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ABSTRACT

Fire-suppression over the past century has lechdreased forest density and fuel accumulation.ebeed stand
densities and warm dry summers in the past few diescdave predisposed dry, high elevation forestsyip

mountain pine beetle (MPB) outbreaks. MPB outbseatcur in three successive stages— the greeialiaitack),

red (visible attack), and gray (dead) stages. Whthuse of geospatial technology, these outbreaksbe better
mapped and assessed to evaluate forest healtt.vikdek on seventeen randomly selected sites wadumbed using
the point-centered quarter method. The stratifemdom sampling technique ensured that the sampded tvere
representative of all classifications present. Aiddal measurements taken were soil nutrient canagons

(sodium [N4], nitrate [NQ/], and potassium [K), soil pH, and tree temperatures. Finally, sigelimagery was
used to define infestation levels and geophysieahmeters—such as land cover, vegetation classificaand

vegetation stress. ASTER images were used wittRti@ Vegetation Index (RVI) to explore the diffeces in

vegetation, while MODIS images were used to anatheeDisturbance Index (DI). Four other vegetatintdices

from Landsat TM5 were used to distinguish the greed and gray phases. Selected imagery from theein

sensor was used to run a minimum distance supdndkessification in ENVI, testing the ability of iHgrion

imagery to detect the green phase. The NationalcAlgural Imagery Program (NAIP) archive was uged
generate accurate maps of beetle-infested regions.
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INTRODUCTION

Fire suppression and climate change over the Esticy have predisposed dry forest types to to syickad
insect outbreaks (Axelson, 2009). Due to a contlwnaof these factors, bark beetles such as therfgraver
Scolytus vetralis, the mountain pine beetl@endroctonus ponderosae, and the western pine beefle brevicomis
have spread rapidly over the last several yearatfleeman, et al., 2007). Such phenomena, spetyfiagrmer
climate and drought, have reduced tree defenskariobeetle attack, leading to increased mortéhtgore, et al.,
1993). In addition to natural causes, anthropagexdtivities such as fire suppression have conibuo
increasingly widespread infestation (Jenkins, et 2008). Under normal circumstances, fire actsaasatural
control by clearing swaths of forests and grouttérli This slows the growth of stocks and limitsngetition for
water and other necessary resources. Howeverstippression has prevented the natural thinnindgh@fforest.
Forests have therefore grown denser with many maiter-stressed trees, increasing vulnerabilityhef forest to
bark beetle attacks (Dordel, et al., 2006).

Ground surveys, remote sensing techniques, andhlagetection surveys are the primary methods for
monitoring bark beetle infestation (Wulder, et 2006). Ground surveys are costly and time consgnand remote
sensing methods have proved to be economical tootetecting bark beetle damage.
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Remote sensing techniques are most effective whdnleetles manifest in homogeneous pockets ofafitgrt
However, outbreaks are rarely homogeneous basedldeoage of the stand and varying tree species€iMidt al.,
2003). This impairs the accuracy of remote senslagsification models. As a result, it is diffictdt understand the
magnitude of the problem by exclusively examiningteflite imagery. It is therefore necessary thatvne
methodology be created to better understand tlislgm.

The main objective of this study was to evaluatevidespread and ongoing outbreak in the Okanogan-
Wenatchee NF in northern Washington State. Th@0B0ha Tripod fire initiated the spread of the bbdetle
infestation in the Okanogan-Wenatchee National $toie northern Washington State. Bark beetles have
widespread impact, affecting 1.73 of the 22 millmeres of forest land in Washington experiencieg tmortality,
an increase from previous years (Johnson, et @LOX With field work, remote sensing image anayasnd an
understanding of the phase of infestation, thidysidentifies specific present and future regiohadvanced stress
and decline. These findings will aid in the undamsling of extensive outbreaks. Goals also inclueterdhining
differences between mortality and non-mortalitgsitvhen analyzing various measures of forest héakhez and
Dragicevic 2009; Sampedro, et al., 2009). Geoglaysparameters include vegetation classificaticagetation
stress using hyperspectral data, as well as sdilteamperature measurements. It has been hypothethiae bark
beetle infestation affects tree temperature siricalters the tree’'s color and therefore its spécprafile.
Temperature measurements were taken to test thaythVegetation indices used include the Ratio éfatipn
Index (RVI) from the ASTER sensor on the NASA TeBatellite and the Enhanced Wetness Differencexifrien
Landsat Thematic Mapper 5 (TM5). In addition, LaatdBM5 was used to calculate NDMI (Normalized Diéfece
Moisture Index), NDVI (Normalized Difference Vegtta Index), and DI (Disturbance Index) (Table Hgs¢ and
Johnson, 2008). The MODIS Aqua and Terra sensers @aiso used to calculate a disturbance indexagénuata
from the Hyperion satellite will be used in an atp# to identify trees in the first stage of attack.

Bark Beetle Bionomics

Mountain Pine beetles attack trees that showcasdaworable characteristics;
nutrient content and trunk diameter thickness (Niemand Visintini, 2005). These
factors are thought to attract beetles which there bnto trees and deposit their
larvae. Bark beetles are most successful when kattadrees that have been
weakened by disease, drought, smog, previous atfess or physical damage.
These attacks further weaken the trees, leadisgeto deformities, loss of growth,
and premature mortality (Moore, et al., 1993).

