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ABSTRACT 
 

A Synthetic Aperture Radar (SAR) system with hybrid-polarity architecture constitutes a significant 
advancement in the field of radar remote sensing. This new architecture system is a Compact Polarimetric (CP) SAR 
system which transmits a circular polarization and receives two mutually coherent orthogonal linear polarizations. 
This SAR system reduces some of the design constraints of the spaceborne satellite, allowing for a low-cost and 
low-mass SAR system. The main advantage of this SAR system is that it has a greater amount of information than 
the standard dual-pol mode, while covering the swath width of ScanSAR imagery. Therefore, a growing interest has 
been raised for CP SAR systems as a possible tradeoff in full quad-pol SAR systems. A CP SAR mode will be 
included in future SAR missions, such as the Canadian RADARSAT Constellation Mission (RCM) and the Japanese 
Advanced Land Observing Satellite-2 (ALOS-2). This paper is a first attempt towards the selection of the optimum 
CP parameters for sea ice classification. A set of twenty three CP parameters are assessed. A late-winter case study 
image is used, encompassing two sea ice types and one open water state. 
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INTRODUCTION 
 

Synthetic Aperture Radar (SAR) sea ice classification and mapping at operational scales usually relies on 
single- or dual-polarized imagery. However, such imagery is limited in its ability to discriminate certain sea ice 
types and open water states (Geldsetzer and Yackel, 2009). The additional information contained in polarimetric 
SAR imagery may be used to improve classification potential (e.g. Gill and Yackel, 2012), but current image swath 
widths (up to 50 km for RADARSAT-2 quad-pol-wide) are too small for operational application. 

A SAR system with hybrid-polarity architecture constitutes a significant advancement in the field of radar 
remote sensing (Raney, 2007). Such architecture is included in the current Indian RISAT-1 satellite, and it will be 
included in future SAR missions, such as the Canadian RADARSAT Constellation Mission (RCM), and the 
Japanese Advanced Land Observing Satellite-2 (ALOS-2). The main advantage of such SAR systems is that they 
have a greater amount of information than standard dual-pol mode, while covering much greater swath widths 
compared to quad-pol mode.  RCM will transmit a right-circular polarization and receives two mutually coherent 
orthogonal linear polarizations (RH and RV), providing compact polarimetry (CP) as a primary imaging mode. CP 
parameters for sea ice discrimination have shown promise in preliminary studies (Charbonneau et al., 2010), and 
may have classification potential similar to that of fully polarimetric parameters. Furthermore, CP data will be 
available at swaths up to 500 km wide, making it operationally viable. 

In this study, we investigate the potential of the future CP SAR system in the RCM satellite for sea ice type 
classification. We use simulated CP SAR parameters from thee CP RCM future modes with different resolutions and 
noise floors. The three different CP sets of parameters are separately used as input data for sea ice type identification 
through a Maximum Likelihood (ML) classification approach. Furthermore, we evaluate the three CP parameter sets 
for the discrimination between ice and open water (OW) areas. RADARSAT-2 data of sea ice collected over the 
Barrow Strait close to the Somerset Island in the Canadian Arctic are used. 
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METHODOLOGY 
 

Different sets of CP SAR parameters can be calculated and used for sea ice classification. In this study, twenty 
three simulated CP SAR parameters are calculated and their potential for sea ice type discrimination is evaluated.  
 

Table 1: The twenty-three simulated RCM compact polarimetric SAR parameters. 
 
Symbol Name Formula  



RHσ  Sigma naught backscatter value at indicated polarizations   σo = gAR
T 

* gR 



RVσ  Sigma naught backscatter value at indicated polarizations   σo = gAR
T 

* gR 



RRσ  Sigma naught backscatter value at indicated polarizations   σo = gAR
T 

* gR 



RLσ  Sigma naught backscatter value at indicated polarizations   σo = gAR
T 

* gR 

rvrhγ  Circular cross polarization ratio 

RHRVrvrh σσγ =  
δ Relative phase of RV and RH Eq. (6) in (Charbonneau et al., 

2010) 
m Degree of polarization Eq. (3) in (Raney et al., 2012) 

u Conformity coefficient  Eq. (20) in (Truong-Loi et al., 
2009) 

