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ABSTRACT 
 
Fire-suppression over the past century has led to increased forest density and fuel accumulation. Increased stand 
densities and warm dry summers in the past few decades have predisposed dry, high elevation forest types to 
mountain pine beetle (MPB) outbreaks.  MPB outbreaks occur in three successive stages— the green (initial attack), 
red (visible attack), and gray (dead) stages. With the use of geospatial technology, these outbreaks can be better 
mapped and assessed to evaluate forest health. Field work on seventeen randomly selected sites was conducted using 
the point-centered quarter method. The stratified random sampling technique ensured that the sampled trees were 
representative of all classifications present. Additional measurements taken were soil nutrient concentrations 
(sodium [Na+], nitrate [NO3

-], and potassium [K+]), soil pH, and tree temperatures. Finally, satellite imagery was 
used to define infestation levels and geophysical parameters—such as land cover, vegetation classification, and 
vegetation stress. ASTER images were used with the Ratio Vegetation Index (RVI) to explore the differences in 
vegetation, while MODIS images were used to analyze the Disturbance Index (DI). Four other vegetation indices 
from Landsat TM5 were used to distinguish the green, red and gray phases. Selected imagery from the Hyperion 
sensor was used to run a minimum distance supervised classification in ENVI, testing the ability of Hyperion 
imagery to detect the green phase.  The National Agricultural Imagery Program (NAIP) archive was used to 
generate accurate maps of beetle-infested regions. 
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INTRODUCTION 
 

Fire suppression and climate change over the last century have predisposed dry forest types to to widespread 
insect outbreaks (Axelson, 2009).  Due to a combination of these factors, bark beetles such as the fir engraver 
Scolytus vetralis, the mountain pine beetle Dendroctonus ponderosae, and the western pine beetle D. brevicomis 
have spread rapidly over the last several years (Leatherman, et al., 2007). Such phenomena, specifically warmer 
climate and drought, have reduced tree defenses to bark beetle attack, leading to increased mortality (Moore, et al., 
1993).  In addition to natural causes, anthropogenic activities such as fire suppression have contributed to 
increasingly widespread infestation (Jenkins, et al., 2008).  Under normal circumstances, fire acts as a natural 
control by clearing swaths of forests and ground litter. This slows the growth of stocks and limits competition for 
water and other necessary resources. However, fire suppression has prevented the natural thinning of the forest. 
Forests have therefore grown denser with many more water-stressed trees, increasing vulnerability of the forest to 
bark beetle attacks (Dordel, et al., 2006).   

Ground surveys, remote sensing techniques, and aerial detection surveys are the primary methods for 
monitoring bark beetle infestation (Wulder, et al., 2006). Ground surveys are costly and time consuming, and remote 
sensing methods have proved to be economical tools for detecting bark beetle damage.   
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Remote sensing techniques are most effective when bark beetles manifest in homogeneous pockets of mortality. 
However, outbreaks are rarely homogeneous based on the age of the stand and varying tree species (Miller, et al., 
2003). This impairs the accuracy of remote sensing classification models. As a result, it is difficult to understand the 
magnitude of the problem by exclusively examining satellite imagery. It is therefore necessary that new 
methodology be created to better understand this problem. 

