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ABSTRACT 
 
Mapping and monitoring of vast coastal wetlands vulnerable to dynamic coastal erosion, sea-level rise, fire, and 
marsh succession require remote sensing approaches that capitalize on newly available sensors, advanced 
classification techniques, and combinations of multi-sensor and multi-date data.  This pilot study assesses the 
feasibility and accuracy potential for mapping specific coastal wetlands of high priority for the National Wetland 
Inventory (NWI) in the Alligator River National Wildlife Refuge, North Carolina.  Wetland classes of high mapping 
value owing to their ecological dynamics and extent include palustrine forests (swamp forests and pocosins), 
emergent estuarine marshes, irregularly-flooded shrub-scrub transition, and invasive Phragmites australis patches 
occurring along shores throughout the region.  These classes selected to test input data and classification 
methodology using an array of multidate SAR imagery (ALOS PALSAR) and LiDAR-derived rasters (minimum 
elevation, vegetation canopy height, slope, and curvature) in combinations.  Initial results illustrate strong potential 
for multidate SAR imagery and enhanced accuracy achievable by integration of vegetation canopy LiDAR for 
broad-scale mapping of coastal wetland vegetation change.   Canopy structural changes over spring, early and late 
summer seasons were captured by PALSAR HH and HV polarization bands, yielding the highest overall accuracies 
multidate combination and with inclusion of LiDAR canopy and minimum elevation data. Field observations 
corroborated the remote sensing and offer useful calibration data for sea-level rise simulation models and invasive 
species monitoring. In concert with the historical continuity of Landsat for broader coastal land cover dynamics, 
these data and techniques offer significant enhancements for future monitoring of coastal change.        
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INTRODUCTION 
 