ρ Correlation coefficient of RV and RH (amplitude) 
**

*

RVRVRHRH

RVRH

SSSS

SS

+
=ρ

 

μc Circular polarization ratio Eq. (3) in (Charbonneau et al., 
2010) 

m-χ-e Even bounce scattering based on m-chi decomposition Eq. (5) in (Raney et al., 2012) 

m-χ-v Volume scattering based on m-chi decomposition Eq. (5) in (Raney et al., 2012) 

m-χ-o odd scattering based on m-chi decomposition Eq. (5) in (Raney et al., 2012) 

m-δ-db Double bounce scattering based on m-delta decomposition Eq. (7) in (Charbonneau et al., 
2010) 

m-δ-v Volume scattering based on m-delta decomposition Eq. (7) in (Charbonneau et al., 
2010) 

m-δ-s Surface scattering based on m-delta decomposition Eq. (7) in (Charbonneau et al., 
2010) 

α-s Alpha parameter related to the ellipticity of the compact scattered 
wave Eq. (9) in (Cloude et al., 2012) 

Hi Shannon entropy – intensity component ( )





=

2
Trlog2 2TeHi

π

 
Hp Shannon entropy – polarimetric component 

( ) 





= 2

2

2

Tr
4

log
T
T

H P

 
g0 Stokes vector first component  Eq. (2) in (Raney et al., 2012) 

g1 Stokes vector  second component Eq. (2) in (Raney et al., 2012) 

g2 Stokes vector  third component Eq. (2) in (Raney et al., 2012) 

g3 Stokes vector  fourth component Eq. (2) in (Raney et al., 2012) 
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In addition, we assess the potential of the estimated CP SAR parameters for the discrimination between ice and no 
ice regions. Table 1 shows the considered simulated CP SAR parameters in this study.   

In Table 1, gR is the received Stokes vector resulting from an antenna transmitting right circular polarization, 
gAR is the Stokes vector of the receiving antenna: for horizontal (RH) receiving gAR

T = [1 1 0 0], for vertical (RV) 
receiving gAR

T = [1 -1 0 0], for right-circular receiving gAR
T = [1 0 0 -1], and for left-circular receiving gAR

T = [1 0 0 
1]. SRH and SRV denote the complex elements of the compact polarimetric scattering vector, T2 is the 2x2 compact 
polarimetric coherency matrix and Tr denotes the matrix trace.  

We calculate the twenty three simulated CP SAR parameters for three RCM modes: 1) Low Noise 100 m, −25 
dB noise floor (LN25); 2) Low Resolution 100 m, −22 dB noise floor (LR22); and 3) Medium Resolution 50 m, −22 
dB noise floor (MR22). Our purpose is to determine for each RCM mode those parameters which better classify 
different ice types and also accurately discriminate between Ice and OW regions. Since the calculated CP SAR 
parameters are correlated, we adopt a supervised Maximum likelihood (ML) classification approach using as input 
data all the possible subsets of the calculated CP SAR parameters. The ML classification approach calculates the 
probability gi(x) that a given n-dimensional data pixel x belongs to a specific class wi, as follow (Richards, 1999): 
 
𝑔𝑖(𝑥) = ln𝑝(𝑤𝑖) −

1
2

ln|Σ𝑖| −
1
2

(𝑥 − 𝑚𝑖)𝑇Σ𝑖−1(𝑥 − 𝑚𝑖)               (1) 
 
where p(wi) is the probability that class wi occurs in the data and is assumed the same for all classes, Σ𝑖  is the 
covariance matrix of the data in class wi, and superscript T denotes the transpose operation. Each pixel is assigned to 
the class that has the highest probability (Richards, 1999). 

