
desired detection model should have the ability to distinguish between 
known-class pure pixels, unknown-class pure pixels, and mixed pixels. 
It is clear that OpenMax is not qualified. If OpenMax is used directly, 
the mixed pixels, which are unsuitable as training examples, will be 
misclassified into either the unknown class or one of the known class-
es. Furthermore, OpenMax is centroid based, where a large number of 
training samples are needed to estimate the centroid   and the CDFWeibull 
of each class; but the size of some classes in the training set is usually 
small in HSI classification.

To find the available examples from X̌ as reliably as possible, two 
improvements are introduced. First, we modify OpenMax by thresh-
olding the output confidence scores to distinguish mixed pixels from 
pure ones. Second, a semi-supervised iterative learning algorithm is 
proposed to select the pure pixels in the unlabeled data as reliably as 
possible and then augment the training set.

Modified OpenMax
According to the mixing model, mixed pixels connect to uncertainty, 
and uncertainty usually connects to low classification confidence 
(Scheirer et al. 2013). So we deem a sample a mixed pixel if the 
confidence score is low. To separate pure pixels from mixed ones, we 
modify the OpenMax classifier (Equations 2–8) as follows. We replace 
Equation 8 by applying a threshold δ to the probability P(ci|x) to sepa-
rate pure pixels from mixed ones:
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where c1, c2, …, cK denote the K known classes, cK+1 is the unknown 
class, and cK+2 is the extra class containing mixed pixels which is 
unsuitable for training.

Semi-Supervised Iterative Learning Algorithm for Training-Data 
Augmentation
Modified OpenMax (M-OpenMax) helps separate pure pixels from 
mixed pixels, but it is still not enough for pure-pixel detection, since 
the size of the original training set is usual small. Here, in order to 
reliably augment the training data based on the unlabeled data, a 
semi-supervised iterative learning algorithm is proposed, as shown in 
Figure 3. Initially, M-OpenMax is trained based on the original K-class 
training set made of labeled examples of known classes. Then it is 
used to predict the unlabeled data, thus creating (K + 2)-class pseudo-
labels. Further, the pseudo-labels are refined based on a cumulative 
voting strategy. Finally, the original labeled training set and the newly 
pseudo-labeled known-class samples are combined in a new augment-
ed known-class training set that will be used to retrain M-OpenMax. 
The process is performed iteratively until the stop condition is met. 
Specifically, at the nth round, the trained M-OpenMax is used to get 
the prediction result matrix L(n)(i,j) of the unlabeled data set X̌. Then a 
cumulative result matrix S(n)(i,j) and a refined prediction result matrix 
L̂(n)(i,j) are computed using Equations 13 and 14. Finally, the elements 
in X̌ which are denoted as known classes in L̂(n)(i,j) are used to update 
the original training set:

  L̂(n)(i,j) = M-OpenMax(n)(X̌ ) (12)

  S(n)(i,j) = S(n–1)(i,j) + L(n)(i,j) (13)
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where i = 1, 2, …, K, K+1, K+2; j = 1, 2, …, Nu; K is the number of 
original known classes;   is the number of pixels in the unlabeled data-
set; L(n)(i,j) is the predicted class label matrix of X̌ among K + 2 classes 
at the nth iteration; and L̂(n)(i,j) is the refined predicted class label 
matrix. A value of L(n)(i,j) = 1 means the predicted class label of x̌ j is ci, 
and ζ = ∈(0, 1] is the voting factor to control the acceptance degree of 
pure pixels. Initially, we set S(0)(i,j) = 0,

 L̂(0)(i,j) = 0.

If the stop condition met, the elements in X̌ which get a predicted 
class label cK+1 in L̂(n)(i,j) will be mixed with the K-class training set to 
create the augmented (K + 1)-class training set. After that, a standard 
(K + 1)-class DCNN model will be trained based on the augmented 
training set.

It is worth pointing out that both the augmented K-class training 
set of known classes and the final (K + 1)-class augmented training 
set use a parameter sample_rate to control the percentage of pseudo-
labeled data that we mix with the original training samples. Setting 
sample_rate = 0.0 means that the model will use only training samples 
with true labels, and sample_rate = 0.5 means that the model will 
use original training samples with true labels and half of the pseudo-
labeled samples.

Stop Condition: In general, the higher the number of iterations, 
the more reliable the detected unknown-class examples with pseudo-
labels. So we can use a higher iteration number as the stop condition. 
However, we found that with increasing iterations, the number of 
unknown-class examples stabilizes. So we set the stop condition as
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Here, we call the ratio on the left side of the equation the update 
rate of the unknown class in the unlabeled data.

Experiments and Results
Data Sets
To validate the performance of our method, we conduct experiments 
on four well-known hyperspectral image data sets: Indian Pines 
(IP), Salinas Valley (SV), Kennedy Space Center (KSC), and Pavia 
University (PU).

The IP data set was gathered by AVIRIS sensor over the Indian Pines 
test site in northwestern Indiana and consists of a 145×145 image with 
224 spectral reflectance bands in the wavelength range 400–2500 nm. 
Although the image contains 21 025 pixels, only 10 249 are labeled 
into the 16 classes in the reference map, as shown in Figure 4b, in 
which black regions are uncovered by the ground truth. The number 
of bands is reduced to 200 by removing bands covering the region of 
water absorption. The sample distribution is very unbalanced in this 
data set, where some classes contain more than 2000 pixels and some 
have only 20 pixels. In order to validate the open set classification, we 
have made two open set scenarios based on the original IP data set. 
In the first one, called the 12vs4 scenario, four classes are randomly 
chosen from the larger-size categories as the unknown/novel class and 
the remaining 12 classes are known classes. In the second one, called 
the 8vs8 scenario, four smaller-size and four larger-size categories 
are chosen as known classes and the remaining eight classes as the 
unknown/novel class.

The SV data set was collected by 224-band AVIRIS sensor over 
Salinas Valley, California, and is characterized by higher spatial resolu-
tion (3.7 m/pixel). As with the IP scene, the bands are reduced to 203 
after removal of bands covering the region of water absorption. This 
data set includes a 217×512 image, in which only 54 129 pixels are 
labeled into 16 classes. Similar to S. Liu et al. (2021), we manually 
annotated some artificial materials, which should not belong to any of 
the original known classes, as the unknown/novel class for open set 
classification testing.

The KSC data set was collected by AVIRIS instrument over the 
Kennedy Space Center in Florida, USA, in 1996. Once noisy bands 
are removed, the resulting 512×614 image contains 176 bands, ranging 
from 400 to 2500 nm. Although the image contains 314 368 pixels, 
only 5211 pixels are annotated, into 13 different land cover types. By 
observing the false-color map of HSI, we manually annotated some 
pixels, which are totally different from the original labeled land cover 
types, as the unknown/novel class for OSC.

The PU data set was acquired by the ROSIS sensor during a flight 
campaign over Pavia in northern Italy. It includes a 610×340 image 
with 103 spectral bands. Only 42 776 pixels are labeled, into nine 
classes, in the reference map. We manually annotated a swimming 
pool, some vehicles, and some buildings as the unknown/novel class 
for OSC.

For each open set scenario, we randomly choose 20% of samples 
from each known class as the training set; the remaining 80% of 
samples of each known class and all samples from the unknown class 
are used as the testing set. The data-set settings of the five scenarios are 
displayed in Tables 1–5.

