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ABSTRACT 
 

This paper proposes a method for the automatic extraction of building roof contours from a LiDAR-derived digital 
surface model (DSM). The method is based on two steps. First, to detect aboveground objects (buildings, trees, etc.), 
the DSM is segmented through a recursive splitting technique followed by a region merging process. Vectorization 
and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building 
roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based 
energy function that embodies roof contour attributes and spatial constraints. Preliminary results have shown that the 
proposed methodology works properly. 
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INTRODUCTION  
 

Automated building extraction from LiDAR data or LiDAR-derived data has received increasing attention in recent 
years. Published methods for building detection or extraction from these data can be grouped into the following 
categories: building detection, building roof contour extraction, building roof extraction, and building model extraction. 
Building detection is performed using a digital surface model (DSM) (Matikainen et al., 2003), a normalized DSM 
(Tóvari and Vögtle, 2004), or a LiDAR point cloud (Tarsha-Kurdi et al., 2006). Typically, methods for building roof 
contour extraction firstly detect irregular building roof contours and then subjected them to a regularization process, like 
the method proposed by Sampath and Shan (2007) for extracting building roof contours from a LiDAR point cloud. 
Building roof extraction is performed using segmentation methods, which group LiDAR point cloud data into planar 
faces and other objects. Examples of algorithms for segmenting LiDAR point cloud data into roof planar faces can be 
found in Maas and Vossel (1999) and Rottensteiner et al. (2005). Building model extraction involves building detection, 
building roof contour extraction, and building roof extraction. Dorninger and Pfeifer (2008) have described an approach 
for the automated determination of 3D city models from LiDAR point cloud data that takes into account the basic 
assumption that individual buildings can be properly modeled as a composition of planar faces. 

In this paper, a method for building roof contour extraction from a LiDAR-derived DSM is proposed. Our 
methodology is based on the concept of first extracting aboveground objects and then identifying those objects that are 
building roof contours. This paper is organized as follows: next section presents the proposed method; then, 
experimental results are presented and discussed; and the main conclusions and future perspectives are summarized in 
last section. 
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METHOD 
 
Our method for building roof contour extraction from a LiDAR derived DSM is based on two steps: 1) automatic 

extraction of aboveground object polylines from the DSM; and 2) recognition of polylines extracted in step 1 that 
represent building roof contours.  
 
Extraction of Aboveground Objects 

Our algorithm for automatic extraction of aboveground regions starts segmenting the DSM into aboveground 
and ground objects. First, the DSM is segmented by using the recursive splitting technique (Jain et al., 1995). The 
second step consists of grouping adjacent regions of similar heights in such a way that over-segmentation that is 
typical of the recursive splitting technique is minimized and the resulting regions correspond to either ground or 
aboveground objects. Our basic supposition is that the object of interest (Buildings) is at least 3 m tall. The 
fundamental result of the segmentation process is a binary grid where ground grid points are assigned a zero value 
and aboveground grid points are assigned a value of one. 

Because our strategy (see next subsection) for identifying building roof contours requires that aboveground 
regions (buildings and other objects - e.g. trees) be represented by polylines, we applied sequentially a contour 
following algorithm (Ballard and Brown, 1982) for generating ordered lists of contour points and the Douglas-
Peucker algorithm to generate polyline representations for the ordered lists of contour points. 
 
Identification of Building Roof Contour Polylines Using an MRF Model 

In an MRF model, the sites S={1, …, n} are related to one another through a neighborhood system defined as 

η ={ iη , i∈  S}, where iη  is the set of sites neighboring i. According to the Hammersley-Clifford theorem, an MRF 

can be characterized by a Gibbs probability distribution (Kopparapu and Desai, 2001), i.e.: 
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where, x is a configuration of a random field X, X is the set of all possible configurations of the random field X, and 
U(x) is an energy function, which can be expressed as: 
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Equation 3 shows that the energy function is a sum of clique potentials (Vc(x)) over all possible cliques c∈C. 

A clique c is a subset of sites in S in which every pair of distinct sites are neighbors. The value of Vc(x) depends on 
the local configuration of clique c. 