Applying the ML classification approach for each RCM mode to all the possible subsets of the twenty three 
available CP SAR parameters implies the repetition of the classification approach thousands of times (223-1 
classifications). In order to reduce the high number of classifications that need to be applied, we calculate the 
separability of the classes in each CP SAR parameter using the Jeffries-Matusita (JM) separability criterion, which 
takes values in the interval [0, 2]. The closer the value of the JM separability to zero the lower is the separability 
between classes. On the other hand, the closer the JM separability value to 2, the higher is the separability between 
classes. The JM separability can be calculated as follow (Swain and Davis, 1978) 
 
𝐽𝑖𝑗 = 2(1 −  𝑒−𝑑𝑖𝑗)                    (2) 
 
where dij is the Bhattacharyya distance, defined as (Duda et al., 2000)  
 
𝑑𝑖𝑗 =  − ln�∫�𝑝(𝑥/𝑤𝑖) 𝑝(𝑥/𝑤𝑗) 𝑑𝑥�                                            (3) 
 
where p(x/wi) and p(x/wj) are the conditional probability density functions of the random variable x, given the data 
classes wi and wj, respectively. The Bhattacharyya distance is a special case of the Chernoff distance, which has the 
following form for the multivariate normal distribution (Duda et al., 2000) 
 

𝑓𝑖𝑗(𝑏) =  𝑏(1−𝑏)
2

�𝑚𝑗 −  𝑚𝑖�
𝑇�𝑏Σ𝑖 + (1 − 𝑏)Σ𝑗�

−1�𝑚𝑗 −  𝑚𝑖� + 1
2

ln
�𝑏Σ𝑖+(1−𝑏)Σ𝑗�

|Σ𝑖|𝑏�Σ𝑗�
1− 𝑏                    (4) 

 
where b is an optimization parameter (0 ≤ b ≤ 1). According to Swain and Davis (1978), the optimal Chernoff 
distance can be obtained by finding the optimal value of the parameter b which minimizes the function 
 
𝑔(𝑏) =  𝑒−𝑓(𝑏)                     (5) 
 
The function g(b) is a convex downward function on the interval [0, 1] of b with only one local minima which 
corresponds to the optimal value of b (Duda et al., 2000). Thus, the Bhattacharyya distance is a special case of the 
Chernoff distance in which the parameter b is assumed to be equal to 0.5. Thus, instead of the Bhattacharyya 
distance, we calculate the optimal JM separability criterion by using the Chernoff distance.  

In order to reduce the number of classifications that need to be performed, we calculate the separability of the 
class samples in each CP SAR parameter and select those parameters in which at least two pairs of classes have 
separability value higher than 1. For the case of Ice and OW, we select those parameters in which the JM 
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separability value of the ice and the OW is higher than 1. In addition, we set two as the minimum number of 
parameters in a parameter combination.    
 

EXPERIMENTAL RESULTS AND DISCUSSIONS 
 
Data Set 

The simulated CP SAR parameters in Table 1 are calculated from a fine quad-pol RADARSAT-2 SAR image 
over the Barrow Strait close to Somerset Island in the Canadian Arctic. The data were collected in May 5th, 2010, 
with incidence angle range between 30.3 and 32.0 degrees and a pixel-spacing of approximately five meters. Sea ice 
experts form the Canadian Ice Service (CIS) identified three main classes in the selected study area: 1) First Year Ice 
(FYI), 2) Multi Year Ice (MYI) and Open Water (OW). Figure 1 shows the RGB (R = HH-VV, G = 2HV, B = 
HH+VV) image of the study area with the selected by the CIS training (solid polygons) and testing (empty 
polygons) samples. The bottom of the study area contains a land portion which was excluded from the processing 
using available coastline data. The mean air temperature was -10.4oC and the mean wind speed was 6.1 km/h. 
Temperature has been < 0oC for months.   
 

 
Figure 1. RGB (R = HH-VV, G = 2HV, B = HH+VV) display of the study area with the selected training (solid 
polygons) and testing (empty polygons) samples.  
 
Jeffries-Matusita (JM) Separability 

For each RCM mode, we calculate the JM separability between all possible pairs of classes and the overall 
mean JM separability in each CP SAR parameter. Furthermore, we also calculate for each CP parameter the 
separability of the ice as one class versus the OW. We set a conservative threshold that two classes can be separated 
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if the JM separability value is greater than 1 in the interval [0, 2]. Table 2 presents the calculated JM separability of 
the classes within each CP parameter for the RCM modes: LN25, LR22, and MR22.  
 