Evaluation Metrics
The following four metrics were selected to assess the performance of 
the classification model in open set scenarios:
• F1 measure. As suggested by Scheirer et al. (2013), we use the 

composite indicator as the first measure. For each class, its defini-
tion is

   
(16)

   
(17)

Figure 3. Flow diagram of training-set augmentation module. Assume 
the original labeled data set X has been divided randomly into training 
set A and test set B. Here, only the training set A and the unlabeled set   
are used in the semi-supervised data-augmentation module.
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(18)

where TPi, FNi, and FPi denote the true positive, false negative, and 
false positive rates, respectively, of the ith class.

• Macro-F1. Based on the F1 measure of each class, macro-F1 is 
defined to evaluate the overall performance:

   
(19)

• Open overall accuracy (OAopen). This measure indicates the pro-
portion of correct classification of all test samples:

   
(20)

where TPi and FNi are the true positive and false negative rates of 
the ith class, K is the number of known classes, and K + 1 is the 
unknown class.

• Known overall accuracy (OAknown). In HSI classification, we are 
more interested in the accuracy of known classes rather than of the 
unknown class. However, the OAopen metric takes the accuracy of 
the unknown class into account. If the known classes account for 
only a small portion of the data, this metric will be dominated by 
the unknown class. For reference purposes, we use OAknown as fol-
lows to indicate the overall accuracy of the known classes:

   
(21)

Table 1. IP data set, 12vs4 scenario, for OSC.
Category Class Name Train Test

Known

1 Alfalfa 9 37
2 Corn-notill 286 1142
3 Corn-min 166 664
4 Corn 47 190
7 Grass/pasture-mowed 6 22
8 Hay-windrowed 96 382
9 Oats 4 16
10 Soybeans-notill 194 778
11 Soybeans-min 491 1964
12 Soybeans-clean 119 474
13 Wheat 41 164
16 Stone-steel towers 19 74

Unknown

5 Grass/pasture — 483
6 Grass/trees — 730
14 Woods — 1265
15 Bldg-grass-tree-drives — 386

Unlabeled — — 10 776
IP = Indiana Pines; OSC = open set classification.

Table 2. IP data set, 8vs8 scenario, for OSC.
Category Class Name Train Test

Known

2 Corn-notill 286 1142
3 Corn-min 166 664
4 Corn 47 190
8 Hay-windrowed 96 382
10 Soybeans-notill 194 778
11 Soybeans-min 491 1964
12 Soybeans-clean 119 474
13 Wheat 41 164

Unknown

1 Alfalfa — 46
5 Grass/pasture — 483
6 Grass/trees — 730
7 Grass/pasture-mowed — 28
9 Oats — 20
14 Woods — 1265
15 Bldg-grass-tree-drives — 386
16 Stone-steel towers — 93

Unlabeled — — 10 776
IP = Indiana Pines; OSC = open set classification.

Table 3. SV data set for OSC.
Category Class Name Train Test

Known

1 Brocoli-green-weeds-1 402 1607
2 Brocoli-green-weeds-2 745 2981
3 Fallow 395 1581
4 Fallow-rough-plow 279 1115
5 Fallow-smooth 536 2142
6 Stubble 792 3167
7 Celery 716 2863
8 Grapes-untrained 2254 9017
9 Soil-vineyard-develop 1241 4962
10 Corn-senesced-green-weeds 656 2622
11 Lettuce-romaine-4wk 214 854
12 Lettuce-romaine-5wk 385 1542
13 Lettuce-romaine-6wk 183 733
14 Lettuce-romaine-7wk 214 856
15 Vineyard-untrained 1454 5814
16 Vineyard-vertical-trellis 361 1446

Unknown 17 Novel — 6336
Unlabeled — — 50 639
OSC = open set classification; SV = Salinas Valley.

Table 4. KSC data set for OSC.
Category Class Name Train Test

Known

1 Scrub 152 609
2 Willow-swamp 49 194
3 CP-hammock 51 205
4 Slash-pine 50 202
5 Oak/broadleaf 32 129
6 Hardwood 46 183
7 Swap 21 84
8 Graminoid-marsh 86 345
9 Spartina-marsh 104 416
10 Cattail-marsh 81 323
11 Salt-marsh 84 335
12 Mud-flats 101 402
13 Water 185 741

Unknown 14 Novel — 2783
Unlabeled — — 306 374
KSC = Kennedy Space Center; OSC = open set classification.

Table 5. PU data set for OSC.
Category Class Name Train Test
Known 1 Asphalt 1326 5305

2 Meadows 3730 14 919
3 Gravel 420 1679
4 Trees 613 2451
5 Painted metal sheets 269 1076
6 Bare soil 1006 4023
7 Bitumen 266 1064
8 Self-blocking bricks 736 2946
9 Shadows 189 758

Unknown 10 Novel — 4443
Unlabeled — — 160 181
OSC = open set classification; PU = Pavia University.

658 October 2022 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Experiment Configuration
The experiments were conducted using PyTorch on a machine 
equipped with an Intel i5-8500 CPU, an Nvidia GeForce GTX 
1080 Ti graphics processing unit, and 32 GB of RAM.

During the training phase, the AdaDelta optimizer was used 
for back-propagation, the minibatch size was 100, the learning 
rate was 0.01, the momentum was 0.9, the weight decay was 
0.0001, and the number of training epochs was 200.

In the experiments, the threshold δ in Equation 11 was experi-
mentally set at 0.95, the voting factor ζ mentioned in Equation 14 
was experimentally set at 0.7, and the stop threshold   was set at 
0.01. We compare our method with various others: closed DCNN 
(Paoletti et al. 2019), naïve open DCNN SoftMax* (Bendale and 
Boult 2016), plain DCNN OpenMax (Bendale and Boult 2016; 
Y. Liu et al. 2020), and MDL4OW and MDL4OW/C (S. Liu et al. 
2021). For SoftMax* and MDL4OW, the unknown class was deter-
mined with a threshold of 0.5. For OpenMax, following Y. Liu et 
al. (2020), we set the tail number and α as 20% of the number of 
the training samples and 5, respectively. In all methods, the DCNN 
classifier, whether DCNNK or DCNNK+1, had an equivalent archi-
tecture to pResNet (Paoletti et al. 2019), just with adjustments to 
the final layer so that the output matched the class number. For 
CDFWeibull fitting, the libMR (Scheirer et al. 2011) FitHigh func-
tion was used.

Experiment Results
Each experiment followed the steps of training, testing, and 
prediction—that is, the model was first trained using the training 
set, then the test set was fed to the trained model and objective 
metrics were calculated on the confusion matrix. Lastly, the en-
tire HSI was predicted using the model and the classification map 
was acquired for visual illustration. Among the compared meth-
ods, the trained models of OpenMax, MDL4OW, and MDL4OW/C 
consist of two parts—DCNNK and CDFWeibull—whereas the models 
of closed DCNN, SoftMax*, and our SSLOSC contain only a single 
standard DCNN model.

Results on IP Data Set
In this experiment, we applied the proposed method to two 
artificial open set scenarios. Tables 6 and 7 display the class-
wise F1, macro-F1, OAopen, and OAknown under the 12vs4 and 
8vs8 scenarios, respectively. Under both scenarios, our proposed 
SSLOSC method achieved the best performance. Under the 12vs4 
scenario, macro-F1 and OAopen scores were 31% and 37% higher 
than for the closed method, which cannot reject the unknown 
class, and 12% and 12% higher than OpenMax, which was the 
second best among the OSC methods.

In addition, we can see that our SSLOSC has a higher OAknown 
score (0.97 in the 12vs4 scenario and 0.96 in the 8vs8 scenario), 
which ensures the effectiveness of the model when applied only 
to known classes. At the same time, its OAopen scores (0.98 in 
12vs4 and 0.94 in 8vs8) are comparable to its OAknown scores, 
which means the unknown instances in the test set had less 
influence on the overall classification accuracy. And amazingly, 
for the unknown class, our SSLOSC got a high F1 score (0.98 in 
12vs4 and 0.94 in 8vs8), which means most unknown instances 
were rejected correctly by the model. Moreover, the macro-F1 
scores were 0.94 and 0.91, close to ideal performance.