Background 
 Wetlands have attracted strong attention by the remote sensing community owing to their high priority for 
natural resource management and challenges associated with their inventory, change, and provision of timely and 
accurate geospatial information. Coastal wetlands are vital barometers of climate change in their sensitivity to sea-
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level rise, role in the global carbon cycle, and their provision of biodiversity and buffers, both in terms of nutrient 
cyles in estuaries and abatement of storm surges and coastal erosion. Difficulties arising in regional inventory and 
synoptic coverage of wetlands, however, are imposing.  In particular, very high thematic and spatial resolution are 
frequently sought, such as for environmental impact or ecological management, and regional and national programs 
for monitoring wetlands have tended to restrict their map production to traditional aerial photointerpretation, such as 
the US Fish and Wildlife Service’s National Wetland Inventory (NWI.)  In addition to capturing species-related 
vegetation associations and zonation, several authors have noted the fundamental hydrologic dynamics of wetlands 
compound these problems, inducing corresponding temporal complexity to their optical signatures and sub-canopy 
structure (e.g., Kasischke and Borgeau-Chavez 1997.) Multidate and multi-source data are thus increasingly sought 
to disentangle these sources of possible confusion to mapping and inventorying programs using remote sensing, 
especially where areas of study are vast or inaccessible.  Such problem-reducing approaches may include hydrology 
in the classification product, such as hydrogeomorphic classification  (Hamilton et al., 2007) or the use of image 
classification techniques such as spectral unmixing to discern fractional composition of wetlands (e.g., Rogers and 
Kearney, 2004.) Geospatial analysis and hydrologic simulation modeling may also be adapted to provide 
complementary input data for classification, such as the use of floodplain inundation models (Townsend and Walsh, 
1998) and has a history of success at improving forest classification in complex topographic environments (c.f., 
Franklin 1991.)   
 The emerging capabilities of an array of Synthetic Aperture Radar (SAR) and Light Detection and Ranging 
(LiDAR) sensors has attracted research expanding the possibilities to further overcome difficulties of coastal 
mapping and change detection. ERS-1 SAR imagery has provided a successful means to map hydrologic 
associations of vegetation in the Everglades and to monitor changes in hydroperiod over a regional scale (Borgeau-
Chavez and Kasischke 2005.)  New sensors and application of noise and speckle-suppression image filtering 
techniques have also met with successes for coastal wetland mapping. For example, Kushwaha et al. (2000) 
evaluated several filters for noise reduction to time series ERS-1 SAR data.  Intensity-hue-saturation analysis of the 
multidate ERS-1 data also revealed improved wetland discrimination, particularly in combination with Indian 
Remote Sensing Satellite (IRSS) sensor data when compared to SAR-only data.  In addition, C-band SAR imagery 
have been applied to mapping forested wetlands, a challenging vegetation assemblage for multispectral or single-
source remote sensing imagery.  In their multitemporal analysis of ERS-2, ENVISAT ASAR, and Landsat Enhanced 
Thematic Mapper Plus (ETM+), Lang et al. (2008) were able to demonstrate success of empirical Principal 
Components Analysis (PCA) to delineate hydroperiod-related classes of forested wetlands in the Mid-Atlantic, 
USA. Time series remote sensing and change detection are also exploiting seasonal, interannual, and phonologic 
changes in surfaces (Lunetta and Elvidge, 1998.) Multisensor SAR imagery over a period of twelve years was also 
able to detect coastal wetland shoreline change using edge-detecting filters with JERS-1 and Advanced Land 
Observation Satellite (ALOS) Phased-Array L-band SAR (PALSAR) imagery in the Pamlico Sound, North Carolina 
(Wang and Allen, 2008.)  
 Remote sensing, field, and environmental modeling data stored and analyzed within Geographic Information 
Systems (GIS) have played a strong and increasing role wetland mapping, such as the provision of floodplain 
boundaries and frequency of inundation simulations (Coe 2000.)   Hydrogeomorphic conditions dominate the 
environmental gradients of riverine and coastal wetlands, affecting their biodiversity patterns (Hupp 1988) and 
zonation that can be discerned via remote sensing and environmental simulations of hydrology. Digital shoreline 
data, mapped via field, boat, or aerial imagery sources, is frequently used to mask aquatic and terrestrial zones for 
simplification of coastal remote sensing problems. Multisensor data can also be valuable, such as the utilization of 
imagery with infra-red reflectance data to rapidly map shorelines and develop mask layers for land-water separation.  
In addition, Light Detection and Ranging (LiDAR) has emerged as a revolutionary data source for mapping dynamic 
landforms and water levels (Hofle et al. 2009.) As the multitude of potential remote sensing data sources, 
algorithms, and classifications grows, it is prudent to expose potential methods and products to scrutiny and rigorous 
accuracy assessment.  Several comprehensive past and ongoing remote sensing products have demonstrated useful 
insights from well-thought feasibility, prototyping, and accuracy assessments, including the NOAA Coastal Change 
Analysis Program (C-CAP) (Jensen et al., 1993), CoastWatch (Dobson and Bright, 1991; Klemas 1993), and USGS 
North American Landscape Characterization (NALC) archive (Loveland et al., 2000.) 
 Objectives. Our project aimed to assess the feasibility and achievable accuracy for multidate Synthetic Aperture 
Radar (SAR) and integrated RS-GIS data to classify coastal wetlands with high thematic and spatial resolution 
analogous to the US Fish and Wildlife Service’s National Wetland Inventory (NWI) in a pilor study area of coastal 
North Carolina.  We specifically intend to reveal the capability and accuracy of ALOS PALSAR and LiDAR input 
data combinations (e.g., SAR-only, combined SAR and LiDAR, and permutations of derivative LiDAR minimum 
elevation, vegetation canopy height, and slope.)   Target thematic classes include palustrine forested wetlands 
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Figure 2. PALSAR multidate images April, June, and September 2010.

(pocosins, swamp forests, and pond pine forested shrubland), shrub-scrub wetland thickets, estuarine emergent 
wetlands (salt and brackish marshes), and patches of invasive Phragmites australis shores routinely establishing on 
the estuarine fringe of the Pamlico Sound.   
 
 

METHODS 
 
Study Area 
 The selected study area for this pilot project (Figure 
1.) includeds the coastal marshes of the US Fish and 
Wildlife (FWS) Alligator River National Wildlife 
Refuge (ARNWR), located along the shore of the 
Croatan and Pamlico Sounds in eastern North Carolina. 
The remote site exhibits few vehicular passable roads 
and extensive mosaics of pocosin and swamp forests, 
shrub-scrub, and emergent brackish and salt marshes, as 
well as sporadic patches of Phragmites.  The region is 
representative of low-lying coastal plain swamp and 
marshlands, including the situation of the micro-tidal 
inundation regime dominated by infrequent wind tides. 
Thick peat soils and deep artificial ditches pose 
logistical limits on cropland, forestry, and human 
settlements. The study area is approximately 20Km 
north-south and 10Km wide east-west along the 
Croatan-Pamlico Sounds on the eastern shore of the 

Pamlico Peninsula. The area was also selected owing to 
availability of prior FWS NWI mapping (ca. 1983) and 
ongoing updates in spring and summer 2010.  The area would serve as the first of two areas selected, initially this 
site for methodology development, accuracy assessment and calibration. Subsequently, a second phase of analysis 
on performance and criticality of product and results will be undertake and reported later for sites in Swan Quarter 
and/or Cedar Island National Wildlife Refuges.  
 