Table 2: The JM separability between the classes FYI, MYI, and OW and the Ice versus OW for the RCM 
LN25, LR22 and MR22 modes. 

 
 FYI - MYI FYI - OW MYI - OW Overall Mean JM 

Separability 
Ice - OW 

 LN25 LR22 MR22 LN25 LR22 MR22 LN25 LR22 MR22 LN25 LR22 MR22 LN25 LR22 MR22 


RHσ  1.92 1.92 1.91 0.14 0.11 0.06 1.98 1.98 1.97 1.35 1.34 1.32 1.37 1.35 1.27 


RVσ  1.96 1.96 1.93 0.49 0.47 0.35 1.75 1.74 1.63 1.40 1.39 1.30 0.76 0.75 0.65 



RRσ  1.99 1.99 1.99 0.27 0.20 0.15 1.999 1.998 1.997 1.42 1.40 1.38 1.74 1.67 1.56 



RLσ  
1.90 1.90 1.87 0.18 0.17 0.11 1.84 1.84 1.75 1.31 1.30 1.25 0.89 0.88 0.78 

rvrhγ  0.08 0.12 0.08 1.73 1.73 1.80 1.39 1.31 1.55 1.07 1.05 1.15 1.52 1.46 1.64 

δ 0.08 0.08 0.12 0.30 0.30 0.21 0.45 0.45 0.51 0.28 0.28 0.28 0.39 0.39 0.41 
m 0.30 0.23 0.22 1.01 0.91 0.78 1.76 1.34 1.15 1.03 0.82 0.71 1.33 1.04 0.88 
u 0.30 0.21 0.22 0.97 0.89 0.68 1.68 1.24 0.98 0.98 0.78 0.62 1.24 0.98 0.74 
ρ 0.27 0.24 0.27 1.04 0.98 0.77 1.66 1.22 0.93 0.99 0.81 0.66 1.26 1.00 0.76 
μc 0.25 0.24 0.27 1.09 1.03 0.83 1.65 1.25 1.00 1.00 0.84 0.70 1.29 1.05 0.82 

m-χ-e 1.29 1.29 1.40 1.33 1.33 1.48 0.24 0.24 0.34 0.95 0.95 1.07 0.21 0.21 0.29 
m-χ-v 1.995 1.99 1.99 0.75 0.60 0.44 1.9998 1.999 1.998 1.58 1.53 1.48 1.80 1.71 1.60 
m-χ-o 1.65 1.65 1.61 0.24 0.24 0.17 1.40 1.40 1.28 1.10 1.10 1.02 0.62 0.62 0.52 
m-δ-
db 1.18 1.18 1.37 0.25 0.25 0.22 1.49 1.49 1.61 0.98 0.98 1.07 1.37 1.37 1.51 

m-δ-v 1.995 1.99 1.99 0.75 0.60 0.44 1.9998 1.999 1.998 1.58 1.53 1.48 1.80 1.71 1.60 
m-δ-s 1.66 1.66 1.62 0.26 0.26 0.20 1.37 1.37 1.24 1.10 1.10 1.02 0.60 0.60 0.50 

α-s 0.12 0.12 0.15 0.94 0.94 1.15 0.49 0.49 0.59 0.52 0.52 0.63 0.62 0.62 0.76 
Hi 1.89 1.91 1.89 0.31 0.24 0.14 1.95 1.95 1.91 1.38 1.37 1.31 0.70 0.70 0.60 
Hp 0.31 0.17 0.17 0.77 0.75 0.45 1.46 1.05 0.73 0.85 0.65 0.45 1.02 0.83 0.53 
g0 1.97 1.97 1.96 0.15 0.13 0.08 1.96 1.96 1.92 1.36 1.35 1.32 1.06 1.04 0.95 
g1 0.78 0.78 0.80 1.50 1.50 1.49 0.61 0.61 0.70 0.96 0.96 1.00 0.65 0.65 0.71 
g2 0.94 0.94 1.01 0.10 0.10 0.03 1.04 1.04 1.11 0.69 0.69 0.72 0.86 0.86 0.94 
g3 1.63 1.63 1.59 0.22 0.22 0.15 1.42 1.42 1.29 1.09 1.09 1.01 0.65 0.65 0.54 