The main objective of this study was to evaluate a widespread and ongoing outbreak in the Okanogan-
Wenatchee NF in northern Washington State.  The 80,000 ha Tripod fire initiated the spread of the bark beetle 
infestation in the Okanogan-Wenatchee National Forest in northern Washington State. Bark beetles have a 
widespread impact, affecting 1.73 of the 22 million acres of forest land in Washington experiencing tree mortality, 
an increase from previous years (Johnson, et al., 2010). With field work, remote sensing image analysis and an 
understanding of the phase of infestation, this study identifies specific present and future regions of advanced stress 
and decline. These findings will aid in the understanding of extensive outbreaks. Goals also include determining 
differences between mortality and non-mortality sites when analyzing various measures of forest health (Perez and 
Dragicevic 2009; Sampedro, et al., 2009).  Geophysical parameters include vegetation classification, vegetation 
stress using hyperspectral data, as well as soil and temperature measurements. It has been hypothesized that bark 
beetle infestation affects tree temperature since it alters the tree’s color and therefore its spectral profile. 
Temperature measurements were taken to test this theory. Vegetation indices used include the Ratio Vegetation 
Index (RVI) from the ASTER sensor on the NASA Terra Satellite and the Enhanced Wetness Difference Index from 
Landsat Thematic Mapper 5 (TM5). In addition, Landsat TM5 was used to calculate NDMI (Normalized Difference 
Moisture Index), NDVI (Normalized Difference Vegetation Index), and DI (Disturbance Index) (Table 1) (Hsu and 
Johnson, 2008).  The MODIS Aqua and Terra sensors were also used to calculate a disturbance index.  Image data 
from the Hyperion satellite will be used in an attempt to identify trees in the first stage of attack. 
 
Bark Beetle Bionomics  

 
Mountain Pine beetles attack trees that showcase two favorable characteristics; 

nutrient content and trunk diameter thickness (Niemann and Visintini, 2005). These 
factors are thought to attract beetles which then bore into trees and deposit their 
larvae. Bark beetles are most successful when attacking trees that have been 
weakened by disease, drought, smog, previous infestations or physical damage. 
These attacks further weaken the trees, leading to stem deformities, loss of growth, 
and premature mortality (Moore, et al., 1993). 

The mountain pine beetle (Dendroctonus ponderosae), targets ponderosa and 
lodgepole pines (Leatherman, et al., 2007). The 
female adult beetle frequents trees with large 
diameters during late summer (Garrison-
Johnston, et al., 2003).  In a mass outbreak, 
beetles may attack smaller diameter trees.  The 
first wave of beetles emits pheromones, drawing 
more beetles to infested trees, further amplifying 
infestation (Parker, et al., 2006). Beetles are also 
attracted to ethanol produced by beetle larvae in 
the dead, woody tissues. 

Healthy trees secrete resin, or latex, which 
contains insecticidal and fungicidal compounds.  
Such compounds defend the tree against beetle 

infestations, immobilizing and suffocating the beetles.  However, a heavy 
infestation can overwhelm these defenses, especially in weakened trees, resulting 
in sawdust-like shavings around the entrance holes (Figure 1, Leatherman, et al., 
2007). 

Figure 1. Trees produce 
sap as a defense 
mechanism when bark 
beetles borough into the 
tree, creating pitch tubes. 

Figure 2. A red phase tree.  
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Tree infestation is a three-stage process (Figure 3). 
Green attack, the first stage, shows no color change and 
is therefore difficult to detect with remote sensing. 
During this stage, the beetles begin to borough through 
the phloem, interrupting nutrient flow. It takes roughly 
one year to transition to the second stage, red attack, 
which can be detected by satellite sensors (Figure 2). 
The beetle larvae begin to feed on the tree’s phloem, 
starving the tree of nutrients and water, and changing 
the crown from green to red (Niemann and Visintini, 
2005). Gray attack is the final stage in which the tree is 
dead and has lost all foliage. (Wulder, et al., 2006). 

Some natural controls of bark beetle infestations 
are woodpeckers, which feed on adults and larvae, and 
extremely cold temperatures (-34C). There are, 
however, various human-induced controls, including 
peeling the bark from trees in the green phase to 
dehydrate the larvae or burning and scorching the logs. 

Harvesting and thinning suitable host trees are other management options. Chemical control options, however, are 
very limited since there are no labeled pesticides for use on the beetles (Leatherman, et al., 2007). 
 