The mountain pine beetl(eDendroctonus ponderosae) targets ponderosa and
lodgepole pines (Leatherman, et al., 2007). Tg
female adult beetle frequents trees with lar
diameters during late summer (Garriso
Johnston, et al.,, 2003). In a mass outbre\iw
beetles may attack smaller diameter trees. 1
first wave of beetles emits pheromones, drawi
more beetles to infested trees, further amplifyi
infestation (Parker, et al., 2006). Beetles are
attracted to ethanol produced by beetle larvaeg
the dead, woody tissues. k

Healthy trees secrete resin, or latex, whi
contains insecticidal and fungicidal compound
Such compounds defend the tree against be
infestations, immobilizing and suffocating the best However, a heav
infestation can overwhelm these defenses, espeamelieakened trees, resultint rigure 2. A red phase tree.
in sawdust-like shavings around the entrance h@lggire 1, Leatherman, et al..

2007).

Figure 1. Trees produce
sap as a defense
mechanism when bark
beetles borough into the
tree, creating pitch tubes.
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Tree infestation is a three-stage process (Figure 3
Green attack, the first stage, shows no color chamgl
is therefore difficult to detect with remote semgin
During this stage, the beetles begin to borougbuiin
the phloem, interrupting nutrient flow. It takesughly
one year to transition to the second stage, rextlgtt
which can be detected by satellite sensors (Figire
The beetle larvae begin to feed on the tree’s phjoe
starving the tree of nutrients and water, and chmng
the crown from green to red (Niemann and Visintini,
2005). Gray attack is the final stage in which tilee is
dead and has lost all foliage. (Wulder, et al.,6)00
Some natural controls of bark beetle infestations
are woodpeckers, which feed on adults and larvae, a
extremely cold temperatures (-34C). There are,
however, various human-induced controls, including
Figure 3. A mix of green, red, and gray phase tr peeling the bark from trees in the green phase to
dehydrate the larvae or burning and scorching digs.!
Harvesting and thinning suitable host trees arerothanagement options. Chemical control optionsjelver, are
very limited since there are no labeled pesticidesise on the beetles (Leatherman, et al., 2007).

Study Site

The Okanogan-Wenatchee National Forest is locatethsof the
Canadian border and east of Cascades National Parkentral
Washington State (Figure 4). Field sites were tletawithin a 4 km
radius of 48.09 latitude and -120.19 longitude. g&tation within the
forest is variable, with small shrubs and grassfacalering the lower
elevations. Mid-elevation vegetation primarily stgis of ponderosa

.
pine Pinus ponderosa) while lodgepole pineR. contorta), Douglas fir F F’\
\

-
iﬁ ‘\_fk\.ﬂ

(Pseudotsuga menziesii), and subalpine fir Abies lasiocarpa) can I s 7o
. . . [ takeChlean
readily be found at higher elevations above 1,8e€ens. [ erseneslarcgen Forst
The climate is characterized by moderate tempearatduring the - e B
summer and occasional sub-zero temperatures dutieg winter T WAsHINGTONSTATE |

months. Recent major droughts occurred in 2001 20@b. Mean Figure 4. Our study site was located
annual precipitation ranges from 30 to 230 centme(USDA, 2008). in NE Washington State, directly

In recent years, the region has experienced sevieiires. The Deer above Lake Chelan.

Point Fire of August 2002 burned stands on thehsaugstern edge of

our study region. The Tripod Fire burned in exa&fs80,820 hectares of the Okanogan wildernes&imgras one
of the largest fires in Washington State over tast»0 years. Fire suppression techniques thanbiegl900 have
significantly jeopardized the health of the fordést encouraging stock density and increasing coripetifor
resources amongst trees (Iglesias, et al., 1997).

METHODOLOGY

Field Methods

The field study was conducted in June of 2010 &sgify forest stands in various stages of attadks T
classification creates a base to accurately determiercent infestation, providing a basis of corigpar with
satellite data. Seventeen primary sampling urRSUW) were measured, each within one of the follgwin
categories—severe infestation (red-attack or gttack), moderate infestation, and no infestatioangling sites
were randomly generated, located in polygons ddrivem areas known to be mountain pine beetletteyriin
2009 aerial surveys (Washington State, 2010). Sowgery is useful for narrowing down regions of tieee
infestation, providing a preliminary basis for ssedection. Selected sites were at least 90 matetsi0 farther than
500 meters from established roads.
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The center of each PSU was located using a realdifferential correction on a

Trimble GPS unit. Each coordinate was checked uairigarmin ETrex Vista Hcs i m, o, Wm g
handheld GPS. The PSU are 60x60 meters, each ttogsig 12 subplots spreac .
across a grid (Cottam, 1953). Subplots considhrafet columns spread an equidista ﬁm’ ) “
15 meters apart, with four rows spread at varioistadces; 10 meters from th ; f s

northern edge to the first row, 12.5 meters tosdeond row, 15 meters to the thirc
12.5 meters to the fourth, and 10 meters to thehsow edge (Figure 4). A lase
range finder was utilized to measure the distanme fsubplot center to the sample”
tree. The point-center quarter method (Mitchell020 defined each subplot, ir o[ s P
which the four geographical bearings (north, esmtith and west) tagged which tree
to sample (Figure 5). Measurements taken at eashitrcluded diameter at bas
height (DBH), distance from sub-plot center, trpeces, percent red attack, perce SO .
gray attack, presence of pitch tubes, and notaele discrepancies. This datas E &
chronicles tree density, species composition, amdcegmt infestation. Further w . E
measurements were noted at each plot for percenihdcover, percent understor . -
coverage, and percent over-story coverage. Tudcttemperatures were als . B )
measured, using a Raytek Raynger ST temperaturengiinmeasurements taken o
the north-facing side of trees. In addition, sa@imples were extracted and MeasUl i Jowic ® smm o T
for major nutrient concentrations {KNO; and N&) and pH levels at each PSU

center point (Moore, et al., 1993). These measungsneere made to explore Figure 5. The point-
relationships between soil chemical composition BB attack behavior. centered method was