 
As shown in Table 2, thirteen CP parameters separate FYI and MYI in the case of RCM LN25 and LR22 

modes. These parameters are the same for the two modes. For the MR22 mode, fourteen CP parameters separate 
FYI and MYI. These are the same parameters of the LN25 and LR22 modes, with an additional parameter, the third 
component of the Stokes vector (g2). For the RCM LN25 mode, the highest JM separability value between FYI and 
MYI is obtained by the volume scattering parameters m-χ-v and m-δ-v. For the RCM LR22 and MR22 modes, the 
highest JM separability value between FYI and MYI is obtained by two parameters: 𝜎𝑅𝑅0  and the volume scattering 
parameters m-χ-v and m-δ-v. The FYI and OW classes are separated by six parameters in the LN25 mode and four 
parameters in the LR22 and MR22 modes. In the three modes, the ratio 𝛾𝑟𝑣𝑟ℎ provides the highest JM separability 
value. The MYI and OW classes are separated by nineteen CP parameters in the RCM LN25 and LR22 modes. 
Fifteen CP parameters are able to separate MYI and OW in the RCM MR22 mode. In the three modes, the volume 
scattering parameters m-χ-v and m-δ-v provide the highest JM separability value. However, the 𝜎𝑅𝑅0  parameter also 
exhibits very high separability values in the three modes. Among the three modes the highest separability between 
FYI and MYI is obtained in the LN25 mode (1.995 by the volume parameters). The highest JM separability value 
between FYI and OW is given in the MR22 mode (1.80 by the ratio 𝛾𝑟𝑣𝑟ℎ). For the classes MYI and OW, the 
highest JM separability value is obtained in the RCM LN25 mode (1.9998 by the volume parameters).          

Based on the overall mean JM separability, the three class combinations are discriminated in thirteen CP 
parameters for the case of RCM LN25 mode, twelve CP parameters for the case of RCM LR22 mode, and fourteen 
CP parameters for the case of RCM MR22 mode. Among the three modes, the highest JM separability (1.53) is 
obtained in the RCM LN25 and LR22 modes by the volume scattering parameters m-χ-v and m-δ-v. The ratio 𝛾𝑟𝑣𝑟ℎ 
provides the lowest JM separability value for all the three modes (0.28). 
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The separation between the class Ice and OW is achieved with twelve, nine and six CP parameters in the RCM 
LN25, LR22, MR22 modes, respectively. The highest separability between Ice and OW is achieved by the volume 
scattering parameters m-χ-v and m-δ-v in the RCM LN25 and LR22 modes. However, in the RCM MR22 mode, the 
ratio 𝛾𝑟𝑣𝑟ℎ gives the highest separability between Ice and OW. It is worth to mention that by increasing the noise 
level and the spatial resolution, the number of the CP parameters which separate Ice and OW is decreasing.      

The RCM LN25 mode is compared with the RCM LR22 and RCM MR22 modes to assess the influence of an 
increased noise level and a higher resolution (Fig. 2). For the overall mean JM separability (Fig. 2a), a general effect 
is a reduction in separability with an increased noise level and a further reduction with higher resolution. This is 
most obvious for the m, u, ρ, μc and Hp parameters. Small increases in separability are observed with higher 
resolution for 𝛾𝑟𝑣𝑟ℎ, m-χ-e, m-δ-db, and α-s. For JM separability of Ice and OW (Fig. 2b), the same general 
reduction in separability is observed with an increased noise level and higher resolution. Similar small increases in 
separability are observed with higher resolution for 𝛾𝑟𝑣𝑟ℎ, m-χ-e, m-δ-db, and α-s, and also g2. 
 

 
(a) 

 
(b) 

 
Figure 2. (a) The overall mean JM separability of the three pairs of classes and (b) The JM separability between the 
Ice and the OW in the simulated CP SAR parameters for the three RCM modes. 
 
