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ABSTRACT 
 
Land cover classification is a valuable tool for professionals in a diverse range of fields, ranging from environmental 
and ecosystem management, to land use planning and fire management, these applications play an important role in 
both the public and private sectors. The most thorough and recent of the datasets used for land cover classification 
have been the 1992 and 2001 30-meter-posted National Land Cover Database (NLCD) datasets created by the 
United States Geological Survey (USGS). While these datasets provide a good medium-scale land cover dataset, 
there are limitations to the NLCD’s accuracy and use in finer-scale applications. Under the NEXTMap® USA 
program, Intermap Technologies™ is assembling a nationwide dataset of high-resolution 1.25-m orthorectified radar 
imagery (ORI) and 5 m elevation datasets for the entire conterminous United States. NLCD data and NEXTMap® 
Land Cover Data were compared in five different study areas  across the United States (California, Colorado, 
Montana, and two locations in Minnesota), and verified with field measurements. Nine land cover classes (water, 
barren, grassland, urban, shrub, mixed forest, deciduous forest, evergreen forest, and wetlands) constituted the 
majority of the study areas. Overall, the result of using NEXTMap radar and elevation data for classification of land 
cover yielded very favorable results. The majority of the land cover classes were delineated with an overall accuracy 
ranging between 86.30% - 86.91% on the order of 90%, versus 59.16% - 63.93% for the NLCD. The NLCD map 
often confusing deciduous and wetland, underestimating evergreen, and overestimating shrub vegetation classes. 
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INTRODUCTION 
 

Land cover data is a valuable and often necessary product when performing studies and analysis in a number of 
fields. To accurately access trends of change across the surface of the earth, the data in use must fully meet the 
project manager’s need in regards to scale, data frequency, consistency, and accuracy. While the NLCD is excellent 
in intermediate to large scale mapping projects, it can run into issues when being applied in projects at finer scales. 
In applications such as large scale change detection, environmental impact analysis, and ecosystem management, 
intermediate scale land cover data is often sufficient to the users needs. However, in finer scale applications such as 
calculation of surface roughness within a potential wind energy project, finer scale land cover data can be an 
extremely valuable asset. To map land cover at the finer scales necessary for some of these applications, high quality 
imagery is the first important component. Imagery with a finer resolution, seamless transition between tiles/scenes, 
and no cloud cover is the ideal solution to this problem. There are a number of high resolution optical satellites 
currently in operation; however it is difficult to provide entirely cloud free and seamless data on a country-wide 
basis. A solution to this problem would be to use primarily radar imagery, such as that offered by the Intermap 
NEXTMap data program, which provides a highly accurate, cloud-free source of imagery for the potential creation 
of a nationwide 5-meter land cover dataset. While this data is not free of problems (it is greyscale, has shadows in 
high relief areas, etc.) it provides a viable solution for the creation of a land cover dataset on a nationwide basis. 
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Over the past decade, the use of IFSAR data to derive two-dimensional land cover has matured considerably 
(Zebker et al., 1991; Madsen et al., 1993; Zebker et al., 1994; Wegmuller and Werner, 1995; Hagberg et al., 1995; 
Luckman et al., 2000; Weydahl et al., 2001; Corr, 2003; Stilla et al., 2003; Yan et al., 2006; Huang et al, 2007; 
Santoro et al., 2007). This source of data was used in this paper to determine its feasibility in the production of land 
cover maps. The derived land cover maps were tested in several areas of varying land cover, climate, and scale. 

 
 

DATA 
  
National Land Cover Database (NLCD) 