For visual illustrative purposes, we show the open set classification 
maps under two scenarios in Figures 4 and 5. The reference map is 
shown in part b of both figures, where white means the unknown class 
and black means unlabeled pixels. The classification maps obtained by 
different methods are shown in parts c–h, where white and gray means 
that the sample was rejected as unknown. Specifically, only the white 
rejected pixels are considered in the computation of evaluation metrics, 
since they have a ground truth in the reference map. From Figure 4, we 
can notice that the closed method, as shown in part c, misclassified un-
known (white in reference map) and all unlabeled (black in reference 
map) as known classes, leading to a lower OAopen (see Tables 6 and 7). 
Compared with other open methods, the proposed SSLOSC model, as 

shown in part h, successfully rejected most of the unknown instances 
while maintaining high accuracy on the known classes. In contrast, the 
other open methods, as shown in parts d–g, either incorrectly rejected 
some known instances (the region marked with a red boundary) as 
unknown or misclassified some unknown instances (the region marked 
with a yellow boundary) as known. Furthermore, from the false-color 
map in part a and the legend in part i, we can see that the IP data set 
mainly covers an agricultural region. It is obvious that the road on the 
upper side of the image is nonagricultural class and should be rejected. 
However, SoftMax*, MDL4OW, and MDL4OW/C misclassified the road as 
wheat, instead of recognizing it as unknown, as shown in Figures 4d–f 
and 5f, whereas our SSLOSC model successfully rejected it as unknown, 
as shown in Figures 4h and 5h.

Table 6. Classification accuracy on IP data set, 12vs4 scenario. The bold face 
is the 1st result, and the italic is the 2nd result.
Class Closed SoftMax* MDL4OW MDL4OW/C OpenMax SSLOSC

1 0.18 0.63 0.47 0.68 0.77 0.91

2 0.97 0.98 0.91 0.95 0.92 0.97

3 0.97 0.97 0.96 0.95 0.80 0.97

4 0.92 0.88 0.88 0.90 0.82 0.95

7 0.04 0.38 0.32 0.30 0.92 0.61

8 0.96 0.96 0.94 0.96 0.75 1.00

9 0.19 0.23 0.56 0.46 0.47 0.87

10 0.89 0.93 0.89 0.92 0.86 0.98

11 0.96 0.96 0.90 0.91 0.91 0.98

12 0.92 0.95 0.94 0.94 0.86 0.99

13 0.15 0.33 0.29 0.27 0.87 0.99

16 0.99 0.98 0.74 0.97 0.91 1.00

Unknown 
(5, 6, 14, 15) 0.00 0.80 0.71 0.76 0.84 0.98

Macro-F1 0.63 0.77 0.73 0.77 0.82 0.94

OAopen 0.61 0.86 0.81 0.83 0.86 0.98

OAknown 0.97 0.96 0.94 0.94 0.80 0.97

Stop round — — — — — 6

IP = Indiana Pines. 

Table 7. Classification accuracy on IP data set, 8vs8 scenario. The bold face is 
the 1st result, and the italic is the 2nd result.
Class Closed SoftMax* MDL4OW MDL4OW/C OpenMax SSLOSC

2 0.93 0.94 0.95 0.94 0.93 0.97

3 0.96 0.96 0.96 0.94 0.91 0.97

4 0.83 0.85 0.89 0.89 0.84 0.90

8 0.31 0.49 0.75 0.85 0.95 0.97

10 0.62 0.76 0.91 0.93 0.90 0.95

11 0.94 0.96 0.91 0.91 0.95 0.97

12 0.91 0.95 0.86 0.86 0.92 0.88

13 0.29 0.39 0.06 0.30 0.92 0.61

Unknown 
(1, 5, 6, 7, 9, 
14, 15, 16)

0.00 0.65 0.81 0.78 0.90 0.94

Macro-F1 0.64 0.77 0.79 0.82 0.91 0.91

OAopen 0.59 0.77 0.85 0.83 0.92 0.94

OAknown 0.98 0.88 0.94 0.94 0.94 0.96

Stop round — — — — — 9

IP = Indiana Pines.
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Results on SV Data Set
To show the generalization of the proposed method in estimating crops, 
the SV data set, which has higher spatial resolution, was tested. The 16 
agricultural classes contained in the original data set are regarded as 
known classes. In addition, we manually annotated some of the created 
materials as unknown class (white region in the reference map) from 
the unlabeled data, as shown in Figure 6b. The classification results 
on the test set are presented in Table 8. Similar to the result with the 
IP data set, SSLOSC achieved the best performance among all OSC 
methods. This experiment strongly shows the potential of the proposed 
SSL-based method in precisely estimating crop area.

Figure 6 illustrates the classification maps of different methods on 
this data set. We can notice that the proposed method successfully re-
jected most created materials unrelated to crops while maintaining high 
identification accuracy on the agricultural crop, as shown in Figure 6h. 
In contrast, other open methods either incorrectly rejected some known 
instances (the region marked with a red boundary) as unknown, as 
shown in Figures 6d, f, and g, or misclassified some unknown instanc-
es (the region marked with a yellow boundary) as known, as shown in 
Figure 6d–e. Furthermore, MDLO4W and MDLO4W/C totally failed 
to recognize some unknown instances (the road in the middle of the 
image) as unknown, as shown in Figure 6e–f.

Results on KSC Data Set
The KSC data set contains 13 land cover classes in marshland. In ad-
dition, we manually annotated some of the created materials (bridge, 
road, and boat) as the unknown class, as shown in the reference map 
in Figure 7b. The test results are listed in Table 9. Among all the OSC 
methods, SSLOSC achieved the best performance in terms of macro-F1, 
OAopen, and F1 of the unknown class.

The visualization of OSC results for this data set is shown in Figure 
7. As can be observed, the proposed SSLOSC can provide spatially con-
sistent classification outputs with well-delineated object borders and 
very few classification interferers.

Results on PU Data Set
The PU data set is more complicated, providing nine classes of 
samples whose spatial distribution is scattered. The scattered distribu-
tion brings much difficulty to the OSC task. In addition, the interclass 
spectral similarity is significant and the intraclass spatial variability 
is large (S. Liu et al. 2021). Attributed to these characteristics of the 
data set, though the proposed SSLOSC got a high OAknown score (0.98), 
the rejection ratio for the unknown class was low (F1unknown = 0.62), al-
though it stood head and shoulders above those of other OSC methods, 
as shown in Table 10.

Figure 4. Classification map on the IP 12vs4 scenario. (a) False-color map; (b) reference map; (c) CSC-based DCNNk; (d) Softmax*; (e) 
MDLO4W; (f) MDLO4W/C; (g) OpenMax; (h) SSLOSC; (i) legend. CSC = closed set classification; IP = Indiana Pines.

Figure 5. Classification map on the IP 8vs8 scenario. (a) False-color map; (b) reference map; (c) CSC-based DCNNk; (d) Softmax*; (e) 
MDLO4W; (f) MDLO4W/C; (g) OpenMax; (h) SSLOSC; (i) legend. CSC = closed set classification; IP = Indiana Pines.
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The visualization of OSC results for this data set is shown in 
Figure 8. We can see that the proposed SSLOSC provides better 
spatially consistent classification outputs and fewer classification 
interferers than OpenMax, although the two methods achieved 
almost identical scores in terms of OAopen, macro-F1, and F1unknown.