Data Acquisition and 
Preprocessing 
The study searched the data holdings of 
the Japanese Aerospace Exploration 
Agency (JAXA) and Alaska Satellite 
Facility (the relevant ground receiving 
station for the region) to procure a time 
series of ALOS PALSAR imagery.  
Three scenes were identified and 
acquired for 2010 images of PALSAR L-
band HH and HV polarization SAR:  1) 
40 April 2010, 2) 15 June 2010, and 3) 
15 September 2010.  This year coincided 
with near-normal precipitation and 
temperature regimes during the spring-
summer seasons. In addition, LiDAR 
data were acquired for the area from the 
N.C. Floodplain Mapping Program for 
2002, and digital aerial orthophotography 
was obtained from March-April 2010 for the area from the NC repository of the US Department of Agriculture 
National Agricultural Imagery Program (NAIP) (true-color composites.)  PALSAR data were checked for 
georectification accuracy against the NAIP imagery and LiDAR, and each image was converted from digital number 

Figure 1. Study area location, Alligator River National 
Wildlife Refuge, North Carolina. 
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Figure 3. LiDAR derived (a) DEM and (b) vegetation canopy height. 

(DN) into radar backscatter coefficient 
(measured in dB) as reported by Wang 
and Allen (2008.)  All data were 
reprojected and resampled with nearest-
neighbor analysis to Universal 
Transverse Mercator-194 (WGS84) for 
common earth coordinate system.  Non-
adapted speckle filters were applied to 
reduce noise in the PALSAR data, 
ultimately with selection of a 3x3 median 
filter in order to preserve step edges and 
ecotones between potential vegetation 
zones.  This technique would reduce 
isolated pulses and yet provide a 
systematic method for subsequent 
analysis in other areas without the need to 
adjust adaptive filter weights (Tso and 
Mather, 2001.)  LiDAR data included 
previously developed digital surface 
models, resampled to 3m resolution digital elevation models (DEMs.)  In addition, while last-return LiDAR points 
were developed for the bare earth DEM used in floodplain mapping and hydrologic modeling, we also acquired a 
vegetation canopy height DEM based on the first-return LiDAR points (D. Newcomb, personal communication.)  
Slope, profile, and planform curvature were derived for the bare earth DEM as potential input layers for 
classification using ArcGIS10 and GRASS GIS.  A master raster database was constructed with potential inputs for 
image classification:  1-6) SAR HH and HV backscatter coefficients for the three image dates (Figure 2); 7) bare 
earth LiDAR-derived DEM; 8) slope; 9-10) DEM planform and profile curvature; and 11) LiDAR first-return 
vegetation canopy height surface.  LiDAR bare earth DEM and vegetation canopy height are illustrated in Figure 3 
(a and b, respectively.)  The range of elevations is 0-6m, while vegetation canopy ranges 0-20m. 
 
Image Classification 

Our method for image classification  subdivided the image subset into four combinations of data: 1) SAR-only, 
including HH and HV bands; 2) SAR plus LiDAR DEM; 3) SAR with canopy height; and SAR with DEM and 
canopy height.  Preliminary analysis of the slope and curvature images resulted in gross errors, a result of the limited 
topographic relief for the area (most slopes < 1 degree and only isolated, rare instances of  measureable slope 
curvature.)  We employed ISODATA unsupervised classification as a first order technique for evaluating potential 
discernibility among key vegetation classes including, palustrine forest, shrub-scrub, estuarine emergent marshes, 
and Phragmites.  We also evaluated variable number of clusters (10, 15, and 20), and convergence thresholds, and 
the adoption of a water mask (precluding open water from entering the classification.)  One image analyst conducted 
each of the image classifications, utilizing the 2010 provisional NWI aerial photointerpreted vegetation map as a 
guide, along with ground photos and field expert knowledge.  A separate image analyst conducted the accuracy 
assessment, utilizing NAIP imagery and field observations and expertise of an on-site ecologist.  
 