The USGS has produced several sets of land cover data covering the United States, with the most recent and 
comprehensive datasets being released in 2001. This dataset consisted of three different layers: the NLCD 2001 land 
cover dataset, the NLCD 2001 impervious surface, and the NLCD 2001 canopy density set. The NLCD land cover 
dataset consists of 16 primary classes (with additional classes in coastal areas), while the impervious surface layer 
classifies pixels on a scale of 0 – 101, with increasing numbers signifying increases in impervious percentage. The 
canopy density is also based on a scale of 0 – 101, however this only applies to forest and measures forest canopy 
density on a pixel-by-pixel basis. The entire NLCD dataset is derived from optical satellite imagery, which has many 
favorable attributes for land cover classification, but also some drawbacks. For one, this type of data is widely 
available in both the public and private sector. There are many optical satellites operating both currently and 
throughout the past couple of decades. This current imagery, combined with legacy data, provides mapping 
professionals with a broad range of optical products. Another advantage of using optical is its ease-of-use. The 
majority of the population can easily interpret an optical image, as these images are sensed in the same portion of the 
electromagnetic spectrum as the human eye. Finally, satellites can capture large amounts of data in less time than 
terrestrial systems. While this dataset is an excellent resource for those working on intermediate to large scale 
projects, it can be less useful when applied to finer scale mappings. With the 30m posting of this product, mapping 
in scales below 1:100,000 can become more difficult due to this pixel size. This pixel size was derived from the 
source data, in the case of the NLCD, this source data is Landsat 30 imagery.  
 
NEXTMap Orthorectified Radar Imagery 

The primary source of data that we used in our study is 1.25m posted ORI. This data is derived from an airborne 
X-band sensor, which operates in the microwave portion of the electromagnetic spectrum versus the visible portion 
for optical imagery. The radar pulse in an X-band system has a wavelength anywhere from 2.4-3.75cm and a 
frequency of 8000 – 12500 MHz. The ORI is orthorectified utilizing the elevation model captured by this system 
during acquisition, in order to remove errors associated with terrain displacement. This orthorectified radar imagery 
is a greyscale image with a range in values from 0-250. Radar imagery appears similar to a greyscale optical image, 
however is differs in several ways. For one, radar sensors are an active system and can operate independent of 
energy from the sun. This enables radar operators to collect imagery and elevation data both at night and in poor 
weather conditions when optical image acquisition would not be possible. Radar images are created by measuring 
the intensity of the radar backscatter, and assigning it with a value on the scale of 0-250. The amount of energy 
contained in this backscatter is highly dependent on the surface from which it is being reflected. The dielectric 
constant of a surface is a major determining factor of the amount of energy that will either be reflected or absorbed 
by the surface. For example, agricultural fields will return different amounts of backscatter depending on the amount 
of water in the soil. Thus, a field with very similar structural properties but differing levels of soil moisture may 
appear slightly different in a radar image. Surface structure is another major factor in determining the amount of 
backscatter a sensor will receive over a certain area. This is one of the primary differences between radar and optical 
systems, as radar is dependent more on structure and composition versus surface reflection in optical systems. Areas 
that have a rough surface generally return a stronger signal than areas with a smooth surface. For example, a forest 
will return a stronger signal than a smooth road will, assuming the radar frequency remains the same. This surface 
roughness creates a valuable “texture” component within the image, providing the user with valuable information on 
the makeup of the land cover in a given area. In order to derive this land cover information from a radar image, this 
texture must be a major component of the analysis. While different classes of land cover may have a similar tone in 
a radar image (shrub, grass, and forest could have similar tones) they will all have different textures due to the 
diffuse reflection within a patch of vegetation, thus providing a valuable parameter for deriving land cover.  
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In order to help with the validation of the land cover derived from the radar imagery, as well as the NLCD, field 
measurements were collected at all of the study areas. These measurements were taken at various verification 
checkpoints (VCP) throughout each study site, as a way to validate both datasets.  

 
 

STUDY AREAS 
 

In order to observe a wide variety of land cover classes, analysis for this study was performed in a number of 
different locations throughout the United States. There were three locations within the western U.S. and two in the 
Upper Midwest/Great Lakes region (Figure 1). These locations give a good analysis of the varying climate and land 
cover types throughout the U.S., as well as to provide insight into the feasibility of using radar imagery as a base for 
a nationwide land cover dataset.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Location of the study sites. 
 