Sensitivity Analysis of Semi-Supervised Iterative Learning
The overall performance of our method depends on the pseudo-
labeled unknown-class samples developed using semi-supervised 
iterative learning, so the classification performance of OpenMax 
in intermediate iterative steps is vital. In this section, taking the IP 
data set as our example, we removed four classes from the original 
data set and trained OpenMax iteratively based on the training 
samples from the remaining 12 known classes (penultimate col-
umn in Table 1) and the unlabeled data (last row in Table 1) using 
our semi-supervised learning algorithm, displayed in Figure 3. We 
then tested the intermediate OpenMax on the test samples (the last 
column in Table 1). The classification performance of OpenMax 
and the update rate of the unknown class as defined in Equation 15 
in the iterative learning process are displayed in Figure 9. We can 
notice that the classification performance of OpenMax increases 
and the update rate of the unknown class decreases with more 
iterative rounds, especially in the first few rounds. This means that 
augmenting the known-class training set using the prediction result 
of the unlabeled data can improve the classification performance 
of OpenMax. In turn, the improved OpenMax will predict the un-
labeled data more precisely and make the augmented known-class 
training set more reliable. After several rounds, the pseudo-labels 
of unlabeled data will tend to stabilize and can be used to augment 

Figure 6. Classification map on the SV data set. (a) False-color map; (b) reference map; (c) CSC-based DCNNk; (d) Softmax*; (e) MDLO4W; (f) 
MDLO4W/C; (g) OpenMax; (h) SSLOSC; (i) legend. CSC = closed set classification; SV = Salinas Valley.

Table 8. Classification accuracy on SV data set. The bold face is the 1st 
result, and the italic is the 2nd result.
Class Closed SoftMax* MDL4OW MDL4OW/C OpenMax SSLOSC
1 0.99 1.00 0.96 0.97 0.97 1.00
2 1.00 1.00 1.00 0.97 0.96 1.00
3 0.87 0.90 0.88 0.93 0.91 0.99
4 0.74 0.78 0.66 0.90 0.96 0.99
5 0.57 0.60 0.66 0.76 0.95 0.86
6 0.96 0.99 0.95 0.94 0.99 0.99
7 0.97 0.98 1.00 0.97 0.95 1.00
8 0.86 0.88 0.93 0.93 0.86 0.84
9 0.81 0.84 0.97 0.98 0.95 0.98
10 0.88 0.94 0.94 0.93 0.96 0.97
11 0.88 0.94 1.00 0.97 0.93 1.00
12 1.00 1.00 1.00 0.98 0.97 1.00
13 1.00 1.00 1.00 0.99 0.86 0.99
14 0.99 1.00 1.00 0.98 0.00 0.99
15 0.92 0.92 0.92 0.91 0.86 0.90
16 0.98 1.00 1.00 0.98 0.95 0.99
Unknown 
(novel) 0.00 0.37 0.39 0.68 0.78 0.93

Macro-F1 0.85 0.89 0.90 0.93 0.87 0.97
OAopen 0.78 0.83 0.89 0.91 0.88 0.96
OAknown 0.99 0.98 0.97 0.94 0.86 0.98
Stop round — — — — — 6
SV = Salinas Valley.
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the training set and train a standard (K + 1)-class DCNN model for 
open set classification of HSI.

It is worth pointing out that although OpenMax in the last 
round had higher scores (F1unknown = 0.90, macro-F1= 0.86, OAopen 
= 0.92, and OAknown = 0.86) than in the first round (F1unknown = 
0.84, macro-F1= 0.82, OAopen =0.86, and OAknown = 0.80), it was 
still inferior to our final DCNNK+1 model (F1unknown = 0.98, macro-
F1= 0.94, OAopen = 0.98, and OAknown = 0.97). This proves that the 
unlabeled data are useful if we exploit them wisely. OpenMax 
in the iterative process (except the first round) use the pseudo-
labeled known classes in its training and therefore achieved higher 
performance. Our final DCNNK+1 model was trained based on the 
augmented training set, which included both the K-class samples 
with true labels and the refined pseudo-labeled unknown-class 
samples, and therefore achieved even higher performance.

Discussion
Existing HSI open set classification methods convert open set 
classification into a posterior probability calibration task based on 
extreme value theory and completely ignore the unlabeled data 
inherent in the HSI data set during model design. In this work, 
we aimed to design an open set classifier based on labeled and 
unlabeled data by using a semi-supervised learning method. The 
proposed method, called SSLOSC, was compared with the existing 
open set classification methods and a DCNN-based closed set clas-
sification method.

According to the experimental results presented in Figure 10, 
we can see that proposed open set deep model SSLOSC can auto-
matically reject most unknown (F1unknown >0.9 under four open set 
scenarios) while maintaining high recognition accuracy on known 
classes (OAknown > 0.9). On the contrary, OpenMax tends toward 
inferior recognition accuracy on known classes (Figure 10d) and 
the Multitask Deep Learning methods (MDL4OW and MDL4OW/C) 
have inferior ability to reject the unknown class (Figure 10a). 
As a result, the proposed method got the highest scores in term 
of OAopen and macro-F1 under all open set scenarios, as shown 
in Figure 10b–c. This is because using semi-supervised learn-
ing, we make the unlabeled data join in the data preparation 
and model training. In the semi-supervised learning procedure, 
unknown samples with high confidence are selected from the 
inherent unlabeled data and mixed into the original labeled known 
samples, and therefore lead to a simple and effective OSC model. 
The corresponding cost is that the training procedure of our model 
is time-consuming, because training-set augmentation based on 
semi-supervised learning requires multi-round iteration. Luckily, 
our final OSC model used for testing and predicting is simple and 

Figure 7. Classification map on the KSC data set. (a) False-color map; (b) reference map; (c) CSC-based DCNNk; (d) Softmax*; (e) MDLO4W; 
(f) MDLO4W/C; (g) OpenMax; (h) SSLOSC; (i) legend. CSC = closed set classification; KSC = Kennedy Space Center.

Table 9. Classification accuracy on KSC data set. The bold face is the 1st 
result, and the italic is the 2nd result.
Class Closed SoftMax* MDL4OW MDL4OW/C OpenMax SSLOSC
1 0.78 0.84 0.78 0.75 0.84 0.92
2 0.88 0.96 0.91 0.95 0.88 0.93
3 0.90 0.90 0.97 0.95 0.66 0.88
4 0.52 0.71 0.69 0.69 0.72 0.73
5 0.81 0.82 0.76 0.78 0.84 0.78
6 0.92 0.94 0.91 0.80 0.86 0.90
7 0.99 1.00 0.97 0.94 0.85 0.86
8 0.87 0.94 0.95 0.89 0.93 0.96
9 1.00 1.00 0.98 0.98 0.81 1.00

10 0.97 1.00 0.97 0.94 0.96 1.00
11 0.33 0.42 0.61 0.85 0.93 0.97
12 0.42 0.50 0.74 0.77 0.91 0.96
13 0.85 0.87 0.95 0.95 0.96 0.99
Unknown 
(novel) 0.00 0.50 0.76 0.82 0.88 0.96

Macro-F1 0.73 0.81 0.85 0.86 0.86 0.92
OAopen 0.53 0.68 0.81 0.84 0.88 0.95
OAknown 0.98 0.97 0.96 0.93 0.82 0.94
Stop round — — — — — 3
KSC = Kennedy Space Center.

