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ABSTRACT 

Combining active and passive imaging sensors enables creating a more detailed 3D model of the real world. 

Then, these 3D data can be used for various applications, such as city mapping, indoor navigation, 

autonomous vehicles, etc. Typically, LiDAR and camera as imaging sensors are installed on these systems. 

Both of these sensors have advantages and drawbacks. Thus, LiDAR sensor directly provides relatively 

accurate 3D point cloud, but LiDAR point cloud barely contains the surface textures and details, such as 

traffic signs and alpha numeric information on facades. As opposed to LiDAR, deriving 3D point cloud from 

images require more computational resources, and in many cases, the accuracy and point density might be 

lower due to poor visual or light conditions. This paper investigates a workflow which utilizes factor graph 

SLAM, dense 3D reconstruction and ICP to efficiently generate the LiDAR and camera point clouds, and 

then, co-register in a navigation frame to provide a consistent and more detailed reconstruction of the 

environment. The workflow consists of three processing steps. First, we use factor graph SLAM, GPS/INS 

odometry and 6DOF scan matching to register the LiDAR point cloud. Then, the stereo images are processed 

by stereo-scan dense 3D reconstruction technique to generate dense point cloud. Finally, ICP method is used 

to co-register LiDAR and photogrammetric point clouds into one frame. The proposed method is tested with 

the KITTI dataset. The results show that data fusion of two point clouds can improve the quality of the 3D 

model.  
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INTRODUCTION 

 

Over the recent years, the need for 3D city models are increasing. Mobile mapping systems allow for 

collecting huge datasets around the city to create these models. Therefore, local and national authorities invest 

to buy mobile mapping platforms, such as UAV (Unmanned Aerial Vehicle), MMS (Mobile Mapping System). 

One of the main challenge is to extract information relevant to the city model from the data sources captured 
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by the platformôs sensors. The combination of the various data streams allows us to improve the information 

extraction. LiDAR (Light Detection and Ranging) and stereo camera systems are widely used sensor 

configuration for mobile mapping systems. Regarding algorithms, Simultaneous Localization and Mapping 

(SLAM), bundle adjustment (BA), and dense point matching are commonly used to process the data and 

generate point cloud from LiDAR and images. However, there are critical application-specific 

implementation problems with each technique. For example, mapping using data from a laser scanner can be 

difficult because the problem requires the correction of the motion distortion in the Lidar cloud. In addition, 

LiDAR point cloud can barely capture the surface textures and details (street signs and alpha numeric 

information on facades) of 3D model. Similarly, the quality of the image-based point cloud might be low due 

to the lack of tie points (features) and the impact of varying acquisition conditions, such as sun angle, shadows. 

To support building 3D maps, this paper proposes a workflow to process LiDAR and image point cloud 

datasets and co-register them in a common frame to create a more detailed point cloud. First, we apply factor 

graph SLAM and stereo-scan dense 3D reconstruction to produce LiDAR point cloud and image-based point 

clouds. Next, we use ICP method to fuse Lidar point cloud and stereo image point cloud into one mapping 

frame. 

The rest of the paper is organized as follows. The related work will be briefly presented in ñRelated 

Worksò section. In the next section, we will summarize the workflow for building 3D map including 

algorithms and methods for processing the LiDAR and stereo image datasets. In section of ñResultsò, the 

comparison and statistics of the results are presented. Finally, the paper ends with conclusion. 

 

 

RELATED WORKS 

 

The data fusion of LiDAR and photogrammetric datasets has been wildly used across various 

applications, such as forest management, city planning, catastrophe control, heritage recording, robotic 

utilities, etc. Researchers from many disciplines including the remote sensing and computer vision 

community have shown interest in solving relevant problems with fusing LiDAR and photogrammetric data 

(Basgall 2013). Among of these comprehensive researches, there are two main types of data fusion 

approaches.  

First, one dataset supports the improvement of the other dataset during the point cloud registration. For 

instance, in a research, where the authors improved LiDAR point cloud registration acquired by MMS in 

GPS-denied area (Gajdamowicz et al. 2007), the feature coordinates extracted from images were used to 

correct LiDAR point cloud. Another example was shown in an application of heritage protection (Nex. F 

2010). In this research, LiDAR data was used to aid the edge detection and matching between images for 

cultural heritage surveys. All these approaches in this category focus on exploiting the merit of image with 

the characteristics of LiDAR data. In the second approach, the both sensors are used for generating point 

clouds, and then, these clouds are co-registered. Note that this approach is in the focus of this study. This 

approach is typically used for building DTM by using airborne LiDAR scanning data and aerial imagery 

(Basgall 2013; Schenk et al. 2003). In the field of heritage preservation, merging LiDAR and image-based 

point clouds is also used for creating 3D model of objects, such as monument, statues, or frontage (Mu¶umer 

et al. 2015).  
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PROPOSED APPROACH 

 

This paper presents a workflow to improve the details of mobile mapping point clouds by merging 

LiDAR and image-based point cloud with the ability to efficiently process a large dataset, such as long 

sequence of images. As shows in Figure 1, the proposed method consists of three main steps. In the first step, 

LiDAR scans is registered by using factor graph SLAM with GICP (Generalized Iterative Closest Point) scan 

matching and GPS/INS poses as constraints. In the second step, stereo images are processed with the dense 

3D reconstruction technique to derive dense point clouds. Finally, as the last step of the workflow, the ICP is 

used for merging the two point clouds into one common frame. The method is tested with a 100 seconds 

length of KITTI benchmark data set (Geiger et al. 2012). The coordinate system is the sensor local frame, 

which specifically is the coordinate system of the left camera. 