Maximum Likelihood Classification 

The calculated CP SAR parameters in each RCM mode are highly correlated. In order to determine those CP 
parameters needed to obtain the maximum classification accuracy, we apply the ML classification approach using 
all the possible subsets of the CP parameters and calculate the overall classification accuracy for each classification 
result. As mentioned previously, in order to reduce the high number of classifications that need to be performed, we 
use the JM separability to select those CP parameters where at least two class pairs are separable. For the case of Ice 
versus OW, we select the CP parameters where Ice and OW are separable. We considered two as the minimum 
number of CP parameters in a subset. We state that the optimal subset is the one which provides the highest overall 
classification accuracy. 
 
A. The RCM LN25 Mode 

Based on the calculated JM separability values (Table 2), seventeen parameters are selected for the ML 
classification of the FYI, MYI and OW. The highest overall classification accuracy is obtained with the CP subset of 
two parameters, the ratio 𝛾𝑟𝑣𝑟ℎ and the volume scattering parameter m-χ-v or m-δ-v. Note that the ratio 𝛾𝑟𝑣𝑟ℎ is a CP 
parameter which separates the OW from the FYI and the MYI, while the volume scattering parameter separates the 
MYI form the FYI and the OW. Also, the ratio 𝛾𝑟𝑣𝑟ℎ is the CP parameter with the highest JM separability value 
between the FYI and the OW, while the volume parameter has the highest JM separability value between the classes 
FYI and MYI and the classes MYI and OW. The overall classification accuracy obtained by these two parameters is 
equal to 99.92% with a Kappa coefficient value of 0.9985.  

We repeat the same batch classification procedure for the classification of Ice and OW. As shown in Table 2, 
Ice and OW are separable in twelve CP parameters, which are used as input data in the classification approach. The 
highest obtained overall classification accuracy is equal to 100%. This accuracy is achieved using the four CP 
parameters: 𝜎𝑅𝐻0 , 𝜎𝑅𝑅0 , 𝛾𝑟𝑣𝑟ℎ, and the volume scattering parameter m-χ-v or m-δ-v. However, the estimation of the 
importance of each parameter in the achieved overall classification is needed. Thus, for a number of parameters in a 
subset higher than two, we apply a leave-one-out (LOO) test. Based on the LOO test, we reapply the classification 
process using n – 1 parameters, where n is the number of CP parameters that provides the highest overall 
classification accuracy (n > 2). The classification procedure is repeated n times, excluding each time one CP 
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parameter and calculating the overall classification accuracy. The importance of each CP parameter is associated 
with its contribution to the overall classification accuracy. This importance/contribution can be evaluated by 
calculating the reduction in the overall classification accuracy caused by the exclusion of that parameter. 
Consequently, the higher the reduction is the higher the importance of the excluded CP parameter. We apply the 
LOO test on the obtained CP subset for Ice and OW. Table 3 shows the CP parameters sorted based on their 
importance in the classification accuracy.   
 
Table 3: The subset CP parameters for the classification of Ice and OW sorted based on their contribution to 

the highest overall classification accuracy. 
 

Excluded CP parameter Overall classification accuracy (%) Difference from the highest overall accuracy 
(%) 

𝛾𝑟𝑣𝑟ℎ 85.85 14.15 
𝜎𝑅𝑅0  99.02 0.98 

m-χ-v or m-δ-v 99.41 0.59 
𝜎𝑅𝐻0  99.62 0.38 

 
As shown in Table 3, the ratio 𝛾𝑟𝑣𝑟ℎ plays crucial role in the discrimination between Ice and OW. Excluding 

this CP parameter reduces dramatically the overall classification accuracy from 100% to 85.85%. On the other hand, 
the 𝜎𝑅𝐻0  parameter appears to play minor role in the overall highest classification accuracy, since the exclusion of 
this parameter causes the smallest reduction (from 100% to 99.62%).   
 
B. The RCM LR22 Mode 

The pre-mentioned batch ML classification approach is applied for the case of RCM LR22 mode. For the 
classification of the FYI, MYI and OW, fifteen CP SAR parameters are used as input data in the classification 
approach. The highest overall classification accuracy is obtained with a subset of three CP parameters: 𝜎𝑅𝐻0 ,  
𝛾𝑟𝑣𝑟ℎ, and the fourth Stokes component g3. The obtained highest overall classification based on this subset is equal 
to 99.47% with Kappa coefficient equal to 0.9906.  