Unpaired student t-tests were used to determineffieets of soil nutrients (K used to sample each unit.
NO; and N4&), tree temperature, tree diameter-base-height (DBRH percent
canopy cover on tree mortality (Morehouse, et2d(8). Percent canopy cover is determined by eta@w crown
coverage within a five meter radius of each ceptet- Mortality was defined as a unit composednofre than 50%
red and gray phases, while non-mortality was ddfiag more than 50% healthy and green (Perez argidevic,
2009). A p-value of 0.05 or less was used.

Two statistical tests were run to compare mortaklith the various indices and contrasting adjacesdrs’
indices. A significance level of 10% was used. AN@VA test was run on the data from 2002 to 200h(@ ).
The purpose is to find a correlation between perogortality and the various indices, so that a nhqutedicting
future mortality may be created. The ANOVA compaomits were separated into four categories: 0-258%,5-
50% gray, 50-75% gray and 75-100% gray. Unpairaedesit t-tests were run on significant years to nles¢he
differences. The second set of statistical testepawed adjacent years’ indices to see if there avagicrease or
decrease in value from year to year. We used 24satpsts to compare the index values from eachly@air.

Satellite Image Processing

A combination of MODIS, ASTER, and Landsat satellinagery were used to detect and quantify percent
infestations in the Okanogan-Wenatchee Nationaké$tdirom 2002 to 2009. Several indices were useduding
NDMI, NDVI, DI, EWDI, RVI (Table 1). Comparisonsfindices were made to demonstrate the detectiemgth
of each satellite instrument and detect potentiire infestation and mortality.

Using Landsat to Create DI, EWDI, NDVI and NDMI Vales. For the purpose of this study, 10 Landsat TM5
images were downloaded from the USGS GLOVIS sefhétp://glovis.usgs.gov/.) Each image was captured
during the summer months of June, July, AugusSeptember from 2002 through 2009. All downloadedges
were radiometrically corrected in ERDAS Imagine 8riél then turned into reflectance values (Wuldea).e 2006;
Chander and Markham., 2003). In total, four spéatdices were calculated; NDVI, NDMI, EWDI, and DI

The NDVI and NDMI indices were used to detect vatieh and moisture changes in year to year conqasis
(Table 1, Eqg. 1,2). For the purpose of this stubg, vegetation indices were used to detect patochdsad vege-
tation that correlate with regions of extensivekidaeetle infestation. As mountain pine beetlestdd stands enter
the red phase, NDMI values decrease (Wulder, e2@06). The NDMI and the NDVI were calculated6RDAS
Imagine 9.3. Each index was based upon the otigéilectance image of each year. NDVI and NDMdilices
were then extracted in ArcGIS 9.3 to calculate agerpixel values. Coordinate points from the oagseventeen
field sites were layered atop each vegetation iricir each given year, and 2x2 pixel values werrayed.

The tasseled cap (TC) procedure was used to ceeategetation index that measures three vegetation
dimensions—brightness, greenness and wetness @dsKrauth, 1986). The same procedure was usetetie
the EWDI, which isolates the wetness layer in twogpessive tasseled cap images, differentiatindy eeetness
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layer to detect water stress (Table 1, EquatioSkakun, et al., 2003; Han, et al., 2007). In theation, the
variables TC3(2008) and TC3(2009) are the tassmlpdvetness layers from two consecutive years.

Each EWDI was computed in ERDAS Imagine 9.3 fatheaonsecutive year. For instance, the first EWDI
differenced August 2002 and July 2003 (Wulder,let2906). The EWDIs were uploaded into ArcGIS $Bd a
pixel area of 2x2 was used for each sampling $iteel reflectance values were obtained and averdgethe
seventeen field units.

Further, a disturbance index was calculated baped tasseled cap images from a single date. Tipope of
the disturbance index is to measure vegetationadiagiion that results from any number of naturahoman-
induced causes such as forest fires or forest tics@destations (Hais, et al., 2009). The disambe index
exemplifies the contrast between healthy forestdstaand bare ground. Disturbance index images gemerated
for each year between 2002 and 2009 based upomripmal reflectance images—brightness, greennesk a
wetness (Table 1, Equation 4).