Study Site 

The Okanogan-Wenatchee National Forest is located south of the 
Canadian border and east of Cascades National Park in central 
Washington State (Figure 4).  Field sites were located within a 4 km 
radius of 48.09 latitude and -120.19 longitude.  Vegetation within the 
forest is variable, with small shrubs and grasslands covering the lower 
elevations.  Mid-elevation vegetation primarily consists of ponderosa 
pine (Pinus ponderosa) while lodgepole pine (P. contorta), Douglas fir 
(Pseudotsuga menziesii), and subalpine fir (Abies lasiocarpa) can 
readily be found at higher elevations above 1,800 meters.  

The climate is characterized by moderate temperatures during the 
summer and occasional sub-zero temperatures during the winter 
months.  Recent major droughts occurred in 2001 and 2005.  Mean 
annual precipitation ranges from 30 to 230 centimeters (USDA, 2008).  
In recent years, the region has experienced severe wildfires.  The Deer 
Point Fire of August 2002 burned stands on the south western edge of 
our study region.  The Tripod Fire burned in excess of 70,820 hectares of the Okanogan wilderness, ranking as one 
of the largest fires in Washington State over the past 50 years.  Fire suppression techniques that began in 1900 have 
significantly jeopardized the health of the forest by encouraging stock density and increasing competition for 
resources amongst trees (Iglesias, et al., 1997).   

 
 

METHODOLOGY 
 
Field Methods 

The field study was conducted in June of 2010 to classify forest stands in various stages of attack. This 
classification creates a base to accurately determine percent infestation, providing a basis of comparison with 
satellite data.  Seventeen primary sampling units (PSU) were measured, each within one of the following 
categories—severe infestation (red-attack or gray-attack), moderate infestation, and no infestation. Sampling sites 
were randomly generated, located in polygons derived from areas known to be mountain pine beetle territory in 
2009 aerial surveys (Washington State, 2010). Such imagery is useful for narrowing down regions of beetle 
infestation, providing a preliminary basis for site selection.  Selected sites were at least 90 meters and no farther than 
500 meters from established roads. 

Figure 3. A mix of green, red, and gray phase trees. 

Figure 4. Our study site was located 
in NE Washington State, directly 
above Lake Chelan. 
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The center of each PSU was located using a real-time differential correction on a 
Trimble GPS unit. Each coordinate was checked using a Garmin ETrex Vista Hcs 
handheld GPS. The PSU are 60x60 meters, each consisting of 12 subplots spread 
across a grid (Cottam, 1953). Subplots consist of three columns spread an equidistant 
15 meters apart, with four rows spread at various distances; 10 meters from the 
northern edge to the first row, 12.5 meters to the second row, 15 meters to the third, 
12.5 meters to the fourth, and 10 meters to the southern edge (Figure 4). A laser 
range finder was utilized to measure the distance from subplot center to the sampled 
tree. The point-center quarter method (Mitchell, 2007) defined each subplot, in 
which the four geographical bearings (north, east, south and west) tagged which trees 
to sample (Figure 5). Measurements taken at each tree included diameter at base 
height (DBH), distance from sub-plot center, tree species, percent red attack, percent 
gray attack, presence of pitch tubes, and notable tree discrepancies. This dataset 
chronicles tree density, species composition, and percent infestation. Further 
measurements were noted at each plot for percent groundcover, percent understory 
coverage, and percent over-story coverage.  Tree-trunk temperatures were also 
measured, using a Raytek Raynger ST temperature gun, with measurements taken on 
the north-facing side of trees.  In addition, soil samples were extracted and measured 
for major nutrient concentrations (K+, NO3

- and Na+) and pH levels at each PSU 
center point (Moore, et al., 1993). These measurements were made to explore 
relationships between soil chemical composition and MPB attack behavior.  

Unpaired student t-tests were used to determine the effects of soil nutrients (K+, 
NO3

- and Na+), tree temperature, tree diameter-base-height (DBH) and percent 
canopy cover on tree mortality (Morehouse, et al., 2008).  Percent canopy cover is determined by over-story crown 
coverage within a five meter radius of each center-plot.  Mortality was defined as a unit composed of more than 50% 
red and gray phases, while non-mortality was defined as more than 50% healthy and green (Perez and Dragicevic, 
2009).  A p-value of 0.05 or less was used. 