 

 

Figure 1. Overview of workflow 

 

Factor graph SLAM for LiDAR point cloud 

In this section, we present the LiDAR point cloud registration method applied in this study. The goal is 

to produce a metrically accurate point cloud. In this paper, we apply the factor graphs to derive the posesof 

the platform, including position, and attitudes (Dellaert 2012). The structure of factor graph used in this paper 

is presented in Figure. 2. This factor graph contains poses ὼ  as nodes, i.e. the unknown variables of the 

graph, and the constrains are poses from the KITTI GPS/INS integrated solution έ   and the 

transformation parameters between the consecutive point clouds obtained by an ICP ὧ algorithm. Here, 

we use GICP as ICP implementation. The nonlinear optimization problem of the factor graph is solved with 

Levenberg-Marquardt optimizer.  

The consecutive LiDAR point clouds can be transformed into one mapping frame using the poses 

obtained from the factor graph; the results can be seen in Figure 3a. We use an SOR (Statistical Outlier 

Removal) filter to remove noise presented in the point cloud, see Figure 3b. The filtered point cloud contains 

17,563,260 points. For the qualitative analysis, the points of the cloud is projected onto the corresponding 
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image plane, see Figure 3c.  

 

 

Figure 2. Factor graph for estimating the platform poses. 

 

 

Figure 3. Results of the LiDAR registration. In (a), we show the registered point cloud before filtering. 

The results after filtering is shown in (b). Sample projection of 3D point into image is shown in the (c). 
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Photogrammetric 3D Reconstruction 

The sequence of stereo gray images with size of 1241Ĭ376 is used as inputs for the scene reconstruction. 

The stereo images are simultaneously acquired with the LiDAR scans. The SFM techniques are widely 

applied in 3D reconstruction application. However, such techniques have considerably computational burden 

problem and need several redundant viewpoints for the detailed reconstruction. Our dataset was collected by 

an MMS, and thus, objects can only be observed for short time periods and from one direction resulting in 

small numbers of features that are essential for SFM. Overall, this reduces the quality of the point clouds 

derived from images. An example is shown in Figure 4. One sample image from the scene is presented in 

Figure 4b. The resulting reconstruction from these images are shown in Figure 4a. Note that the derived point 

cloud is very sparse. Clearly, this results cannot be used for mapping the environment. In addition, the 

computation was run on a MacBook Air with a 2.2 GHz Core i7-5650U, 8 GB ram and Intel HD Graphics 

6000, took 1.5 hours for 32 images, just for illustrating the computation burden of this process.  

 

 

Figure 4. 3D reconstruction by SFM: (a) The point cloud. (b) Pictures of the scene for reconstruction. 
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To build dense point cloud from stereo image sequence, we use StereoScan 3D reconstruction technique 

in this paper, for more details, see Geiger et al. 2011. The approach is based on the Libviso2 (Library for 

Visual Odometry 2) library, LIBELAS (Efficient large-scale stereo matching) library, see Geiger et al. 2010, 

and STEREOMAPPER. The proposed pipeline consists of four steps:  

 

1) Sparse feature extraction and matching. In the first step, the features as blob or corners are 

extracted from images, then match the feature descriptors.  

2) Egomotion estimation. The motion parameter including translation and rotation of moving 

platform are estimated. The egomotion estimation is achieved by matching features in a ócircularô way; 

between the left and right images as well as between the consecutive frames. 

3) Dense stereo matching. Once, the relative positions between the stereo cameras are known, then, 

the 3D object space coordinates can be derived for all 2D image points.  

4) 3D reconstruction. In Step 3, one-one point clouds are derived epoch-by-epoch. In the last step, 

the point clouds obtained from the stereo image matching are merged into one mapping frame. To 

increase computational efficiency, a filter is used for reducing the amount of points and noise. 

 

After processing stereo images through the proposed pipeline and applying SOR filter, the dense 

reconstruction contains 17,288,623 points, see Figure 5. 

 

DATA FUSION WITH ICP METHODS 

 

The last step in our workflow is to match the LiDAR and image point clouds with ICP. ICP iteratively 

tries to transform one point cloud to the other one with minimizing the distance between corresponding 

closest point pairs. The objective function can be formulated as  

 

Ὕ ÁÒÇ ÍÉÎВ ᴁὝὴ ήᴁ ȟ                        (1) 

 

 

Figure 5. (a) shows the 3D reconstruction via StereoScan 3D reconstruction method. (b) shows the 

point cloud after SOR filter. 
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where ὑ is the number of matched points, P ὴȣὴ , Q ήȣή  are the two point clouds expressed 

in homogenous coordinates. Ὕ is a 4-by-4 homogenous transformation matrix. Note that the points in P and 

Q are ordered, in that way, ὴ and ή are the closest point pairs. Comparing to other ICP methods, in GICP, 

a probabilistic model is applied to this minimization process (Segal et al. 2009). 