Table 1: Satellite indices used to map stress in Watchee and Okanogan Forests

Satellite Indices

Abbrevi Satellite / #
ation Name Index Sensor Description | Reference
Normalized (NIR - RED) .
NDVI Difference NDVI =-————— | | apgsqt | Vegetation | Rousedt
. (NIR+ RED) stress al., 1974
Vegetation Index
Normalized NDMI = NIR - SWIR Vegetation | Jin and
NDMI Difference Moisture " 'NIR + SMR Landsat | & water Sader,
Index stresses 2005
Enhanced Wetness EWDI=TC3(2008)- Skakun et
EWDl | Difference Index TC3(2009) Landsat | water stress o “5n03
Landsat | Landsat Disturbance DI = Brightness - Landsat E)a;;:(;ed cap Healeyet
DI Index (Greenness + Wetness) . al., 2005
disturbance
RVI Ratio Vegetation RVI = NIR Terra/ vegetation | Elvidge et
Index Red ASTER stress al., 1995
vegetation
MODIS Disturbance Index | DI = S Tma / BVl ey I\e[]r:/& & Mildrexler
DI ST ST, o/ BV o q temperature | et al., 2007
MODIS
stresses

Using ASTER to Model Beetle SpreadASTER (Advanced Spaceborne Thermal Emission ande&ufn
Radiometer) is an imaging instrument supported by d, a satellite launched as part of NASA's E@tiserving
System (EOS). When vegetation undergoes moistressstit reflects low levels of near infrared raidia (NIR) but
more red electromagnetic radiation. This results idecreased RVI with escalated stress (Fettig), 2007). As
bark beetles target stressed trees, ASTER’s aliitgletect stress facilitates validation of infésta ASTER
images were downloaded from the online Warehousevenitory Search Tool (WIST) website
(https://wist.echo.nasa.gov/~wist/api/imswelcom&he images are dated October 2000, July 2003, $tu2005,
and July 2008. The limited availability of image®ywented a thorough sequential analysis. Vegetatimss was
calculated between the four years using the Rasigetation Index (RVI) (Table 1, Equation 5) (Elvédg al.,
1995). The four ASTER images were georectified gisingeometrically-accurate aerial image and segmlnd
control points as a base. The ASTER images wer tosereate raster files, which contain the RViuesl.

Seventeen polygon shapefiles, each correspondiagfitdd site, were overlaid on top of the ASTERagss.
Each polygon occupied a 60x60 meter area, coveriogal of sixteen ASTER pixels.

Using MODIS to Create Disturbance Index Archive31ODIS data were used to create the Disturbancexinde
(DI). When the Land Surface Temperature (LST) antidhced Vegetation Index (EVI) contribute anomaliks
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MODIS DI is effective at identifying disturbancé-urther, the index better represents the normdbgmal condi-
tion with the addition of more and more annual mesximum values in the denominator (Mildrexlet al., 2007).

MODIS data were obtained from the Oak Ridge Nafidadoratory Distributed Active Archive Center (ORN
DAAC) website (http://daac.ornl.gov/MODIS/). Dafeom years 2002 through 2009 were compiled from the
DAAC server. Seventeen data sets were requested-seinfor each PSU. As delineated by Mildrexdesl.
(2007), LST and EVI were used to create the MODIStWbance Index (Table 1, Equation 6). LST data i
gathered from the Aqua/MODIS eight-day compositgtidee sensor. EVI data is gathered from the TB@DIS
16-day composite sensor.

Landsat Classification. In order to assess the ability of Landsat to detedtphase trees, an ISODATA
unsupervised classification was conducted. Vegetatiasses were narrowed to four categories —Heédirest,
red-phase forest, bare ground and shrubbery, &d ic

Satellite Image Processing—Hyperspectral Detectiminthe Green Phase Research has shown that Landsat
TM5 is successful in detecting the red and grayspbaf bark beetle attack, but not the green pf\bite et al.,
2007). Our study is aimed at determining if Hyperie indeed able to differentiate between the gmease and
healthy trees.

Preprocessed Landsat images from 2002 and 2003 wseek to train Hyperion data. Previous studies have
shown that there is a twelve month time periodetach 90% red phase from an initial 100% green p{\&sgder,
2006). Using this information, a supervised minimgiistance classification was run on the Landsatgema
searching for green and red trees. This classificatsed predefined “regions of interest,” or RGQisecific to each
year, containing purely green pixels in 2002 artipixels in 2003. The 2002 and 2003 Landsat cliassibns were
then overlaid to find pixels classified in each ydeorty-six pixels were found and defined as grpease ROIs.
The spectra of both green phase and non-green jpidadse were graphed and compared to determine iduadls
fluctuate with the green phase. Two supervised tegleangle mapper classifications were run on thypéfion
image, using 20 merged green phase ROIs per étatgh. We compared the two classified imageskilop for a
correlation between classified pixels. An accurat$0% or higher indicates success (Subramaniaal,,et997).

Using NAIP Imagery to Quantify the Infestation

The National Agriculture Imagery Program (NAIP) pides detailed, high resolution images acquired by
aircraft of the entire United States. Digital NAllRagery is useful for visualizing and quantifyirfgetextent of the
mountain pine beetle infestation as a result ofLlit® resolution. Each image contains spatiallyaited ground
information, allowing differentiation between reddagreen crowns. Red pixels have markedly diffevatues in
the multispectral NAIP imagery than do green pixebs simple algorithm was used to identify red cropixels
based on visual inspection of the imagery (Equation

Red . .
{[( Greenj < (ThrashholdRed,Grem)} [Blue< ThreshhoIdB,ue]} [255] (Equation 7)

ERDAS Imagine was used to create a model which auaster NAIP image from a particular year throtlgh
algorithm. It is important to recognize that ev&l&IP image will have different threshold valuepdadent on the
quality and time of day of the image. The algartlsets to zero all pixels that do not meet the ifipdc
characteristics as defined by the unique threstaalde. Such manipulation permits the creation ethiled maps
that chronicle the amount of trees with red crowna given area. With one meter resolution, aceezgnfestation
can be calculated based upon the number of redspixa given area.