Two statistical tests were run to compare mortality with the various indices and contrasting adjacent years’ 
indices. A significance level of 10% was used. An ANOVA test was run on the data from 2002 to 2009 (Table 3). 
The purpose is to find a correlation between percent mortality and the various indices, so that a model predicting 
future mortality may be created. The ANOVA compared units were separated into four categories: 0-25% gray, 25-
50% gray, 50-75% gray and 75-100% gray. Unpaired student t-tests were run on significant years to observe the 
differences. The second set of statistical tests compared adjacent years’ indices to see if there was an increase or 
decrease in value from year to year. We used 2-sample t-tests to compare the index values from each yearly pair.  

 
Satellite Image Processing 

A combination of MODIS, ASTER, and Landsat satellite imagery were used to detect and quantify percent 
infestations in the Okanogan-Wenatchee National Forest from 2002 to 2009. Several indices were used, including 
NDMI, NDVI, DI, EWDI, RVI (Table 1).  Comparisons of indices were made to demonstrate the detection strength 
of each satellite instrument and detect potential future infestation and mortality. 

Using Landsat to Create DI, EWDI, NDVI and NDMI Values.  For the purpose of this study, 10 Landsat TM5 
images were downloaded from the USGS GLOVIS server (http://glovis.usgs.gov/.)  Each image was captured 
during the summer months of June, July, August, or September from 2002 through 2009. All downloaded images 
were radiometrically corrected in ERDAS Imagine 9.3 and then turned into reflectance values (Wulder, et al., 2006; 
Chander and Markham., 2003). In total, four spectral indices were calculated; NDVI, NDMI, EWDI, and DI. 

The NDVI and NDMI indices were used to detect vegetation and moisture changes in year to year comparisons 
(Table 1, Eq. 1,2).  For the purpose of this study, the vegetation indices were used to detect patches of dead vege-
tation that correlate with regions of extensive bark beetle infestation.  As mountain pine beetle infested stands enter 
the red phase, NDMI values decrease (Wulder, et al., 2006).  The NDMI and the NDVI were calculated in ERDAS 
Imagine 9.3.  Each index was based upon the original reflectance image of each year.  NDVI and NDMI indices 
were then extracted in ArcGIS 9.3 to calculate average pixel values.  Coordinate points from the original seventeen 
field sites were layered atop each vegetation index from each given year, and 2x2 pixel values were averaged.   

The tasseled cap (TC) procedure was used to create a vegetation index that measures three vegetation 
dimensions—brightness, greenness and wetness (Crist and Krauth, 1986). The same procedure was used to create 
the EWDI, which isolates the wetness layer in two progressive tasseled cap images, differentiating each wetness 

Figure 5. The point-
centered method was 
used to sample each unit. 
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layer to detect water stress (Table 1, Equation 3; Skakun, et al., 2003; Han, et al., 2007).  In the equation, the 
variables TC3(2008) and TC3(2009) are the tasseled cap wetness layers from two consecutive years. 

 Each EWDI was computed in ERDAS Imagine 9.3 for each consecutive year. For instance, the first EWDI 
differenced August 2002 and July 2003 (Wulder, et al., 2006). The EWDIs were uploaded into ArcGIS 9.3, and a 
pixel area of 2x2 was used for each sampling site. Pixel reflectance values were obtained and averaged for the 
seventeen field units. 

Further, a disturbance index was calculated based upon tasseled cap images from a single date.  The purpose of 
the disturbance index is to measure vegetation degradation that results from any number of natural or human-
induced causes such as forest fires or forest insectic infestations (Hais, et al., 2009).  The disturbance index 
exemplifies the contrast between healthy forest stands and bare ground.  Disturbance index images were generated 
for each year between 2002 and 2009 based upon the original reflectance images—brightness, greenness and 
wetness (Table 1, Equation 4).  