Western Study Sites 

All of the western study areas had very similar land cover types, as they all were in relatively similar climatic 
conditions. The primary classes of land cover that were identified throughout these locations include grass, shrub, 
wetlands, evergreen forest, deciduous forest, urban, water, and rock/barren. The Colorado and Montana locations 
contain fairly similar vegetation types, with evergreen forest prominent in both. Terrain relief is significant in both 
as well, as the Colorado study area is located along the Front Range of the Rocky Mountains, while the Montana 
location lies within the Bob Marshall Wilderness in north central Montana. The primary difference between these 
locations is the amount of urban development within the Colorado study area. Almost the entire eastern half of the 
Colorado site is urbanized, with several western sections of the Denver metro area present in the image. There are 
also several small to medium sized water bodies located in the Colorado study site, while only a couple of small 
ponds lie within the Montana tile. The California study area has a much drier and more sparsely vegetated 
landscape, with the primary land cover classes being shrub, barren, or grass. There is, however, a significant portion 
of irrigated agricultural land within eastern sections of this location, which provide a stark contrast to the rest of the 
study area. Urbanization is also very sparse in this area of interest. 

 
Eastern Study Sites 

The two locations in Minnesota, provided a landscape more indicative of the eastern United States. The first of 
the study areas is located along the eastern edge of International Falls, Minnesota, and lies on the U.S. border with 
Canada. There is a significant amount of urban development throughout the eastern portions of the study area, while 
the rest of the tile primarily consists of dense evergreen, deciduous, and mixed forest. There are also areas of 
wetlands, open water, shrub, and grassland. The second Minnesota location has sparse urban development, with few 
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roads and houses widely scattered throughout the area. There are also significant water bodies, deciduous and 
evergreen forest, as well as grassland and shrub classes. 

 
 

METHODS 
 

Pixel-Based Classification Process 
Given the different tendencies and characteristics of radar data versus optical data, a non-traditional method of 

classification was needed in order to play into the strengths that radar data possesses in this application. In the case 
of the NLCD, a pixel based analysis was employed. Analyzing a scene on a pixel-by-pixel basic can be effective in 
the case of optical data, but this method can be less effective when applied to radar data. The primary issue we run 
into when attempting to classify radar data pixel-by-pixel is associated with the texture of the image. Radar images 
generally have some noise within the image known as coherent speckle. This speckle can cause problems with a 
pixel based classification, as pixels of varying tones lie within every class of data. These varying tones give the 
image its roughness and texture, which combine to provide the useful information necessary to derive land cover. 
When radar imagery is processed through a pixel based image classification workflow, the result can often be a “salt 
and pepper” like classification. (Mansor, Date last observed 9/9/09) In this study an object-based classification 
system was utilized.  

 
Object-Based Classification Process 

Object-based classification identifies pixels with similar characteristics, and aggregates them into meaningful 
objects, referred to as segments. This is accomplished by taking the average value (tone, brightness, saturation, etc.) 
of the multiple pixels in close proximity of each other, and assigning these pixels the average value. These averaged 
pixels are then grouped onto small objects termed “segments”. Segments can then be grouped together with other 
similar segments, and finally classified. Object-based classification is particularly useful when applied to radar data, 
as there is generally a wide variety in pixel tones throughout the image. In vegetated areas such as forest or shrub, 
the wide range in pixel values is particularly troublesome, as the diffuse reflection caused when a radar signal 
interacts with a vegetated canopy, leads to a wide distribution of returns to the sensor. Each return can have a image 
tone ranging from 0 to 255 (for 8-bit imagery). Given the variation of tone within a vegetation canopy, a pixel based 
classification would classify a forest area into a number of different classes based primarily on image tone, even 
though only a single class is present. Another potential benefit of object-based classification is that it allows for the 
analysis on not only tone, but texture and spatial attributes as well. The added information of texture and spatial 
attributes results in a more robust classification of land cover. In particular, texture characteristic is the most 
valuable trait for land cover classification within a radar image.  

 
Classification Methodology 

The software used to perform this analysis is the ENVI feature extraction module from ITT. This software 
allows the user to conduct analysis on tone, texture, and spatial attributes simultaneously. These attributes combine 
to give the user a group of objects within an image that can then be classified. After object classification, either 
manually or by creating an unsupervised rule set, the results are exported to land cover layers. The workflow 
employed within ENVI consists of three basic steps, filtering, segmentation and classification. The airborne X-band 
NEXTMap data will be classified to land cover classes consisting of water, bare earth, urban development, 
grassland, shrub, deciduous forest, evergreen forest, mixed forest and wetlands, as defined in Table 1. 
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Table 1. Land Cover Classes and Description modified after Homer et al., 2007. 
 