The binomial probability theory equation was uglizto determine the number of points that shoulddbected
for the accuracy assessment (Jensen, 2007). Tlati@qis defined below:

N = Z-(p)(@)
= £2
This was computed wheklis the sample siz€, = 2 from the standard deviate of 1.96 for the 98f-sided

confidence levelp is the expected accuracy for the entire naggp, 100 —p, andE is the allowable error (Jensen,
2007). The number of random sample locations waspated as:

52 220929
10°

This amounted to 75 points with an expected acgunb@5% and a 10% allowable error.
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RESULTS

Field Measurements

Table 2: Statistics run on field measurements (T-T&).

% Tree
Site Class canopy cover | Temperature | [NO3-] [K+] [Na+]

> 50% red/gray 54.11 #7.14 | 20.0 +3.40* 77.13 +446.80 385.7. 220.4 271.67 214.24

< 50% red/gray 56.18 23.71 | 16.3 2.31 67.00 27.91 456 214 292.22 248.64

Confidence intervals at the 10% level; asterisk®tie statistical significance.

At the 5% level, lodgepole pine trees were warrhantother tree species during midday (p < 0.004t)there
was no significant difference between the mornipg0(795) and afternoon (p=0.9249). Gray trees hadsame
significantly higher temperatures compared toiaé trees at midday (p=2.077 x 30 Nutrient concentrations for
NO; (p=0.62), K (p=0.524) and Na(p=0.867) as well as percent canopy cover (p=&Y%ad no significant
correlation with tree mortality (Table 2). In sumtion, grey trees exhibited higher temperatures tiealthy trees.

Indices Within the study region, the f0U1 Landsat TM5 2007 Normalized ‘ Landsat TM5 2006 Normalized
indices—NDMI, NDV'] EWDI and Dl—were Difference Moisture Index Difference Vegetation Index
statistically different in year-to-year comparisor
(Appendix 1). The years with the greate s
differences were 2002 to 2003, 2004 to 20(%;
and 2006 to 2007. =

Two years displayed the highest moistu
and vegetation levels—2002 and 2006. The
years had significantly more moisture (NDMI
or less moisture stress (EWDI), than 2003 a e
2007, respectively (Figure 6). Also, 2002 ar g

NDWVI Values
[ 020t 018 Qow vegemtion)

R b [ AR
2006 had greater levels of vegetation and a lov . A LB Zo A
disturbance than their respective consecuti m- =Y e

years. This data correlates to the drought in 2 =
(-2.75 and below) (State of the Climate, 2009). Figure 6. NDVI and NCMI were created usinLandsat

However, 2004 had significantly lower

levels of vegetation vyet vear vs. DI Landsat TM5 2009 Classification
lower moisture stress thar .. Model

2003. It also showed lower| * A

Landsat disturbance yet .u —

higher MODIS disturbance| - *~ N —

levels than 2003. Since ow| . < //

2002, the MODIS sensor hag  °* 7

detected increasing distur{ o hd

bance levels at unhealthy = = 0 T L e

sites, especially betweer
2006 and 2009 (Figure 7).

RVI (ratio vegetation Elj;‘j;;*:‘j;
index) derived from the ASTER imagery showed naiicant differences il
between any of the years. - g

Low mortality sites (those with less than 25% grages) had === : =
significantly more vegetation (from NDVI) than timggher mortality sites
for years 2003, 2007, 2008 and 2009. High mortaitgs showed lower Figure 8. A classification was
Landsat disturbance levels, yet higher MODIS disince levels, than low run on the Landsat 2009 image.
mortality sites, as demonstrated by the years 2@068 and 2009. The

Figure 7. DI Average for years 2002 to
2009 inclusive.

Legend
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EWDI indices also demonstrated less moisture sti@shigh mortality sites, yet the NDMI held sigiadince for
high mortality sites having a low moisture cont@@monstrated by years 2007, 2008 and 2009).

Landsat Classification

The classification achieved an overall classifimatscore of 80%. However, the classification way 88.53%
accurate in detecting red-phase forest (Figure jcuracy was calculated using the ERDAS Imagineuscy

assessment tool.

Table 3: Indices Comparison Between Mortality Categries (ANOVA tests’ values)

* = statistical significance at the 10% level

MODIS DI | Landsat DI| NDVI NDMI EWDI

(disturbance (disturbance (vegetation (moisture (moisture

index) index) level) level) stress)
2002 p=0.7100 p=0.9887 p=0.4125 p=0.7424 p=0.7414
2003 p=0.1858 p=0.2830 p=0.0871* p=0.1657 p=0.4592
2004 p=0.3579 p=0.8470 p=0.1271 p=0.3132 p=0.4597
2005 p=0.1707 p=0.3819 p=0.1201 p=0.2255 p=0.9749
2006 p=0.0854* p=0.3902 p=0.2546 p=0.7163 p=0.2695
2007 p=0.5531 p=0.8265 p=0.0011* p=0.0798* p=0.0170*
2008 p=0.8724 p=0.0410* p=0.0066* p=0.0282* p=0.4621
2009 p=0.9598 p=0.0454* p=7.04é5* p=0.0003* N/A

Detection of the Green Phase

Hyperion satellite imagery was able to classify gheen phase, with a kappa coefficient of 0.1163,1063%.
As the kappa coefficient disregards chance agregntes was a significant finding. This finding wasgpported by
comparing the spectra of the green phase and leaedés.