The main advantages of ICP methods are the simplicity (Segal et al. 2009). However, the initial position 

of two point clouds can highly influence the matching quality. To minimize this influence, before the ICP 

process, we transform the two point clouds into one common frame by using the sensor-to-sensor calibration 

parameters offered by KITTI. The co-registered point clouds and a zoom in detail are shown in Figure 6, in 

which the white points are from the image-based point cloud and the blue/green points are the LiDAR points. 

The co-registration is performed with GICP and ICP. These two methods are compared in the ñResultsò 

section. 

 

 

(a)                                       (b) 

Figure 6. The 3D view of point clouds before ICP process is shown in (a). (b) shows the scene in details. 

 

 

RESULTS 

 

Compare ICP and GICP 

In this section, we firstly compare and analyze the results of two ICP methods. Figure 7 illustrates the 

the registered point clouds produced by ICP and GICP with the same view as the Figure 6. Note that there is 

an offset between the two point clouds highlighted by the red marked area in Figure 7d, such as the edges of 

walls and vehicles. On the other hand, in the same areas of Figure 7 (c), the matching result is better than in 

(d). Thus ICP outperforms GICP in terms of matching accuracy. In Figure 8, we also compared LiDAR 

odometry and visual odometry trajectories before and after data fusion process. In Table 1, we present the 

values of RMS between LiDAR and Visual trajectories components (X, Z) from not fused, ICP and GICP 

results. The quantitative analysis shows that ICP can matching two point clouds with higher accurate in both 

X and Z direction than the performance of GICP.  
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Figure 7. Fusion of both point clouds. (a) and (c) are the results derived from ICP tool of 

CloudCompare. (b) and (d) are the results derived from GICP. The red marks indicate some obvious 

differences of matching. 

 

Figure 8. LiDAR (blue) and visual (red) odometry results: (a) before fusion; (b) after registration with 

ICP in CloudCompare; (c) after registration with GICP 
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Table 1.  Comparison of RMS Values Between LiDAR and Visual Odometrys from Not Fused, ICP 

and GICP Results 

Odometry RMS  Not fused data Fusion with ICP Fusion with GICP 

RMS (X) 1.1223 m 0.1231 m 1.1270 m 

RMS (Z) 0.4653 m 0.0117 m 0.0408 m 

 

Investigation on the improvement of the point cloud 

We compare the size and density of the LiDAR, image and combined point cloud to assess the 

improvement of point cloud. The results are shown in Table 2 and Figure 9. In Figure 9, a threshold of 95% 

of density histogram was depicted by red line. Note that this 95% limit is 200000 in Figure 9a, and 420000 

for Figure 9c indicating that the density of original LiDAR point cloud is significantly increased by 

integrating with image-based point cloud. An example which areas are covered by the two types of point 

clouds can be seen in Figure 10. Here, we show a pole that can be seen at the left side of picture. Note that 

not all part of the pole is captured in the LiDAR point cloud, see Figure 10b. In Figure 10c, the pole is 

complete after merging with the 3D reconstruction. The similar situation is shown in Figure 11. The missing 

areas around cars can be seen in Figure 11a, which is caused by the vehicles are covered the cameraôs field 

of view. This area can be filled up by point cloud obtained from LiDAR, see Figure 11b. 

 

Table 2.   Sizes for LiDAR, image-based and combined point clouds 

Category of Point Cloud Amount of Points  

LiDAR 17563260 

Image-based 17288623 

ICP Combined 34851883 

 

 

                (a)                           (b)                          (c) 

Figure 9. Density histograms of LiDAR point cloud (a), 3D reconstruction (b) and fusion of both point 

clouds (c). 
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Figure 10. Example of image-based point cloud supplement the missing part in LiDAR point cloud 

 

 

              (a)                             (b)                             (c) 

Figure 11. Example of two point clouds supplement each other: (a) is 3D reconstruction, (b) is LiDAR 

point cloud, (c) is fusion of both point clouds. 

 

 

CONCLUSION 

In this study, we proposed a workflow for 3D street mapping using data collected from multi sensor 

system. This workflow utilizes factor graph SLAM to register the consecutive LiDAR scans, a stereo dense 

3D reconstruction to generate dense point cloud, and finally, ICP for merging the two point clouds into one 

mapping frame. The workflow is analyzed on a 100 s long section of the KITTI dataset. This dataset includes 

LiDAR scans, stereo images and GPS/INS navigation data. In addition, the performance of the two ICP 

methods is compared in terms of quality of the integrated point cloud. The results show that gaps in the 

LiDAR point cloud can be filled up with image-based point cloud after the data fusion process. Furthermore, 

test of ICP methods shows that the ICP in CloudCompare can achieve a better matching accuracy than the 

GICP on the investigated dataset. 
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