

Mapping solar potential obstructions using LiDAR data

Krista Amolins

David Coleman, Yun Zhang, Peter Dare
University of New Brunswick, Fredericton, NB
ASPRS 2011

Sunlight in Milwaukee

Sunrise, sunset, dawn and dusk times

Sun path

Insolation, in kWh/m²/day

If could capture and convert 100% of the solar radiation hitting a 1 m² area on May 3: - power 5 100 W light bulbs for 10 hours

- make 25 pots of coffee
- dry 1 load of laundry

BUT high efficiency solar panels convert only 18%

Source: NASA Langley Research Center Atmospheric Science Data Center, via http://www.gaisma.com

Limited Solar Potential

Fredericton, NB,
Canada
Worst Case

Sun angles
December 21
rise 124°
set 236°
max elev 20.7°

http://geonb.snb.ca/geonb/

Best Case:
Obstructions...

↑ N

Workflow for Mapping Obstructions

LiDAR Point Cloud

Data collected November 2007

→ leaf-off
Up to four returns per pulse;
most last returns from ground

50 m

Solid Surface

Grid resolution 1 m
Simple filtering: last returns.
Contains ground, buildings,
evergreen trees and hedges,
cars, some artefacts from
deciduous trees.

- Worst case means: on the shortest day, when the sun does not reach a high elevation, will sunlight reach the surface?
- Compare LiDAR points to surface cells: are objects obstructing the sun at any time?

LiDAR Point Cloud

Solid Surface

Workflow for Mapping Obstructions

Solid Object Points

Data collected May 2006 → leaf-on Points classified using intensity, local density, and local variation in height

Solid Object Points

Non-solid
Objects

Data collected May 2006 → leaf-on Points classified using intensity, local density, and local variation in height

- Best case means: (on the shortest day) are any of the obstructions not solid objects?
- Compare only solid object LiDAR points to surface cells: are objects obstructing the sun at any time?

Greyscale: Solid surface
Pink: Non-solid

Object Points

Greyscale: Solid surface
Pink: Non-solid
Object Points

Workflow for Mapping Obstructions

17 /20

Recap

- Renewable energy sources, e.g., solar
- Low insolation in winter
- Filter LiDAR data: ground (solid surface) and obstructions (everything)
- Classify LiDAR data: solid objects (not trees, power lines...)
- Analyze obstruction direction, seasonal solar variations to refine results

Further Work

- Apply better filtering methods
- Smooth solid surfaces
- Quantitative assessment of results
- Improve classification
 - Separate trees from power lines
 - Locate building edges
- Apply to vertical surfaces

Thank You!