Polylines representing building roof contours can be found by analyzing the aboveground region polylines. We 
formulated this problem as an MRF where the energy function takes the following mathematical form: 
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In Equation 4, pi is a parameter that varies over [0; 1] and converges to one if the region Ri is interpreted as a 
building roof contour; otherwise, pi converges to zero. In addition, n is the number of regions, and α , β , ω , and 

γ  are positive constants that express the relative importance of the following energy terms: rectangularity energy; 

area energy; spatial energy; and entropy energy. 
The rectangularity energy term favors rectilinear regions and depends on the rectangularity attribute 

i ir senθ= , in which iθ  is the angle between the two main directions of the region Ri. The optimal value of 

attribute ir  is one, meaning that the region polyline Ri contains only pairs of straight lines that are either parallel or 

perpendicular to one another. The area energy term favors larger regions and depends on the area iA  of the region 

Ri. The spatial energy term benefits polyline regions that have main axis directions that are approximately parallel or 
perpendicular to one another. In this term, 

ij
θ is the angle between the main axis directions of polyline regions 

i
R  

and 
j

R . This energy term also depends on the components (iη ) of the neighborhood system, which is defined as 

follows: 
 

iη = {Rj | dist(Rj, Ri) ≤  d}                                                                                                                  (5) 

 
where, function dist is given by the Euclidean distance between the centroids of the two regions  andi jR R , and d is 

a distance threshold. The entropy energy term depends on pj (which can be interpreted as the probability of region 

iR  being a building roof contour). The purpose of this term is to force pj to converge to either one or zero. 

We used the simulated annealing (SA) algorithm to find the optimal solution (p1, …, pn) that minimizes the 
energy function U.  According to Kopparapu and Desai, 2001, SA algorithm is usually effective in finding the global 
minimum, even when the energy function has local minima. 
 
 

EXPERIMENTAL RESULTS 
 

The proposed approach is implemented using Borland C++ Builder 5 compiler for Windows XP and the input 
DSM is generated by the SPRING freeware developed by INPE (National Institute for Space Research), Brazil, which is 
available at http://www.dpi.inpe.br/spring/english/index.html. The nearest-neighbor interpolation method was used for 
generating a 70-cm-resolution DSM. The LiDAR data set used here was obtained from Curitiba, Brazil. Constants of the 
energy function U were empirically determined to be α  = β  = γ  = 0.7 and ω  = 0.99. 

 

 
Figure 1. Three-dimensional visualization of the test area DSM. 
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Below, we present and analyze the preliminary results obtained for one small test area, which is visualized in 3D 
in Figure 1. Five buildings can be readily identified, with three of them being aligned and almost attached. Figure 
2(a) (showing intensity image obtained from the laser pulse return intensity) shows another building, which is not 
identifiable in Figure 1, near the upper-right corner of the intensity image (see the arrow in black). 

 

 

(a) (b) 

(c) (d) 

Roof 1 

Roof 2 

Roof 3 

 
Figure 2. Results obtained. (a) Intensity image showing test area; (b) Aboveground regions; (c) Contours of the 

aboveground regions; and (d) Identified building roof contours. 
 

The detected aboveground regions (dark areas) present in test area are displayed in Figure 2(b) using a binary grid. 
The corresponding polylines are visualized in Figure 2(c). Figures 2(b) and 2(c) also show that an aboveground region 
representing the building surrounded by trees near the upper-right corner of the intensity image (see the arrow in Figure 
2(a)) was not detected. Also note this corresponding area in Figure 1. Figure 2(d) shows that the proposed method 
correctly identified all of the buildings, with the exception of the building that was not detected in the first step of our 
method. Please note that all extracted buildings had relatively regular shapes and favorable spatial orientation 
(approximately parallel or perpendicular to one another). These are key characteristics to correctly identifying buildings 
by minimizing the proposed energy function. Please also note that the three aligned buildings were merged in the first 
step of our methodology (see Figures 2(b) and 2(c)). As a result, only a single long building is identified in the second 
step. 

 
 

CONCLUSIONS AND FUTURE PERSPECTIVES 
 

A method for the automatic extraction of building roof contours from a LiDAR-based DSM was proposed and 
evaluated in this paper. The method is a two-step process. First, polylines representing contours of aboveground objects 
are extracted from the DSM. Next, an MRF-based energy function is used to identify polylines that correspond to 
building roof contours. In order to preliminarily exemplify the performance of the proposed approach, we presented and 
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analyzed the results obtained for one test area. The method correctly identified all of the buildings, with the exception of 
the building, indicating that it is promising.  

As a perspective for this paper, some improvements in the method can enhance the performance of the proposed 
method. For example, a pre-processing step for detecting and removing trees could allow the method to identify the 
building not detected in test area used in our preliminary experiment. Also, in order to provide a realist evaluation of 
the proposed method, it will be necessary to accomplish several experiments involving varied landscape 
complexities. Moreover, different DSM accuracies and resolutions are important features to be analyzed in the 
context of the performance of the method. 
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