Table 10. Classification accuracy on PU data set. The bold face is the 1st 
result, and the italic is the 2nd result.
Class Closed SoftMax* MDL4OW MDL4OW/C OpenMax SSLOSC
1 0.90 0.91 0.97 0.97 0.98 0.98
2 1.00 1.00 1.00 0.98 0.99 1.00
3 0.99 0.99 0.98 0.96 0.98 0.99
4 0.96 0.97 0.98 0.98 0.99 0.99
5 0.85 0.87 0.90 0.85 0.99 1.00
6 0.62 0.63 0.69 0.68 0.83 0.82
7 0.92 0.95 0.99 0.99 0.99 0.99
8 0.96 0.96 0.90 0.97 0.99 0.98
9 0.97 0.98 0.94 0.94 0.98 0.99
Unknown 
(novel) 0.00 0.13 0.13 0.30 0.61 0.62

Macro-F1 0.82 0.84 0.85 0.86 0.93 0.93
OAopen 0.78 0.79 0.89 0.88 0.94 0.94
OAknown 0.99 0.99 0.99 0.96 0.94 0.98
Stop round — — — — — 3
PU = Pavia University.
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Figure 8. Classification map on the PU data set. (a) False-color map; (b) reference map; (c) CSC-based DCNNk; (d) Softmax*; (e) MDLO4W; (f) 
MDLO4W/C; (g) OpenMax; (h) SSLOSC; (i) legend. CSC = closed set classification; PU = Pavia University.

Figure 9. The intermediate result of semi-supervised iterative learning. (a) Classification accuracy of OpenMax; (b) update rate of the unknown 
class in the unlabeled data.

Figure 10. Bar graphs of evaluation indexes of different methods under five open set scenarios. (a) F1unknown; (b) macro-F1; (c) overall accuracy 
of K known classes and unknown class; (d) overall accuracy of K known classes.
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effective. This is meaningful and valuable, since we can predict HSIs 
using the model over and over once it is trained.

We also found that the performance of our proposed OSC method 
depends on the open set scenario, especially the F1unknown score, as 
shown in Figure 10a. For scenarios where the interclass spectral-spatial 
differences are significant, such as in the IP, SV, and KSC data sets, the 
proposed method can reject nearly all unknown classes (>90%) and 
classify known classes accurately (>95%). However, as the spectral-
spatial similarity among different classes increases, the performance 
of the proposed method degrades to a certain degree—for example, 
the rejection ratio of unknown classes is only 0.62 on the PU data set. 
Therefore, there still remain some questions to be addressed, such as 
how the complexity of HSI data sets affects the OSC performance and 
how to better solve the OSC issues in complicated real-world applica-
tions where high interclass similarity, spectral mixing, and scattered 
distribution of samples occur frequently.

Conclusion
In this study, a semi-supervised learning method for HSI open set clas-
sification is devised by tapping the potential of unlabeled data. The 
proposed method uses a modified OpenMax and a semi-supervised 
iterative learning algorithm to find the pseudo-labeled unknown-
class samples from the inherent unlabeled data. Then, based on the 
augmented training set—which consists of the original known-class 
samples and the pseudo-labeled unknown-class samples—a standard 
deep classification network, which can classify known classes while 
simultaneously rejecting the unknown class, is trained for HSI open set 
classification. The results reveal that the proposed method can achieve 
an approximately optimal trade-off between known-class classification 
accuracy and unknown-class rejection. It achieved the highest OAopen 
and macro-F1 scores among all methods studied. It also achieved the 
highest rejection ratio of unknown class and reasonable OAknown scores 
compared with a DCNN-based closed set method.
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The Fractional Vegetation Cover (FVC)  
and Associated Driving Factors of  

Modeling in Mining Areas
Jun Li, Tianyu Guo, Chengye Zhang, Fei Yang, and Xiao Sang

Abstract
To determine the fractional vegetation cover (FVC) and associated 
driving factors of modeling in mining areas, six types of data were 
used as driving factors and three methods—multi-linear regression 
(MLR), geographically weighted regression (GWR), and geographi-
cally weighted artificial neural network (GWANN)—were adopted in 
the modeling. The experiments, conducted in Shengli mining areas 
located in Xilinhot city, China, show that the MLR model without 
consideration of spatial heterogeneity and spatial non-stationarity 
performs the worst and that the GWR model presents obvious location 
differences, since it predefines a linear relationship which is unable 
to describe FVC for some locations. The GWANN model, improving on 
these defects, is the most suitable model for the FVC driving process in 
mining areas; it outperforms the other two models, with root-mean-
square error (RMSE) and mean absolute percentage error (MAPE) 
reaching 0.16 and 0.20. It has improvements of approximately 24% 
in RMSE and 33% in MAPE compared to the MLR model, and those 
values grow to 59% and 71% when compared with the GWR model.

Introduction
Vegetation is the comprehensive result of the long-term interaction of 
hydrology, soil, landforms, climate variability, and human activities, 
and its composition, distribution, and development are closely related 
with multiple driving factors (Yang et al. 2011; Zhu et al. 2012; Y. Li 
et al. 2015). It plays a pivotal role in energy exchange processes, cli-
mate change, and hydrological and biogeochemical cycles on Earth’s 
surface. Fractional vegetation cover (FVC) refers to the ratio of the 
vertical projection of vegetation (stems, branches, and leaves) in the 
statistical area of land surface (Purevdorj et al. 1998; Gitelson et al. 
2002), which is a critical parameter measuring the vegetation coverage 
status and reflecting the degree of horizontal coverage of vegetation on 
land surface (Zhang et al. 2018). As quantitative information, FVC is 
not only used as a sensitive indicator to evaluate land degradation and 
desertification (C. Zhao et al. 2005) but also regarded as a controlling 
factor for universal soil loss equation, revised universal soil loss equa-
tion, and numerical climate and hydro-ecological models (Sellers et al. 
1996; Qi et al. 2000; G. Wang et al. 2002; Wu et al. 2012).

With the continuous development of remote sensing technology, 
monitoring spatiotemporal and phenological variations of vegeta-
tion in a certain area, as well as estimating vegetation productivity 
based on remote sensing, has now become the main trend in the FVC 
research field (Okin et al. 2013; J. Li et al. 2019a; J. Li et al. 2020). 
Remote sensing has the advantages of wide coverage, high continuity, 
and comprehensiveness, which can provide measurement of FVC with 
a new direction (Xing et al. 2009; J. Peng et al. 2012; H. Liu et al. 

2021). Among the remote sensing FVC estimation methods, the use of a 
vegetation index (VI)—which includes the enhanced vegetation index, 
the difference vegetation index, the ratio vegetation index, and the 
normalized difference vegetation index (NDVI)—is the most common 
method (Barati et al. 2011). Research has illustrated that the NDVI is 
very sensitive to the spatial distribution characteristics and growth state 
of vegetation (Tucker 1979); can to a great extent eliminate interfer-
ence from topography, instruments, atmosphere, and so on; and has 
a significant linear correlation with FVC (Yuan et al. 2013; Zhang et 
al. 2018)—which all makes the NDVI currently the most widely used 
VI (Chen et al. 2014; Imukova et al. 2015). Specifically, the dimidi-
ate pixel model based on the NDVI is a practical method to effectively 
estimate FVC, because of its simple calculations, easy interpretation, 
insensitivity to the effects of image radiometric correction, and inde-
pendence from actual FVC data modeling (Mu et al. 2012; W. Peng et 
al. 2016; Z. Li et al. 2017).