  
 
Step1: Data Filtering. The use of SAR imagery in forest/non-forest separation has proven feasible and is 

widely reported in the literature (Baltzer et al., 2000; Hoekman et al., 2002; Engdahl et al., 2003). SAR imagery is 
however, dominated by speckle. Therefore, for land cover classification and extraction of land cover from these data 
to be successful, speckle suppression was performed before vegetation classification. From amongst many 
commercially available speckle filters, for land cover classification, Quegan et al. (2000) concluded that the most 
appropriate form of filter is simple adaptive averaging. A gamma filter (two iterations of a 3 by 3 boxcar) was 
applied to generate an ORI with reduced speckle. NEXTMap® data for all study sites were collected during leaf-off 
conditions and where wetlands were more dried out. Within ENVI there are a number of radar filters, each with 
benefits and drawbacks. When the filter is run, it averages like pixels so their attributes more closely match its 
neighboring pixels. This process makes the later steps within ENVI run more accurately, as pixels which have more 
similar attributes will be classified more accurately. The filter employed herein was a gamma filter, which is 
optimized for radar imagery and effective at reducing speckle, while still preserving borders and lines. One of the 
major benefits of a gamma filter is its tendency to preserve stark boundaries, such as a barren field next to a road. 
The primary reason for filtering the data is to make analysis more accurate, as well as reduce coherent speckle and 
noise. One consideration is to “not” over-average values (or over filter) between contrasting land cover types since 
the accuracy and effectiveness of the analysis could be diminished. On small scale land cover projects, the 
preservation of natural and artificial boundaries is critical in the preservation of accuracy.  This is accomplished 
employing small size (3X3 or 5X5) boxcar filters.  

Step 2: Image Segmentation.  Image segmentation is the process of taking homogenous pixels, and converting 
them into recognizable, real world objects to help with recognition of a particular land cover class. A moderate 
segment size was chosen so that details about structures, small patches of vegetation, and water bodies were 
preserved, without making them so small that speckle and processing time would become issues. This step results in 
all of the pixels within the image being analyzed merged into segments, which is the precursor step to segment 
definition.  

Step 3: Segment Definitions and Classification.  Segments are next defined prior to the classification process. 
There are two primary methods of performing segment definition using ENVI software. First, is manual 
segmentation definition, which may be performed by selecting several segments which possess characteristics 
representative of a particular land cover class. Once segment definition is completed, classification in performed on 
the segments, rather than pixels. Second, segments are defined using a user defined rule set. This is suited for any 
size area of interest, as it allows the user to automate your workflow. Rule set segmentation definition diminishes 
the amount of manual work required to classify an area; however the development of these rules sets can be time 
consuming. Rule set segmentation definition allows for automation as it may be applied to large geographic extents. 
The rule sets can be developed to classify segments based on several variables, such as texture, tone, size, and shape. 
In the case of radar imagery, the textural and spatial attributes tend to be the primary variables under consideration. 
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The rule set method was not employed in this study because supervised classification was employed. In the future 
however, this will most likely be the more suitable method of classification. The NLCD were used as a guide to help 
with the definition of segments. In addition, the NEXTMap elevation data were also utilized to help define 
segments. Of particular use were the subtraction of the digital terrain model from the digital surface model to create 
an above the ground feature height model. This allowed for better separation of open, grass, shrub, urban and 
forested land cover classes. Once steps 1-3 were completed, each of the nine land cover classes (were applicable) 
were exported in shape file format. The results were compared to fielding-situ measurements at these locations to 
validate the results of the classification from both the ORI, as well as the NLCD dataset (Tighe et al., 2009).  

 
Accuracy Assessment of Land Cover 

Accuracy for the NEXTMap® USA and NLCD derived land cover maps was assessed against the field 
observations in detail using error matrices and their associated statistics, namely: overall accuracy, class Producer’s 
Accuracy (PA), class User’s Accuracy (UA), the average UA and PA (Foody, 2004).   