 
Using ASTER to Model Beetle Spread.  ASTER (Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) is an imaging instrument supported by Terra, a satellite launched as part of NASA’s Earth Observing 
System (EOS). When vegetation undergoes moisture stress, it reflects low levels of near infrared radiation (NIR) but 
more red electromagnetic radiation. This results in a decreased RVI with escalated stress (Fettig, et al, 2007). As 
bark beetles target stressed trees, ASTER’s ability to detect stress facilitates validation of infestation. ASTER 
images were downloaded from the online Warehouse Inventory Search Tool (WIST) website 
(https://wist.echo.nasa.gov/~wist/api/imswelcome/). The images are dated October 2000, July 2003, August 2005, 
and July 2008. The limited availability of images prevented a thorough sequential analysis. Vegetation stress was 
calculated between the four years using the Ratio Vegetation Index (RVI) (Table 1, Equation 5) (Elvidge et al., 
1995). The four ASTER images were georectified using a geometrically-accurate aerial image and several ground 
control points as a base. The ASTER images were used to create raster files, which contain the RVI values. 

Seventeen polygon shapefiles, each corresponding to a field site, were overlaid on top of the ASTER images. 
Each polygon occupied a 60x60 meter area, covering a total of sixteen ASTER pixels.  

Using MODIS to Create Disturbance Index Archives.  MODIS data were used to create the Disturbance Index 
(DI). When the Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI) contribute anomalies, the 

Table 1: Satellite indices used to map stress in Wenatchee and Okanogan Forests  
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MODIS DI is effective at identifying disturbance.  Further, the index better represents the normal ecological condi-
tion with the addition of more and more annual mean-maximum values in the denominator (Mildrexler, et al., 2007).  

MODIS data were obtained from the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL 
DAAC) website (http://daac.ornl.gov/MODIS/).  Data from years 2002 through 2009 were compiled from the 
DAAC server.  Seventeen data sets were requested—one set for each PSU.  As delineated by Mildrexler et al. 
(2007), LST and EVI were used to create the MODIS Disturbance Index (Table 1, Equation 6).  LST data is 
gathered from the Aqua/MODIS eight-day composite daytime sensor.  EVI data is gathered from the Terra/MODIS 
16-day composite sensor.   

Landsat Classification.  In order to assess the ability of Landsat to detect red-phase trees, an ISODATA 
unsupervised classification was conducted. Vegetation classes were narrowed to four categories – healthy forest, 
red-phase forest, bare ground and shrubbery, and ice. 

Satellite Image Processing—Hyperspectral Detection of the Green Phase.  Research has shown that Landsat 
TM5 is successful in detecting the red and gray phases of bark beetle attack, but not the green phase (White et al., 
2007). Our study is aimed at determining if Hyperion is indeed able to differentiate between the green phase and 
healthy trees.  

Preprocessed Landsat images from 2002 and 2003 were used to train Hyperion data. Previous studies have 
shown that there is a twelve month time period to reach 90% red phase from an initial 100% green phase (Wulder, 
2006). Using this information, a supervised minimum distance classification was run on the Landsat images, 
searching for green and red trees. This classification used predefined “regions of interest,” or ROIs, specific to each 
year, containing purely green pixels in 2002 and red pixels in 2003. The 2002 and 2003 Landsat classifications were 
then overlaid to find pixels classified in each year. Forty-six pixels were found and defined as green phase ROIs. 
The spectra of both green phase and non-green phase pixels were graphed and compared to determine what bands 
fluctuate with the green phase. Two supervised spectral angle mapper classifications were run on the Hyperion 
image, using 20 merged green phase ROIs per classification. We compared the two classified images, looking for a 
correlation between classified pixels. An accuracy of 50% or higher indicates success (Subramanian, et al., 1997). 
 