In mining areas, the exploitation and use of mineral resources have 
changed the material cycle and energy flow of ecosystems, always 
resulting in serious vegetation degradation and environmental pollu-
tion (Fu et al. 2017). Therefore, there has been increasing attention 
given to environmental protection and ecological restoration in mining 
areas. Research has shown that study of the temporospatial character-
istics and variations of vegetation coverage based on remote sensing 
technology is an effective way to reveal changes of the ecological 
environment in mining areas. Erener (2011) applied remote sensing-
based vegetation cover monitoring to a case study of the Seyitömer 
Lignite Enterprise in Kütahya, Tukey, and successfully assessed the 
reclamation practices. G. Wang and Qiu (2018) extracted the FVC in the 
Huainan mining area from MODIS NDVI time-series products, analyzed 
the evolution of vegetation cover in the research area during the period 
of 2005–2014, and provided scientific references for the ecological res-
toration of the mining area. Fang et al. (2020) analyzed the spatiotem-
poral variation of vegetation coverage in a large-scale mining area in 
eastern Inner Mongolia, China, using the NDVI time series from 1982 
to 2015, and explored the influencing factors before and after mining. 
J. Li et al. (2019b) unitized the long-term FVC based on NDVI data from 
1985 to 2015 to evaluate the impact of coal mining and other human 
activities on land ecology at the Baorixile coal mining area in the heart 
of Hulunbeier in China.

The FVC in mining areas is affected by multiple driving factors, 
including topography, climate, and human activity. The influence of 
topography, especially altitude, can cause regional differences in the 
level of FVC as well as in its variation trend and fluctuation range (T. 
Zhao et al. 2019; H. Liu et al. 2021; Pang et al. 2021). Changes in 
temperature and precipitation directly affect vegetative photosynthesis, 
respiration, and soil organic carbon decomposition, among others, and 
then affect the growth distribution and evolution patterns of vegeta-
tion, which makes climate factors the dominant ones affecting FVC (J. Jun Li, Tianyu Guo, Chengye Zhang, Fei Yang, and Xiao Sang are with 
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Liu and Gao 2008; Jing et al. 2011; Guo et al. 2014; H. Wang et al. 
2020). For example, Zhao et al. (2015) found that vegetation growth 
showed an insignificant increasing trend over the entire plateau during 
1982–2011, and climate factors (i.e., precipitation and air temperature) 
were the two most important variables affecting vegetation growth. Q. 
Zhou et al. (2019) analyzed the effect of climate factors on FVC in the 
Beijing—Tianjin—Hebei region from 2001 to 2011 and showed that 
precipitation had the greatest effect on FVC in the core area. H. Liu et 
al. (2021) conducted research on the spatiotemporal evolution of FVC 
and its response to climate change based on MODIS data in the subtropi-
cal region in China, and concluded that the average annual minimum 
temperature was the main factor affecting dynamic variations of FVC. 
Human activities are another important factor affecting vegetation 
growth (Xin et al. 2008; Y. Liu et al. 2015). Y. Liu et al. (2015) ex-
plored the relationship between vegetation cover trends and the human 
footprint from 1982 to 2012 globally, and showed a positive correla-
tion between human activity and the NDVI trend in Asia, Africa, and 
Europe. X. Zhou et al. (2018) distinguished the vegetation dynamics 
induced by anthropogenic factors from the effects of climate variability 
on the Mongolian Plateau during 1993–2012 based on the RESTREND 
method, and identified the divergent drivers of human-induced vegeta-
tion dynamics within different agricultural zones and socio-institu-
tional periods. Meng et al. (2019) investigated the potential effects of 
human activities on vegetation changes over the Mongolian Plateau 
during the time of 1982–2015, and implied that anthropogenic factors 
may lead to cropland abandonment in favor of grassland restoration.

Based on the understanding of the correlation between vegetation 
cover and its associated driving factors in mining areas, Meng et al. 
(2019) and Fang et al. (2020) used a linear model containing tempera-
ture and precipitation to predict the NDVI from 1982 to 2015. Fu et al. 
(2017) established a linear model for the driving factors of interan-
nual variation of NDVI using parameters including relative humidity, 
precipitation, and population engaged in secondary industry. However, 
there is a rather limited literature on FVC and associated driving fac-
tors for modeling in mining areas using different types of models, and 
there is also a lack of discussion on the availability of different models 
applied to the FVC driving process in mining areas. Therefore, we 
used modeling with FVC and associated driving factors in the Shengli 
mining area with three different methods: multiple linear regression, 
geographically weighted regression, and geographically weighted arti-
ficial neural network. Temperature, precipitation, topography, grazing, 
city, and mining were considered the driving factors. The most suitable 
model for the FVC driving process in the mining area was explored, and 
the characteristics of the influence of driving factors on FVC in different 
models were also analyzed. This type of model can provide large-scale 
FVC data for a mining area in the absence of field measurement and 
satellite observation, and dynamically predict FVC in a mining area 
based on existing data, providing important reference data for ecologi-
cal restoration.

Materials and Methods
The Study Area
The Shengli mining area, located in Xilinhot city, Inner Mongolia 
Autonomous Region, China, was selected as the study area for this 
article, as shown in Figure 1. The study area lies at the north of the city 
and is approximately 5 km from the city center. It covers the zones be-
tween longitude 115.7°E and 116.3°E and latitude 43.8°N and 44.2°N, 
which is typical plateau hilly terrain from northeast to southwest (J. 
Li et al. 2021a), and has a total area of 342 km2. It has a semi-arid 
continental monsoon climate with an average annual rainfall of 309 
mm and average annual temperature of 1.5°C. The extreme maximum 
and minimum temperatures recorded in this area are 38.3°C, on 23 July 
1955, and −42.4°C, on 15 January 1953. Rainfall is mainly concen-
trated in summer, with more than 71% of it between June and August. 
In addition, a variety of human activities exist around the study area, 
such as mining, grazing, and the development of cities and towns. Note 

that ecological restoration has been implemented since 2016 in the 
mining area.

The Materials
Google Earth Engine was used to load the remote sensing data of the 
Landsat series satellites, including Landsat 5 TM, Landsat 7 ETM+, 
and Landsat 8 OLI. After atmospheric correction based on the Landsat 
Ecosystem Disturbance Adaptive Processing System algorithm 
(Schmidt et al. 2013), the NDVI of the study area from June to August 
was calculated from 1990 to 2020 using the following formula:

  
(1)

Where ρNIR and ρRed refer to the surface reflectance in the near-infra-
red and the red band, respectively. Then the dimidiate pixel model was 
applied to compute the FVC as follows (H. Liu et al. 2021):

  
(2)

where NDVI denotes the NDVI value of the grid to be calculated, 
NDVIsoil represents the NDVI value of the grid in the study area which 
is completely bare soil, and NDVIveg refers to the NDVI value of the 
grid with pure vegetation in the study area. Due to the influence of 
many factors, NDVIveg and NDVIsoil are not theoretical fixed values 
of 0 and 1. To ensure the stability of these two values, the upper and 
lower thresholds of NDVI were calculated with 95% confidence inter-
vals to approximate the values of NDVIveg and NDVIsoil in the study 
area, respectively. Thus, the actual values of NDVIveg and NDVIsoil are 
0.7 and 0.08, respectively. This process for calculating FVC is consis-
tent with the relevant literature to ensure the reliability of our data (J. 
Li et al. 2021b; Y. Liu et al. 2021).

The climate data were obtained from ERA5, which is the latest cli-
mate reanalysis produced by the European Centre for Medium-Range 
Weather Forecasts. It is available in the Climate Data Store covering 
the period from 1950 to the present. The monthly temperature and 
precipitation data on regular latitude/longitude grids at 0.1°×0.1° reso-
lution from 1990 to 2020 were downloaded for this study. Afterward, 
the spatial distribution of temperature and precipitation each year was 
resampled by Kriging interpolation in ArcGIS software to be compat-
ible with the NDVI data sets. The topography data were obtained from 
the Terra Advanced Spaceborne Thermal Emission and Reflection 
Radiometer Global Digital Elevation Model, which provides a global 
digital elevation model of land areas on Earth at a spatial resolution of 
1 arcsec.