 
 

DISCUSSION/RESULTS 
 

Western Study Area Results 
Tables 2 and 3 present the accuracy assessment for the western study sites for the NEXTMap land cover maps 

and the NLCD maps, respectively. The diagonal elements contain the number of samples correctly identified for 
each class. Results indicate that the NEXTMap® derived land cover maps achieved an overall accuracy 86.30% 
with the primary confusion was between barren and shrub and between deciduous and mixed forests. The NLCD 
map had an overall accuracy of approximately 63.93%, often confusing deciduous and mixed, underestimating 
evergreen and overestimating shrub vegetation classes.  The Colorado location was dominated by the grass, urban, 
and evergreen classes. Both the NLCD and the ORI had good results identifying the urban areas within the eastern 
urban areas, however there ORI derived urban layer had significantly more coverage due possibly to temporal 
change. (NLCD data is older, while NEXTMap data was collected in the 2005 – 2008 range). Within the higher 
elevations in the western portion of the tile, there was also significantly more evergreen coverage within the ORI 
versus the NLCD. As was the case within many areas, the NLCD seemed to be overly biased towards the shrub 
class, while this class was not prevalent at all within the ORI derived land cover. Water bodies were also 
underrepresented within the NLCD class, but there could be multiple causes for this issue. One issue the ORI land 
cover had within this location was the over classification of urban classes within the mountain areas. While the 
urban was well represented within the eastern portions of the tile, the classification seemed to struggle more with 
classifying this class in areas where forest and structures are mixed. The NLCD showed no urban classes within this 
area; however this is most likely due to the larger post spacing of the dataset. Also, some small areas of shadow or 
bright returns within the evergreen forests were occasionally classified as urban, as were some small areas of rock. 
One solution to this issue would be to increase the size of the segments within this area, as this could merge some of 
the speckle into objects and alleviate this issue. Some of the ancillary datasets used in this area were the 1.0m NAIP 
imagery, Intermap Digital Surface Model (DSM), and several types of optical satellite imagery. Within the Montana 
study area, there were fewer land cover classes than the Colorado area due to the remoteness of this site. The 
primary class was evergreen, which dominated most of the tile. This class was well represented by both the NLCD 
as well as the ORI, while some of the less prominent classes were limited or missing in the NLCD. Grassland 
classes were largely missing in the NLCD, while being relatively prominent in the ORI derived land cover. This was 
especially the case on the edges of the forest, as well as within several large burn areas spread throughout the study 
area. Another problem within the NLCD was water bodies. While there were only a few small lakes in this area, 
they were underrepresented in the NLCD. Rock and barren classes prominent in the higher elevations above the tree 
line were also underrepresented in the NLCD. Some of the problems associated with the ORI land cover, included a 
small area of wetlands which was present within the NLCD but missing in the ORI class. This was confirmed by 
viewing this area within a set of NAIP images, as well as the ORI, which both confirmed the presence of the 
wetlands. The wetlands were classified as grass, as the texture was similar to tall grasses; however had a higher 
dielectric constant due to the presence of water. This could be corrected by the use of ancillary data, such as optical 
data or elevation data. Another issue the ORI derived land cover had was several large shadows within areas of high 
terrain relief. As the radar sensor received no return signals in this area, it has the same tone and texture as water, 
and therefore was classified as such. This could also be corrected by use of ancillary data. The California area was 
relatively different from the rest of the western locations as it was not only a more arid climate, but it featured 
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significant areas of agricultural coverage. The NLCD and ORI both had very positive results delineating the 
agricultural classes, as well as some of the evergreen dominated areas in the higher elevations. The issues for the 
NLCD were primarily focused around differentiating between evergreen and shrub classes, as there was some 
confusion between the two. The NLCD overestimated shrub and underestimated evergreen in the higher elevations, 
while also missing many of the irrigation canals surrounding the agricultural areas. The missing canals are most 
likely due to the pixel size of 30m, as this is much larger than the canals themselves. In many cases, even the 5m 
pixel of the ORI land cover was too large to detect the canals. Urban was primarily missing within this area. 

 
Table 2. Western Study Sites NEXTMap Classification Results – 86.30% Overall  Accuracy. 

 

 
 

Table 3. Western Study Sites NCLD Classification Results – 63.93% Overall  Accuracy. 
 