Healthy Pixels

JRESYPO L Y
-

E ¢ 8 8 B B 3
i

Reflectance Values

aw

Wavelength {nm)

Green Phase Pixels

Frepes’ P,

-
P i

N,m—;b,-; L‘!:»\h

4
w0 ¥

/
¢
+

w0
%

Reflectance Values

3

.
e m

) - w0

‘Wavelengths (nm)

Figure 9. A comparison between the spectra of green phas¢smnd healthy pixels.

The green phase emitted at higher reflectance sghyeapproximately 200 pW/(cm”2*sr*nm)) between
wavelengths of 671nm to 1336 nm (band numbers @&itin 119) (Figure 9). In Cheng, et al., 2010,asvfound
that the green phase is characterized by its mreistontent between wavelengths of 1318 nm and b822ur
findings therefore indicate that green phase teseis higher reflectance values in the red portibthe spectrum,
due to decreased chlorophyll content, and in tfraried portion of the spectrum, due to decreasddrveantent.

Hyperion is an efficient tool at detecting the gre@dase. The accuracy level can be increased hyg gsbund
data as training data and NAIP imagery to run teieacy assessment against.

NAIP Red Phase Algorithm

NAIP imagery was successful in detecting the extérihe red phase. Accuracy was measured in ArdylS
random selection of points located within red thkesters.
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ERDAS Imagine Model of 2006 Red Phase Trees ERDAS Imagine Model of 2009 Red Phase Trees
ation:

' Figure 10. Depiction of red
phase in NAIFmagery.

This accuracy assessment demonstrates that thetlag@nd classification is 96% accurate. Theltataeage
of the study region shown above is 38,481,540 sqmeaters (Figure 10). In 2006, red phase treesredv146,188
square meters. By 2009, this number rose to 45081square meters.

DISCUSSION

Classification schemes are an effective way togmatee large areas without detailed imagery. Thadsat
classification had an overall accuracy of 80%,was$ only 39.53% accurate at detecting the red pfdss is due
to the 30x30 meter resolution of the imagery and-nomogeneity of the sites. Non-homogenous siteg wien
inaccurately classified. Inaccurate classificatiorese the result of border pixels and mixed pixHls. pixel is 60%
green phase and 40% red phase, the classificatimerrse will display it as being 100% green phasgelPithat
occur along the border of different classes are filsquently misidentified. However, an algorithnaswcreated to
detect the red phase in NAIP imagery. This maydezlun tandem with hyperspectral imagery, suchyggeHon, to
improve the accuracy of the detection of beetleststion.

The Hyperion classification of the green phase #&lad a low accuracy level, with a kappa coefficieht
0.1163. However, Hyperion was able to detect thatgreen phase in the reflectance in the red dratéd regions
of the electromagnetic spectrum. The higher redieot in the red region (620 nm to 780 nm) may ke tduthe
reduced chlorophyll content of infested trees (Aher988). Trees with lower chlorophyll content tedreflect
rather than absorb red wavelengths. Thereforestefietrees will have a higher red reflectance I¢hah healthy
trees. The higher infrared reflectance is causedduyeased water flow to the crown, due to thedwing of the
bark beetles (Hicke and Jenkins, 2008). Hyperiabitity to detect the spectral differences betwgeen and other
phase trees indicates that Hyperion may be usatbtiect the green phase, although a further acclanalysis
should be pursued. It may also be a strong pradidtthe red phase, with its hyperspectral captadsli

The NDMI and EWDI spectral indices were fairly acate in detecting droughts and fires, as checked
NOAA’s archive of droughts and wildfires. Howevegveral years (such as 2006 and 2008) were noykirgears
yet appeared dry in the NDMI. The EWDI indicatedregmsing moisture stress over several years thédgct, were
undergoing less severe droughts. The two distudbamtices strongly correlated with moisture str@s4/Dl), and
prove to be very reliable. The NDVI also had armsgroorrelation with the NDMI, indicating that maise¢ levels are
sound indicators of vegetation levels, and vicesaer

The field measurements and NAIP photos were ugefdtaining satellite data and understanding tkterat of
mountain pine beetle infestation. Tree temperatiadesn in the field may be used as a secondargatati of tree
health and beetle infestation. Gray phase trees kitte to no water, thus increasing the treetapierature. On
average, lodgepole pine trees had the same eleteatgubratures as gray phase trees. These findifigelow for
the improved detection and, therefore, managemébgetle infestations. A combination of sateliiteagery
classifications, spectral indices, and field data better predict high risk areas.

The aforementioned methods can be applied in ifiest mitigation practices. This study is strongdewnce
that spectral indices can be used to detect afdagegtation. Also, the NAIP algorithm which wasri/ed can be
modified and used to display red phase trees inlNaI? image. With this new algorithm, acreage dégted areas
can be quickly determined with 96% accuracy. Thisrmation can help the forest service predict feitsites of

infestation. Future studies should focus on usiggdtion data to more accurately classify the irgipigreen phase.