The grazing data comes from the statistical yearbook of Xilinhot 
city and its summer census of agriculture and animal husbandry, in-
cluding data on the number of cattle, sheep, horses, and other livestock 

Figure 1. Map of the study area.
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each year, with village and branch farms as statistical units. According 
to the grass-livestock balance policy of Xilinhot city, the number 
of cattle and horse is converted into the number of sheep. The total 
grazing intensity of a village is obtained by dividing the total number 
of sheep by the total area of the village, and then the total intensity 
value is averaged to each grid, and finally the grazing data of grids are 
achieved. For the city and mining data, the distance from each grid to 
the center of the city and the mining area are counted, respectively, and 
then used as the city data and mining data for the subsequent modeling.

The Different Models
Multi-linear regression is a statistical technique that is used to predict 
the outcome of a variable based on the values of two or more variables. 
The variable that we want to predict is known as the response variable, 
which corresponds to FVC in this article; the variables we use to predict 
the value of the response variable are known as explanatory variables, 
which are the temperature, precipitation, topography, grazing, city, and 
mining factors in this article. The goal of MLR is to model the linear 
relationship between the explanatory variables and response variable. 
The MLR formula used in this article is

 FVC = β0 + β1T + β2P + β3Top + β4G + β5M + β6C + ε (3)

where FVC refers to the response variable; β0 is a constant term denot-
ing the y-intercept; T, P, Top, G, M, and C are the six explanatory 
variables of temperature, precipitation, topography, grazing, mining, 
and city factors; β1, β2, β3, β4, β5, and β6 are the regression coefficients 
of the model; and ε is the model’s error term.

Geographically weighted regression was introduced to the geog-
raphy community by Brunsdon et al. (1996) to study the potential for 
relationships in a regression model to vary in geographical space. It ac-
counts for spatial autocorrelation of variables and adds a level of mod-
eling sophistication by allowing the relationships between the response 
and explanatory variables to vary by locality. The innovation with GWR 
is using a subset of data proximate to the model calibration location in 
geographical space instead of variable space (Páez and Wheeler 2009). 
In GWR, a separate formula is constructed for every model calibration 
location in the data set, which incorporates the response and explana-
tory variables of locations falling within the bandwidth of each target 
location. The GWR formula for each calibration location is expressed as 
follows:

FVCi = β0(ui, vi) + β1 (ui, vi)Ti + β2(ui, vi)Pi + β3(ui, vi)Topi + β4(ui, vi)Gi 
+ β5(ui, vi)Mi + β6(ui, vi)Ci + εi  (4)

where (ui, vi) denotes the coordinates of the ith location in the model. 
The other parameters are consistent with those in Equation 3. In this 
model, the Gaussian kernel function is selected to produce weights that 
monotonically decrease with distance, expressed as follows:

  
(5)

where wij refers to the weight for observation j relative to observation i, 
which changes as a function of the distance dij and a kernel bandwidth 
parameter γ that controls the range and decay of spatial correlation.

To better describe the nonlinear relationship between variables, 
Hagenauer and Helbich (2022) proposed the geographically weighted 
artificial neural network (GWANN), which is a variant of an artificial 
neural network (ANN) that incorporates geographical weighting of 
connection weights. The architecture of the GWANN is identical to that 
of a basic ANN, except that each output neuron of the GWANN is as-
signed to a location in geographic space, as shown in Figure 2. Another 
difference between the GWANN and a basic ANN is that a geographic 
weighted error function is used instead of the basic quadratic error 
function to calculate an error signal. In this model, the geographically 
weighted error function is defined as follows:

  
(6)

where ti is the target value, oi is the output of output neuron i, vi is the 
geographically weighted distance between the observation and the lo-
cation of output neuron i, and n denotes the number of output neurons. 
Following the definition of the geographically weighted error function, 
the calculation of the error signal of back propagation is modified as 
follows:

  

(7)

where oj is the output of neuron j, tj is the target value of neuron j, wjk 
is the connection weight between neurons j and k, δk is the error signal 
for neuron k, netj is the network input to neuron j, ϕ' is the derivative of 
the activation function, and vj is the geographically weighted distance 
between the observation and the location of output neuron j.

Discussion of the Model Performance
In this experiment, the FVC data and the multiple driving data from 
1990 to 2015 were used to construct the three models (MLR, GWR, and 
GWANN). To assess their performance, the FVC values estimated by 
these three models were compared and discussed using the reference 
FVC values of 2016–2020 derived from Landsat. That is, the data from 
1990 to 2015 were used for training the models and the data from 2016 
to 2020 were selected for model testing. The two statistical quantities 
of root-mean-square error (RMSE) and mean absolute percentage error 
(MAPE) were chosen as criteria to perform the assessment, which can 
be described in the following equations:

  
(8)

  
(9)

where FVCi and FVCi
R are the FVC values from different models and the 

reference, respectively, and N refers to the number of the samples.
After the FVC estimates of each grid in the study area from 2016 

to 2020 were achieved using the three models, the comparison was 
conducted with the reference FVC and scatter diagrams were drawn, 
as shown in Figure 3. The black dashed line is a 1:1 straight line, and 

Figure 2. Geographically weighted artificial neural network with 
three layers.
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the red straight line represents a linear-fitting straight line between the 
estimated and reference FVCs. It can be seen that the FVC estimated by 
the MLR model has significant difference from the reference FVC, with 
a slope of linear fitting of 0.06, showing that the MLR model performs 
worst in estimating FVC. The performance of the GWR model is clearly 
better than that of the MLR model, with a slope of 0.42 and more 
scatter points distributed near the 1:1 line. For the GWANN model, the 
distribution of scatter points and the fitting straight line show the best 
linear regression relationship among the three models. Specifically, the 
slope reaches 0.67 and the density of the scatter points distributed near 
the fitting line is higher than for the other two models. Note that the 
phenomenon of FVC estimates greater than 1 has occurred in the first 
two models, especially the MLR model, which is inconsistent with the 

actual situation, where the FVC value is less than 1. The GWANN model 
effectively improves this phenomenon.

Further, the histograms of FVC residuals—namely the values that 
result from subtracting the reference FVC from the model-estimated 
FVC—for each grid in the study area from 2016 to 2020 are shown in 
Figure 4. The residual histograms of the three models are all normally 
distributed; the GWR and GWANN models especially appear close to 
a standard normal distribution, with an approximate expectation of 
0. The MLR model performs poorly, since the residuals are almost 
all positive and nearly half are greater than 0.5. The GWANN model 
performs better than the GWR model, with more residuals concentrated 
around zero, and the maximum and minimum values are around 0.5 
and −0.5, whereas the GWR model has more residuals less than −0.5 or 
greater than 0.5. As for the absolute residuals less than 0.1, the GWANN 
model has a relatively larger percentage that the GWR model: 45.5% 
compared with 43.3%. When the absolute value is set to less than 0.3, 
these percentages reach 88.7% and 86.1%, respectively. In addition, 
the statistics of FVC residuals, including RMSE and MAPE, are counted 
for the three models (Table 1). This illustrates again that the MLR 
model has the worst statistical values, with RMSE and MAPE reaching 
0.39 and 0.70. The two statistics for the GWR and GWANN models are, 
respectively, 0.21/0.30 and 0.16/0.20, achieving improvements over 
the MLR model of 46%/57% and 59%/71%.