 
 

Eastern Study Area Results 
Tables 4 and 5 present the accuracy assessment for the Eastern study sites for the NEXTMap and the NCLD 

land cover maps, respectively. Results indicate that the NEXTMap® derived land cover maps achieved an overall 
accuracy 86.91% with the primary confusion was between barren and urban and between deciduous and mixed 
forests. The NLCD map had an overall accuracy of approximately 59.16%, often confusing deciduous and shrub 
with wetlands, underestimating evergreen vegetation classes.  The NLCD and ORI land cover within the two 
Minnesota tiles showed many of the same errors that were present in the western study areas. Urban was actually 
well represented in both land cover products; however roads were a problem in both the NLCD and ORI products. 
Within the NLCD, some of the roads were present while others were missing, most likely depending on the size/area 
of the roads. Within the ORI land cover, some of these roads were misclassified. As the roads within the ORI have 
very similar characteristics to water, some were classified as such. Also, some roads within the ORI land cover lied 
under shadows from the surrounding forest, and were either obscured or classified incorrectly. As far and the 
vegetation, both products performed fairly well, however the ORI classified many of the vegetations correctly when 
the NLCD did not. One notable exception would be a significant area of wetlands in the Southern reaches of the 
International Falls tile, which the ORI land cover has classified as deciduous or evergreen forest. These issues could 
be corrected with more extensive use of ancillary data during classification of segments. Water was also classified 
incorrectly or underrepresented by the NLCD in several areas, including some small ponds, water treatment ponds, 
and rivers/river inlets.   
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Table 4. Eastern Study Sites NEXTMap Classification Results – 86.91% Overall  Accuracy. 
 

 
 

Table 5. Eastern Study Sites NCLD Classification Results – 59.16% Overall  Accuracy. 

 
 
Overall Results 

Some of the primary issues encountered with the NLCD are due partly to the larger post spacing. For one, small 
features such as roads, thin water bodies, and some urban development are missing in the NLCD due to its pixel 
size. Also, shrub was overestimated in almost every location tested, specifically the western study areas. Also, many 
of the NLCD’s issues can be attributed to temporal change, cloud cover, and pixel based classification. While the 
NEXTMap ORI yielded a much higher accuracy for many of the land cover classes that it can be used to classify, it 
is not without issues. For one, shadow is a significant problem in areas of high relief, as well as highly vegetated 
areas. The shadows within the ORI possess the same attributes as water bodies, and must be corrected for using 
ancillary data. This adds some significant time and work to creating this product, but is necessary especially in areas 
of high terrain relief. Also, there is some confusion within the ORI with objects/classes that appear similar. Many 
roads resemble rivers, and are occasionally classified as such. Also, some forested areas can be confused with urban 
classes, as the two have similar tone and texture characteristics.  

 
 

CONCLUSIONS 
 

Derivation of land cover from NEXTMap radar imagery as an alternative to optical data is a viable option, once 
some of the challenges in its implementation can be addressed. There are many positive attributes of radar imagery 
which can make it valuable in the creation of nation wide land cover datasets. For one, this data is collected from an 
active sensor; therefore any issues associated with lighting and weather becomes a non-factor. There is no cloud 
cover in radar data, and it can be collected at night, in any lighting condition. Additionally, the ORI we used in this 
research has significantly higher resolution than the Landsat data (1.25m versus 30m). Finally, certain areas which 
may not be distinguished in an optical image can be delineated within a radar image. (For example, shrub and grass 
classes which may appear similar in an optical image, but have contrasting textures in a radar image.) This data 
combined with the utility of object-based classification software holds great promise in the creation of a higher 
resolution land cover dataset on a nationwide basis. Given all of the positive attitudes of this data, there are several 
challenges that must be addressed in order for higher accuracies to be accomplished on a nationwide basis.  
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FUTURE WORK 
 
Intermap’s ORI is seamless and consistent throughout the entire U.S., which provides the capability to 

create consistent land cover data on a nationwide basis. Manual editing by different operators would most likely lead 
to slight differences from region to region, as different editors will have different tendencies when classifying land 
cover. Going forward, an extensive set of classification rule sets are planned for development in order to reduce 
manual work, as well as processing time. This will also work to create a homogenous dataset throughout the 
country. The development of this rule set will also help to correct some of the issues associated with urban and 
forested areas. Finally, a solution must be developed to deal with radar shadow. This will most likely involve use of 
an ancillary dataset to infill and properly classify these areas.  
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