The green phase can be accurately detected wigmsxe field work and high resolution NAIP imagesich can
both be used to train an accurate supervised fitztsin.
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CONCLUSION

Remote sensing is a valuable tool in tracking leedtle infestation. However, the size of infestezha tends to
be small relative to satellite resolution.  Thigh spatial resolution imagery is optimal. Resolutof the
aforementioned satellites was sufficient for theppses of this initial study, but more detailed geey would yield
better results for the spectral indices. The fivdtispectral indices proved to be accurate at dieigdnfestation.
This is because moisture content, vegetation leaeld ecosystem disturbance are all related tstatien. Multiple
measurements per sampling site would likely yietwtersignificant results. Temperature, however, doeselate to
the level of beetle infestation.

Hyperion can differentiate between the red andhnefl portions of the spectra of green phase arithiideees.
Hyperion, therefore, shows promise at detecting green phase, although further research shouldooe do
increase the accuracy of Hyperion’s classificatibthe green phase. This study is intended to thaglistribution
and extent of bark beetle infestation in Okanogaem¥ichee National Forest. Through the usage af fieirk,
spectral indices, and NAIP imagery, bark beetlestdtion can be detected so that any necessamyatioth steps
can be taken.
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Appendix 1

Appendix 1: Year to Year Comparisons for Five ledic

* = statistical significance at the 10% level

MODIS DI | Landsat DI| NDVI EWDI
(disturbance | (disturbance | (vegetation NDMI (moisture | (moisture
index) index) level) level) stress)
2002-2003 | Increase Increase Decrease Decrease Increase
p=0.0165* p=3.3&> p=1.603&* p=1.185€* p=3.083¢&*
2003-2004 | Decrease Decrease Decrease Decrease Decrease
p=0.0130* p=1.039&* p=0.3418 p=0.1598 p=1.639&"
2004-2005 | Decrease Increase Increase Increase Increase
p=0.0213* p=6.504&" p=4.198¢&* p=0.2197 p=0.00*
2005-2006 | Increase Increase Decrease Increase Increase
p=3.439¢&* p=0.4129 p=0.2331 p=1.0496&* p=1.784&*
2006-2007 Increase Increase Decrease Decrease Increase
p=0.2523 p=0.0389* p=0.0222* p=0.0634* p=1.771&*
2007-2008 Increase Decrease Decrease Decrease Decrease
p=0.2556 p=0.0906* p=0.4517 p=0.0163* p=0.2122
2008-2009 | Increase Increase Decrease Increase N/A
p=0.0062* p=0.3190 p=0.0691* p=0.0594*
REFERENCES

Axelson, N.J. (2009). Influence of fire and mountpine beetle on the dynamics of lodgepole pinedstan British
Columbia, Canadd:orest Ecology and Management, 257, 1874 — 1882.

Ahern, F.J. (1988). The effects of bark beetlesstien the foliar spectral reflectance of lodgepahe. | nternational
Journal of Remote Sensing, 9: 9, 1451 — 1468.

ASPRS 2011 Annual Conference
Milwaukee, Minnesota¢ May 1-5 2011



Chander, G.; Markham, B. (2003). Revised landsBk5radiometric calibration procedures and posthralion
dynamic rangedEEE Transactions on Geoscience and Remote Sensing, 41(11): 2674-2677.

Cheng, T.; Rivard, B.; Sanchez-Azofeifa, G.A.; FehgCalvo-Polanco, M. (2010). Continuous wavelelysis
for the detection of green attack damage due tontadru pine beetle infestatiolRemote Sensing of
Environment, 114.

Cottam, G. (1953). Some Sampling characteristias pdpulation of randomly dispersed individud&sol ogy,

34(4), Retrieved from http://www.jstor.org/stable/1&¥37

Crist, E.P.; Kauth, R.J. 1986. The tasseled camg&ified. Photogrammetric Engineering & Remote Sensing,
52(1): 81-86.

Dordrel, J.; Feller, C.M; Simmard, S. (2008). Effeof mountain pine beetle (Dendroctonus ponderbkgikins)
infestations on forest stand structure in the tseut Canadian Rocky Mountaingcology and
Management, 255, 3563.

Elvidge, C.D.; Yuan, D.; Weerackoon, R; Lunetta{F95). Relative radiometric normalization of Laat
multispectral scanner (MSS) data using an autonsatdtergram-controlled regressidthotogrammetric
Engineering and Remote Sensing. 61(10):1255-1260.

Fettig, C. 2007. The Effectiveness of Vegetatiomifzement Practices for Prevention and Control ok Baetle
Infestations in Coniferous Forests of the Westand Southern United States. Forest Ecology and
Management 238: 24-53.

Garrison-Johnston, M.; Moore, J.; Cook, S.; Nieh@ff (2003). Douglas-fir beetle infestations arsoagted with
certain rock and stand types in the inland nortteresunited statesCommunity and Ecosystem Ecology,
32(6).

Hais, M.; Jonasova, M.; Langhammer, J.; Kucerd2009) Comparison of two types of forest disturlzansing
multitemporal landsat TM/ETM+ imagery and field e¢gtion dataRemote Sensing of Environment. 113:
835-845.

Han, T.; Wulder, M.; White, J.; Coops, N.; Alvaré#,; Buston, C. (2007). An Efficient protocol toqmess landsat
images for change detection with tasselled capstoamation. | EEE Geoscience and Remote Sensing
Letters, 4(1).