Using NAIP Imagery to Quantify the Infestation 

The National Agriculture Imagery Program (NAIP) provides detailed, high resolution images acquired by 
aircraft of the entire United States. Digital NAIP imagery is useful for visualizing and quantifying the extent of the 
mountain pine beetle infestation as a result of its 1-m resolution.  Each image contains spatially detailed ground 
information, allowing differentiation between red and green crowns.  Red pixels have markedly different values in 
the multispectral NAIP imagery than do green pixels.  A simple algorithm was used to identify red crown pixels 
based on visual inspection of the imagery (Equation 7). 

 
  

(Equation 7) 
 

ERDAS Imagine was used to create a model which runs a raster NAIP image from a particular year through this 
algorithm.  It is important to recognize that every NAIP image will have different threshold values dependent on the 
quality and time of day of the image.  The algorithm sets to zero all pixels that do not meet the specified 
characteristics as defined by the unique threshold value.  Such manipulation permits the creation of detailed maps 
that chronicle the amount of trees with red crowns in a given area.  With one meter resolution, acreage of infestation 
can be calculated based upon the number of red pixels in a given area. 

The binomial probability theory equation was utilized to determine the number of points that should be selected 
for the accuracy assessment (Jensen, 2007). The equation is defined below: 

 
 
 
 

This was computed where N is the sample size, Z = 2 from the standard deviate of 1.96 for the 95% two-sided 
confidence level, p is the expected accuracy for the entire map, q = 100 – p, and E is the allowable error (Jensen, 
2007). The number of random sample locations was computed as: 
 

 
 
This amounted to 75 points with an expected accuracy of 75% and a 10% allowable error.   
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RESULTS 
 

Field Measurements 

At the 5% level, lodgepole pine trees were warmer than other tree species during midday (p < 0.001), yet there 
was no significant difference between the morning (p=0.795) and afternoon (p=0.9249). Gray trees had the same 
significantly higher temperatures compared to all live trees at midday (p=2.077 x 10-8).  Nutrient concentrations for 
NO3

- (p=0.62), K+ (p=0.524) and Na+ (p=0.867) as well as percent canopy cover (p=0.7975) had no significant 
correlation with tree mortality (Table 2).  In summation, grey trees exhibited higher temperatures than healthy trees. 

Indices.  Within the study region, the four 
indices—NDMI, NDVI, EWDI and DI—were 
statistically different in year-to-year comparisons 
(Appendix 1). The years with the greatest 
differences were 2002 to 2003, 2004 to 2005, 
and 2006 to 2007.  

Two years displayed the highest moisture 
and vegetation levels—2002 and 2006. These 
years had significantly more moisture (NDMI), 
or less moisture stress (EWDI), than 2003 and 
2007, respectively (Figure 6). Also, 2002 and 
2006 had greater levels of vegetation and a lower 
disturbance than their respective consecutive 
years. This data correlates to the drought in 2003 
(-2.75 and below) (State of the Climate, 2009). 

However, 2004 had significantly lower 
levels of vegetation yet 
lower moisture stress than 
2003. It also showed lower 
Landsat disturbance yet 
higher MODIS disturbance 
levels than 2003.  Since 
2002, the MODIS sensor has 
detected increasing distur-
bance levels at unhealthy 
sites, especially between 
2006 and 2009 (Figure 7). 

RVI (ratio vegetation 
index) derived from the ASTER imagery showed no significant differences 
between any of the years.   

Low mortality sites (those with less than 25% gray trees) had 
significantly more vegetation (from NDVI) than the higher mortality sites 
for years 2003, 2007, 2008 and 2009. High mortality sites showed lower 
Landsat disturbance levels, yet higher MODIS disturbance levels, than low 
mortality sites, as demonstrated by the years 2006, 2008 and 2009. The 

Table 2: Statistics run on field measurements (T-Test). 
 

Confidence intervals at the 10% level; asterisks denote statistical significance. 