Figure 3. Scatterplots of the estimated fractional vegetation cover 
(FVC) against the reference FVC for the three models

Figure 4. Histograms of the fractional vegetation cover residuals for 
the three models.
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To analyze the performance of the three FVC models in different 
years, their RMSE and MAPE from 2016 to 2020 are plotted in Figure 5, 
in which different colors refer to different models and the dotted lines 
represent the average values of the five-year statistics. The GWANN 

model (red) performs best in every year in terms of RMSE and MAPE, 
followed by the GWR and MLR models. The MLR model shows great 
differences in different years. The largest and smallest RMSE and MAPE 
for the MLR model appear in 2020 and 2018, respectively, and their 
differences reach 0.16 and 40%. For the GWR and GWANN models, the 
difference between the five-year statistical value and the average is 
small, and the maximum differences are 0.07/11% and 0.07/8%. This il-
lustrates that the GWANN model has the best stability in estimating FVC.

To analyze the accuracy of the three models at different locations in 
the study area, the FVC residuals from 2016 to 2020 in each grid were 
counted. Figure 6 illustrates the distributions of RMSE and MAPE for the 
differences between the reference FVC and model-derived FVCs. From 
the top panel, we can see the poor performance of the MLR model in 
almost all locations, with the RMSE and MAPE showing large diversity 
in different grids. It illustrates that the MLR model can hardly describe 
accurate FVC in a certain area. Compared with the MLR model, the 
FVC estimated by the GWR model is much closer to the reference FVC 
in most grids, as shown by the smaller RMSE and MAPE in the middle 
panel. However, large RMSE and MAPE still appear in some grids, indi-
cating differences in model accuracy by location. These grids with high 
errors are often around mining areas and towns, where there are more 
types of human activities and the driving factors become more com-
plex. This makes it difficult for the GWR model with linear modeling to 
accurately describe FVC at those locations, which are exactly the ones 
we care about most. The GWANN model achieves the best accuracy 
within the study area, and the location differences in model accuracy, 
including RMSE and MAPE, are effectively improved.

To further show the distribution of RMSE, the empirical distribu-
tion functions of RMSE in the three models are depicted in Figure 7, 
indicating the percentage of each range of the FVC RMSE. Compared 
with the results of the MLR model (represented by the green curve), 
the blue and red curves are obviously closer to the position of 0 and 
cover a relatively smaller range of the horizontal axis, showing a better 
distribution of results for the GWR and GWANN models. The percent-
age of RMSE smaller than 0.2 is 2% for GWR model; this becomes 68% 
and 73% for the GWR and GWANN models, respectively. When the 
range is set to less than 0.3, the percentages increase to, respectively, 
10%, 92%, and 96%. These results show the advantages of the GWANN 
model compared to the other two models.

Conclusions
In mining areas, the FVC is related to multiple driving factors, includ-
ing meteorological, topographic, and human activity parameters. For 

Table 1. Statistics of the fractional vegetation cover residuals for the 
three models.
Model RMSE MAPE

MLR 0.39 0.70

GWR 0.21 0.30

GWANN 0.16 0.20

GWANN = geographically weighted artificial neural network; GWR = 
geographically weighted regression; MAPE = mean absolute percentage error; 
MLR = multi-linear regression; RMSE = root-mean-square error.

Figure 5. RMSE and MAPE from 2016 to 2020 for the three models. 
Green = MLR model; blue = GWR model; red = GWANN model. Circles 
= RMSE; triangles = MAPE; dotted lines = five-year average values. 
GWANN = geographically weighted artificial neural network; GWR = 
geographically weighted regression; MAPE = mean absolute percentage 
error; MLR = multi-linear regression; RMSE = root-mean-square error.

Figure 6. Distributions of root-mean-square error (RMSE) and mean 
absolute percentage error (MAPE) from 2016 to 2020 for the three models.

Figure 7. The empirical distribution function of the root-mean-
square error in different models.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING October 2022 669



modeling FVC and associated driving factors, we selected temperature 
data, precipitation, topography, grazing, mining, and city data as the 
driving factors, and used three methods in the modeling: MLR, GWR, 
and GWANN.

In this experiment, we developed the three models for the Shengli 
mining area in Xilinhot city, China. Numerical results—namely, RMSE 
and MAPE—showed that the GWANN model had better performance in 
FVC estimation than the MLR and GWR models. Specifically, the GWANN 
model achieved an RMSE of 0.16 for all FVC residuals, which is 0.23 
and 0.05 smaller than the MLR and GWR models, respectively—im-
provements of approximately 59% and 24%. The FVC scatter diagrams 
showed that the GWANN model has the best slope, of 0.67, and the 
density of the scatter points distributed near the fitting line is higher 
than for the other two models. In the analysis of the performance of the 
three models in different years, the MLR model showed great differenc-
es in different years, and the phenomenon can be effectively improved 
by the GWR and GWANN models. In the analysis of the performance for 
the three models in different locations, the GWANN model outperformed 
the other two model, with the percentages of RMSE smaller than 0.2 
and 0.3 reaching to 73% and 96%, respectively, and no obvious differ-
ences appear in different grids.

The experiment illustrates that the MLR model, which does not 
consider spatial heterogeneity or the characteristics of the driving 
factors changing with geographic distance, can hardly estimate ac-
curate FVC values. The GWR model improves on these problems and 
achieved more accurate FVC estimates. But location differences in 
model accuracy still appear, since the linear relationship between FVC 
and the driving factors is still predefined. The GWANN model used an 
artificial neural network that incorporates geographical weighting of 
connection weights, which effectively solved the defects and improved 
the accuracy compared to the other two models. The GWANN model 
is regarded as the most suitable model for the FVC driving process in 
the mining area. Therefore, we think this type of model, especially the 
GWANN model, can provide large-scale FVC data for mining areas in 
the absence of field measurement and satellite observations, and can 
dynamically estimate and predict FVC in mining areas based on exist-
ing data, providing important reference data for ecological restoration 
in mining areas. In follow-up research, the driving factors should be 
further explored to improve their accuracy.
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After more than 15 years of research and writing, the Landsat Legacy 
Project Team published, in collaboration with the American Society 
for Photogrammetry and Remote Sensing (ASPRS), a seminal work on 
the nearly half-century of monitoring the Earth’s lands with Landsat. 
Born of technologies that evolved from the Second World War, 
Landsat not only pioneered global land monitoring but in the process 
drove innovation in digital imaging technologies and encouraged 
development of global imagery archives. Access to this imagery led 
to early breakthroughs in natural resources assessments, particularly 
for agriculture, forestry, and geology. The technical Landsat remote 
sensing revolution was not simple or straightforward. Early conflicts 
between civilian and defense satellite remote sensing users gave 
way to disagreements over whether the Landsat system should 
be a public service or a private enterprise. The failed attempts 
to privatize Landsat nearly led to its demise. Only the combined 
engagement of civilian and defense organizations ultimately saved 
this pioneer satellite land monitoring program. With the emergence 
of 21st century Earth system science research, the full value of the 
Landsat concept and its continuous 45-year global archive has 
been recognized and embraced. Discussion of Landsat’s future 
continues but its heritage will not be forgotten. 

The pioneering satellite system’s vital history is captured in this 
notable volume on Landsat’s Enduring Legacy.  

Landsat Legacy Project Team
Samuel N. Goward
Darrel L. Williams
Terry Arvidson
Laura E. P. Rocchio
James R. Irons
Carol A. Russell
Shaida S. Johnston

Landsat’s Enduring Legacy
Hardback. 2017,  ISBN 1-57083-101-7   
Member/Non-member  $48*
Student Member $36*

* Plus shipping

LANDSAT’S ENDURING LEGACY

Pioneering Global Land Observations from Space

Landsat Legacy Project Team

landSat’S enduring legaCY
Pioneering global land observations from sPace

Order online at 
www.asprs.org/landsat
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