Healey, S.; Cohen, W.B.; Zhigiang, W.; KrankinaNO2005. Comparison of Tasseled Cap-based Landsat d
structures for use in forest disturbance detectRRemote Sensing of Environment. 97: 301-310.

Hicke, A.J.; Jenkins, C.J. (2008). Mapping lodgeppine stand structure susceptibility to mountdime fbeetle
attack across the western United Statesest Ecology and Management, 255, 1536 — 1547.

Hsu, C.; Johnson, L. (2008). Multi-criteria wetlanmapping using an integrated pixel-based and tbpsed
classification approacitolorado Department of Transportation, CDOT.

Iglesias, T.; Cala, V.; Gonzalez, J. (1997). Mitegaal and chemical modifications in soils affettey a forest fire
in the mediterranean arekhe Science of the Total Environment, 204(89-94).

Jenkins, J.N.; Herbertson, E.; Page, W.; Jorgers€h,(2008). Bark beetles, fuels, fires and imgtions for forest
management in the Intermountain Weésirest Ecology and Management, 254, 16 — 34.

Jensen, J. 200 Remote Sensing of the Environment an Earth Resource Perspective, edited by D. Kaveney, J.
Howard, K. Schiaparelli, and E. Thomas. Upper SadriVer, NJ: Pearson Prentice Hall.

Jin, S., and Sader, S.S. 2005. Comparison of teriestasseled cap wetness and the mormalizedatitfe
moisture index in detecting forest disturband®snote Sensing of Environment. 94: 364-372.

Johnson, M.; Kohler, G.; Omdal, D.; Ramsey-Kroll; Mostetler, B.; Mathison, R.; Nelson, A. (201Byrest
health highlights in washington--2009SDA.

Leatherman, D.; Aguayo, I.; Mehall, T. (2007). Mtain pine beetleinsect Series, 5(528).

Mildrexler, D.J.; Zhao, M.; Heinsch, F.; Running, 007) A new satellite-based methodology fortcmntal
scale disturbance detectidegological Applications, 17(1): 235-250.

Miller, J.D.; Danzer, S.R.; Watts, J.M.; Stone,¥opl, S.R. (2003). Cluster analysis of structugtalge classes to
map wildland fuels in a madrean ecosystdonrnal of Environmental Management, 68(3).

Mitchell, K. (2007). Quantitative analysis by theimt-centered quarter methddobart and Williams Smith
Colleges.

Moore, J.; Mika, P.; Schwandt, J.; Shaw, T. (1998jtrition and forest healttnterior Cedar-Heml ock-White Pine
Forests: Ecology and Management.

Morehouse, K.; Johns, T.; Kaye, J.; Kaye, M. (20@rbon and nitrogen cycling immediately followibark
beetle outbreaks in Southwestern ponderosa piestigcienceDirect, 255(7).

Niemann, K.; Visintini, F. (2005). Assessment ofgxdial for remote sensing detection of bark beetlested areas
during green attack: a literature revieNatural Resources Canada.

ASPRS 2011 Annual Conference
Milwaukee, Minnesota¢ May 1-5 2011



Parker, J.T; Clancy, M.K; Mathiasen, L.R. (2008)tekactions among fire, insects and pathogens mnifezous
forests of the interior western United States @adadaAgriculture and Forest Entomology, 8, 167 — 189.

Perez, L.; Dragicevic, S. (2009). Modeling mountgiime beetle infestation with an agent-based ampraftwo
spatial scale€nvironmental Modeling & Software, 25(2).

Rouse J.W., Haas R.H., Schell J.A. and. Deering,DMbhitoring vegetation systems in the Great Plaiith
ERTS, Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, NASA, Greenbelt,
MD (1974), pp. 301-317.

Sampedro, L.; Moreira, X.; Martins, P.; Zas, R.q2pD Growth and nutritional responseRdfius pinaster after a
large pine weevillylobius abietis) attack.Trees, 23.

Skakun, R.S.; Wulder, M.; Franklin, S. (2003). Stvisy of the thematic mapper enhanced wetnesedifice
index to detect mountain pine beetle red-attackatpmiRemote Sensing of Environment, 86, 433-443.

State of the Climate drought, annual 2005. (20R8)ional Oceananic and Atmospheric Administration.

Subramanian, S.; Gat, N.; Sheffield, M.; BarhenTdomarian, N. (1997). Methodology for hyperspakimage
classification using novel neural networdgorithms for Multispectral and Hyperspectral Imagery I,
SPIE, 3071.

United States Department of Agriculture, Naturat®eces Conservation Service. 2008. Soil Surveykainogan
National Forest Area, Washington. Accessible ondihénttp://soils.usda.gov/survey/printed_surveys/.

Washington State Department of Natural Resourd@¥)otographer). (20100sgs 100k quad: twisp- a148120.
[Web]

White, J.C.; Coops, N.; Hilker, T.; Wulder, M.; alt, A. (2007) ‘Detecting mountain pine beetle rathck
damage with EO-1 Hyperion moisture incides’, Ingional Journal of Remote Sensing, 28: 10, 2111—
2121.

Wulder, M.A.; White, J.C.; Coops, N.C.; Han, T.yvAtez, M.F.; Butson, C.R.; Yuan, X. (2006). A Praee for
mapping and monitoring mountain pine beetle redcatforest damage using landsat imag€&asnadian
Forest Service, BC-X-404.

ASPRS 2011 Annual Conference
Milwaukee, Minnesota¢ May 1-5 2011