Site Class 
% 
canopy cover 

Tree 
Temperature [NO3-] [K+] [Na+] 

> 50% red/gray 54.11 + 77.14 20.0 + 3.40* 77.13 + 46.80 385.7 + 220.4 271.67 +214.24 

< 50% red/gray 56.18 + 23.71 16.3 + 2.31 67.00 + 27.91 456 + 214 292.22 +248.64 

 Figure 6. NDVI and NDMI were created using Landsat. 
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Figure 8. A classification was 
run on the Landsat 2009 image. 
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EWDI indices also demonstrated less moisture stress for high mortality sites, yet the NDMI held significance for 
high mortality sites having a low moisture content (demonstrated by years 2007, 2008 and 2009).  

 
Landsat Classification 

The classification achieved an overall classification score of 80%. However, the classification was only 39.53% 
accurate in detecting red-phase forest (Figure 8).  Accuracy was calculated using the ERDAS Imagine accuracy 
assessment tool. 
 

 
Detection of the Green Phase 

Hyperion satellite imagery was able to classify the green phase, with a kappa coefficient of 0.1163, or 11.63%. 
As the kappa coefficient disregards chance agreement, this was a significant finding. This finding was supported by 
comparing the spectra of the green phase and healthy trees. 
 
 
 
 
 
 
 
 
 
 
 

The green phase emitted at higher reflectance values (by approximately 200 µW/(cm^2*sr*nm)) between 
wavelengths of 671nm to 1336 nm (band numbers 32 through 119) (Figure 9). In Cheng, et al., 2010, it was found 
that the green phase is characterized by its moisture content between wavelengths of 1318 nm and 1322 nm. Our 
findings therefore indicate that green phase trees emit higher reflectance values in the red portion of the spectrum, 
due to decreased chlorophyll content, and in the infrared portion of the spectrum, due to decreased water content. 

Hyperion is an efficient tool at detecting the green phase. The accuracy level can be increased by using ground 
data as training data and NAIP imagery to run the accuracy assessment against. 

 
NAIP Red Phase Algorithm 

NAIP imagery was successful in detecting the extent of the red phase.  Accuracy was measured in ArcGIS by 
random selection of points located within red tree clusters.   

Table 3: Indices Comparison Between Mortality Categories (ANOVA tests’ values) 
 

* = statistical significance at the 10% level 

 

MODIS DI 
(disturbance 
index) 

Landsat DI 
(disturbance 
index) 

NDVI  
(vegetation 
level) 

NDMI 
(moisture 
level) 

EWDI  
(moisture 
stress) 

2002 p=0.7100 p=0.9887 p=0.4125 p=0.7424 p=0.7414 

2003 p=0.1858 p=0.2830 p=0.0871* p=0.1657 p=0.4592 

2004 p=0.3579 p=0.8470 p=0.1271 p=0.3132 p=0.4597 

2005 p=0.1707 p=0.3819 p=0.1201 p=0.2255 p=0.9749 

2006 p=0.0854* p=0.3902 p=0.2546 p=0.7163 p=0.2695 

2007 p=0.5531 p=0.8265 p=0.0011* p=0.0798* p=0.0170* 

2008 p=0.8724 p=0.0410* p=0.0066* p=0.0282* p=0.4621 

2009 p=0.9598 p=0.0454* p=7.04e-5* p=0.0003* N/A 

Figure 9. A comparison between the spectra of green phase pixels and healthy pixels. 
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This accuracy assessment demonstrates that the algorithm and classification is 96% accurate.  The total acreage 
of the study region shown above is 38,481,540 square meters (Figure 10).  In 2006, red phase trees covered 146,188 
square meters.  By 2009, this number rose to 4, 151,500 square meters. 

 
 

DISCUSSION 
 

Classification schemes are an effective way to categorize large areas without detailed imagery. The Landsat 
classification had an overall accuracy of 80%, yet was only 39.53% accurate at detecting the red phase. This is due 
to the 30x30 meter resolution of the imagery and non-homogeneity of the sites. Non-homogenous sites were often 
inaccurately classified. Inaccurate classifications were the result of border pixels and mixed pixels. If a pixel is 60% 
green phase and 40% red phase, the classification scheme will display it as being 100% green phase. Pixels that 
occur along the border of different classes are also frequently misidentified. However, an algorithm was created to 
detect the red phase in NAIP imagery. This may be used in tandem with hyperspectral imagery, such as Hyperion, to 
improve the accuracy of the detection of beetle infestation. 