Accuracy Assessment 
 Accuracy assessment sought to evaluate a variety of quality characteristics of the produced maps, including 
Producer’s, User’s, and overall accuracy, as well as deriving the Kappa (K-hat) coefficient as a comparative statistic 
to other potential classification techniques and products.  Owing to the inaccessibility and potential to require 
ground-based observational verification, we subdivided the classified images into three intensive study areas (ISAs), 
centered on Spencer Creek (an estuarine creek to the north, fronting Croatan Sound), Point Peter Road (site of an 
ecological restoration project by The Nature Conservancy, and one of the few roads transecting most vegetation 
units), and Stumpy Point (a community in the south of the area, fronting Pamlico Sound, with several points of 
vehicular and foot transit.)  For each image, 300 test points were sampled in a stratified random technique utilizing a 
3x3 majority threshold for pixel selection (Threshold=7).  This potentially positively biased criterion was sought to 
mitigate errors that might be imparted from the variable spatial positional accuracy of both reference verification 
data and input SAR and DEM data.  2010 NWI maps, 2010 color orthophotography, and field observations were 
utilized to label test pixel reference values while the classified categories were blind to the analyst.  Error matrices, 
accuracy percentages, and overall accuracy and Kappa statistics were generated for each attempt. 

c                                                  d 
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RESULTS AND DISCUSSION 
  

Results of the image classification are 
shown in map form in Figure 4 a-d, depicting 
the overall mosaic of classes. The SAR-only 
classification (4a) performed exceptionally 
well qualitatively with respect to marsh, shrub-
scrub, and palustrine forest extent and pattern 
(overall Kappa 0.742). The SAR-only 
classification yielded an overall accuracy of 
80.7% with relatively high user’s accuracy by 
class (lowest for water with 63.3% while 
vegetation ranged 71.9% for shrub-scrub to 
89.7% for marshes.) The SAR and DEM 
classification (4b) identified an overabundance 
of Phragmites, particularly in the Spencer 
Creek north area (overall Kappa 0.52). The 
SAR+DEM combination suffered low accuracy 
with Phragmites (user’s accuracy 42.8%) and 
marshes (54.4%), likely as a fundamental 
result of low-lying fringe vegetation being 
indetermine for interpolated bare earth LiDAR 
points. SAR and canopy height classification 
(4c) is visually good, with moderate error in 
overestimating the extent of Phragmites and 
open water within Spencer Creek (Kappa = 
0.726).  SAR+canopy height classified data 
was superior to SAR+DEM, with better 
Phragmites results (user’s accuracy 61.1%) 
and much improved shrub-scrub  accuracy 
(72.8%.)  Finally, the SAR imagery with DEM 
and canopy height included resulted in a good 
overall upland classification and modest error, 
visually, among the water and Phragmites.  
This image (4d) nonetheless identified forest and 
schrub-scrub discernment very well (Kappa 
overall 0.744). The overall accuracy for this 
composite classification using SAR, DEM, and 
vegetation canopy height was 81.33%, with a 
surprising disappointment with confusion of 
water (60% user’s accuracy). This result is nonetheless very promising, as incorporating a more robust shoreline 
water mask or infrared-based spectral mask would dramatically reduce this source of confusion (found mianly with 
commission errors, water being classified as Phragmites.) However, it is equally possible that Phragmites is so 
dynamic in this area, that is in truth was present at the time imagery was collected. Our field visit with FWS staff 
and on-site ecologists from The Nature Conservancy (TNC) revealed that the some large areas of Phragmities had 
just been sprayed by aerial application of herbicides.  As a result, the interpretation that open water was not this type 
vegetation could be in error.  Other vegetation was not sprayed, buoying our inference that this initial methodology 
and combination of data sources could provide a robust and effective method for coastal wetland mapping.  

 
 

CONCLUSIONS 
  

Although results reported in this project are preliminary, we suggest that the literature and convergence of SAR, 
LiDAR, and geospatial analysis are now mature to the point that heretofore methods for regional wetland 
inventorying and mapping are highly promising.  This project has shown that good accuracy and even high user’s 

Figure 4. Results of four image classifications a) SAR-only, b) 
SAR with DEM, c) SAR with canopy height, and d) SAR with 

DEM and canopy height. 

a                                                  b 
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accuracy can be generated from the combination of multidate SAR and LiDAR.  The relatively good accuracy and 
inexpensive source imagery (ALOS PALSAR) should spur future such missions for coastal mapping, and the 
application of LiDAR beyond its original floodplain mapping purposes illustrates a strong value-addition to coastal 
resource and environmental managers.  A surprising and further promising result was the relatively good accuracy 
achieved for Phragmites class, particularly in the SAR-only time series classification (85.7% user’s accuracy.)  
Conservatively, however, the second phase of this research remains to be undertaken, the best data combinations and 
classification algorithms will be applied to a second test area as an evaluation of the portability and robustness of the 
approach. 
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