We apply the LOO test in order to evaluate the importance of each CP parameter of the resulting subset in the 
overall highest classification accuracy. Table 4 shows the CP parameters sorted based on their importance in the 
classification accuracy. As shown in Table 4, the 𝜎𝑅𝐻0  is the parameter with the highest contribution in the overall 
accuracy. The exclusion of this parameter from the obtained subset reduces the highest overall classification 
accuracy by 3.98%.  
 

Table 4: The subset CP parameters for the classification of the FYI, MYI, and OW sorted based on their 
contribution to the highest overall classification accuracy. 

 

Excluded CP parameter Overall classification accuracy (%) Difference from the highest overall accuracy 
(%) 

𝜎𝑅𝐻0  95.49 3.98 
𝛾𝑟𝑣𝑟ℎ 97.28 2.19 

g3  98.18 1.29 
 

The batch classification process is repeated for the classification of the two classes Ice and OW. From Table 2, 
Ice and OW are separable in nine CP parameters. The highest overall classification accuracy is obtained by a subset 
of four CP parameters: 𝜎𝑅𝑅0 , 𝛾𝑟𝑣𝑟ℎ, m-χ-v or m-δ-v, and g0. This subset provides overall classification accuracy 
equal to 99.76%. The LOO test is applied in order to evaluate the importance of the CP parameters of the resulting 
subset. Table 5 presents the CP parameters sorted based on their importance to achieve the highest overall 
classification accuracy.  

As for the case of the RCM LN25 mode, the ratio 𝛾𝑟𝑣𝑟ℎ is crucial for the discrimination between the ice and the 
OW in the RCM LR22 mode. The exclusion of this parameter drops greatly the highest overall classification 
accuracy from 99.76% to 89.60%. This should be associated with the discrimination capability of the ratio  
𝛾𝑟𝑣𝑟ℎ between FYI and OW. The rest of the CP parameters have a minor contribution is the highest overall 
classification accuracy since their exclusion reduces slightly the classification accuracy. 
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Table 5: The subset CP parameters for the classification of Ice and OW sorted based on their contribution to 
the highest overall classification accuracy. 

 

Excluded CP parameter Overall classification accuracy (%) Difference from the highest overall accuracy 
(%) 

𝛾𝑟𝑣𝑟ℎ 89.60 10.16 
𝜎𝑅𝑅0  98.41 1.35 

m-χ-v or m-δ-v 98.50 1.26 
g0 99.27 0.49 

 
C. The RCM MR22 Mode 

Based on Table 2, fifteen CP parameters are used as input data in the batch process for the classification of FYI, 
MYI and OW. We found that the highest overall classification accuracy is obtained by a subset of ten CP 
parameters. Herein, the calculated highest overall classification accuracy is equal to 99.44%. In comparison to the 
previous two RCM modes, we note that the number of CP parameters required to achieve the highest overall 
classification accuracy is quite higher. The optimal subset contains the CP parameters: 𝜎𝑅𝑉0 , 𝜎𝑅𝑅0 , 𝜎𝑅𝐿0 , m-χ-e, m-δ-db, 
m-δ-s, Hi, g0, g3, and m-χ-v or m-δ-v. It should be mentioned that the parameter 𝜎𝑅𝑉0 , which has the highest 
contribution in the overall classification accuracy for the RCM LR22 mode, is not included in the resulting optimal 
subset for the case of RCM MR22 mode. Also, the ratio 𝛾𝑟𝑣𝑟ℎ, which plays important role in the overall 
classification accuracy for the RCM LR25 and LR22 modes, does not belong to the resulting optimal subset of the 
RCM MR22 mode. We apply the LOO test in order to evaluate the importance of each parameter on the highest 
overall classification accuracy. Table 6 shows the CP parameters sorted based on their importance on the highest 
overall classification accuracy.  
 