The Hyperion classification of the green phase also had a low accuracy level, with a kappa coefficient of 
0.1163. However, Hyperion was able to detect that the green phase in the reflectance in the red and infrared regions 
of the electromagnetic spectrum. The higher reflectance in the red region (620 nm to 780 nm) may be due to the 
reduced chlorophyll content of infested trees (Ahern, 1988). Trees with lower chlorophyll content tend to reflect 
rather than absorb red wavelengths. Therefore, infested trees will have a higher red reflectance level than healthy 
trees. The higher infrared reflectance is caused by decreased water flow to the crown, due to the burrowing of the 
bark beetles (Hicke and Jenkins, 2008). Hyperion’s ability to detect the spectral differences between green and other 
phase trees indicates that Hyperion may be used to detect the green phase, although a further accuracy analysis 
should be pursued. It may also be a strong predictor of the red phase, with its hyperspectral capabilities. 

The NDMI and EWDI spectral indices were fairly accurate in detecting droughts and fires, as checked by 
NOAA’s archive of droughts and wildfires. However, several years (such as 2006 and 2008) were not drought years 
yet appeared dry in the NDMI. The EWDI indicated increasing moisture stress over several years that, in fact, were 
undergoing less severe droughts. The two disturbance indices strongly correlated with moisture stress (EWDI), and 
prove to be very reliable. The NDVI also had a strong correlation with the NDMI, indicating that moisture levels are 
sound indicators of vegetation levels, and vice versa.  

The field measurements and NAIP photos were useful for training satellite data and understanding the extent of 
mountain pine beetle infestation. Tree temperatures taken in the field may be used as a secondary indicator of tree 
health and beetle infestation. Gray phase trees have little to no water, thus increasing the tree’s temperature. On 
average, lodgepole pine trees had the same elevated temperatures as gray phase trees. These findings will allow for 
the improved detection and, therefore, management, of beetle infestations. A combination of satellite imagery 
classifications, spectral indices, and field data can better predict high risk areas. 

The aforementioned methods can be applied in infestation mitigation practices. This study is strong evidence 
that spectral indices can be used to detect areas of infestation. Also, the NAIP algorithm which was derived can be 
modified and used to display red phase trees in any NAIP image. With this new algorithm, acreage of infested areas 
can be quickly determined with 96% accuracy. This information can help the forest service predict future sites of 
infestation. Future studies should focus on using Hyperion data to more accurately classify the incipient green phase. 
The green phase can be accurately detected with extensive field work and high resolution NAIP images, which can 
both be used to train an accurate supervised classification. 

 

Figure 10. Depiction of red 
phase in NAIP imagery. 
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CONCLUSION 
 

Remote sensing is a valuable tool in tracking bark beetle infestation. However, the size of infested areas tends to 
be small relative to satellite resolution.   Thus, high spatial resolution imagery is optimal. Resolution of the 
aforementioned satellites was sufficient for the purposes of this initial study, but more detailed imagery would yield 
better results for the spectral indices. The five multispectral indices proved to be accurate at detecting infestation. 
This is because moisture content, vegetation levels, and ecosystem disturbance are all related to infestation. Multiple 
measurements per sampling site would likely yield more significant results. Temperature, however, does correlate to 
the level of beetle infestation. 

Hyperion can differentiate between the red and infrared portions of the spectra of green phase and healthy trees. 
Hyperion, therefore, shows promise at detecting the green phase, although further research should be done to 
increase the accuracy of Hyperion’s classification of the green phase. This study is intended to map the distribution 
and extent of bark beetle infestation in Okanogan-Wenatchee National Forest. Through the usage of field work, 
spectral indices, and NAIP imagery, bark beetle infestation can be detected so that any necessary mitigation steps 
can be taken. 
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