Table 6: The subset CP parameters for the classification of the FYI, MYI, and OW sorted based on their 
contribution to the highest overall classification accuracy. 

 

Excluded CP parameter Overall classification accuracy (%) Difference from the highest overall 
accuracy (%) 

Hi 50.88 48.56 
𝜎𝑅𝑉0  89.80 9.64 

m-χ-e or m-δ-db 96.52 2.92 
𝜎𝑅𝑅0  97.18 2.26 
g0 97.20 2.24 
g3 97.52 1.92 

m-δ-db 97.63 1.81 
m-χ-e 97.97 1.47 
𝜎𝑅𝐿0  98.43 1.01 

m-δ-s 99.24 0.20 
 

As shown in Table 13, the intensity component of the Shannon entropy has crucial impact on the highest overall 
classification accuracy. The exclusion of this CP parameter dramatically reduces the achieved highest overall 
classification accuracy from 99.44% to 50.88%. Also, Table 6 indicates that the 𝜎𝑅𝑉0  is the second important 
parameter. Essential reduction (9.64%) in the highest overall classification accuracy is occurred by the exclusion of 
this parameter from the obtained CP parameter subset. The lowest impact is associated with the surface parameter of 
the m-δ decomposition (m-δ-s). The exclusion of this parameter reduces the highest overall classification accuracy 
by 0.20%.  

As shown in Table 2, only six CP parameters are eligible for the batch ML classification process of Ice and 
OW. The highest overall classification accuracy (99.80%) is obtained by a subset of three CP parameters: 
𝜎𝑅𝐻0 , 𝜎𝑅𝑅0 , and 𝛾𝑟𝑣𝑟ℎ. It should be noted that the resulting three optimal subsets of the three RCM modes for the 
optimal classification of Ice and OW have in common two CP parameters, the 𝜎𝑅𝑅0  and the ratio 𝛾𝑟𝑣𝑟ℎ. The LOO test 
is applied in order to evaluate the importance of each CP parameter. Table 7 presents the CP parameters sorted 
based on their importance to achieve the highest overall classification accuracy.  
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Table 7: The subset CP parameters for the classification of Ice and OW sorted based on their contribution to 
the highest overall classification accuracy. 

 

Excluded CP parameter Overall classification accuracy (%) Difference from the highest overall accuracy 
(%) 

𝛾𝑟𝑣𝑟ℎ 72.16 27.64 
𝜎𝑅𝐻0  99.60 0.20 
𝜎𝑅𝑅0  99.70 0.10 

 
As for the case of the RCM LR25 and LR22 modes, the ratio 𝛾𝑟𝑣𝑟ℎ plays important role in the classification of 

Ice and OW. The exclusion of this parameter in the RCM MR22 mode greatly reduces the highest classification 
accuracy by 27.64%. The 𝜎𝑅𝐻0  and 𝜎𝑅𝑅0  parameters appear to have minor contribution in the highest overall 
classification accuracy, since the exclusion of these two parameters reduces the accuracy by 0.20% and 0.10%, 
respectively. Note also that the importance of the ratio 𝛾𝑟𝑣𝑟ℎ for the classification of Ice and OW in the RCM MR22 
mode is higher than the RCM LR25 and LR22 modes. This is because the exclusion of this CP parameter from the 
classification process in the RCM MR22 mode produces the lowest overall classification accuracy of Ice and OW 
(72.16%).              
 

CONCLUSIONS 
 

Twenty three simulated compact polarimetry parameters are evaluated for their classification potential in a sea 
ice and open water environment, for three RCM modes. A case study is used to identify: 1) parameters with 
effective Jeffries-Matusita separability; and 2) optimal CP parameters subsets, using batch ML classification. The 
JM separability of most CP parameters is decreased with an increase in noise level, as well as with higher resolution. 
However, the increased noise level and higher resolution have little impact on the ML classification accuracy. The 
high accuracies of the classifications in this case study suggest that the methodology is effective at identifying the 
optimum CP parameter subsets, and that these CP parameter subsets are effective at classifying sea ice and open 
water. Further testing is required at other incidence angles, for additional sea ice types and conditions, and for a 
range of open water states. 
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