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ABSTRACT

In the past century, more than 85% of the histbmcarshlands in the San Francisco Bay were conyddesalt

ponds or filled for urban development, resultingainoss of biodiversity. The municipalities alotige southern
margin of the San Francisco Bay are in the prooésse of the most extensive tidal wetland restoraprojects
ever undertaken, the South Bay Salt Pond Restorgtioject (SBSPRP). The goal of this project wagdrform an
analysis of the spectral variation between diffesait pond vegetation types and to track the chaiirg vegetation
distribution from 2000 to 2010. These data will dieared with the SBSPRP partners to aid in thegetyear
classification of vegetation. This project hasiifeed the spectral characteristics of dominaiitt s&rsh vegetation
through the use of in-situ spectral measuremerdschassification of remotely sensed imagery fromE&yperion

and Landsat TM 5. Fieldwork included the use dfiaandheld spectroradiometer to gather spectral sufwe

analysis as well as obtaining point vegetation rimation for image classification. Comparison o tpectral
signatures of the dominant vegetation showed litidtinction among vegetation species. Field @daih IKONOS

imagery were used to identify presence of vegatatiooughout the study area to aid in the classific of Landsat
imagery, and to track the yearly changes in vegetaiolonization for the region between 2000-20Ite spectral
angle mapper classification algorithm was appliecatJuly 2010 Hyperion scene to classify picklewaedhe

Alviso area. For this study area, it was deterhitteat Landsat is better suited at detecting ovefanges in
vegetation. Additional field data could improve ttlassification of Hyperion imagery.
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INTRODUCTION

Tidal marshes, the ecotones between estuaries pladduhabitats, are some of the most highly pradect
ecosystems on the planet (Kelly and Tuxen, 2009)ese marshes provide habitat for birds, breediogrgls for
fish and crabs, flood protection, and improved wegtgality through pollutant filtration. The edgasSan Francisco
Bay, California once consisted primarily of saltteramarshes and mudflats. However, within the pastury, an
estimated 85% of these historic tidal marsh ecesystwere converted to salt ponds or otherwiseedlter filled
for urban and industrial uses (South Bay Salt PRestoration Project, SBSPRP, 2010). The Southdaliyponds,
located at the southern end of San Francisco Bapnl the Pacific flyway, which provides good raongtand over-
wintering sites for migratory bird species. A dise gradient of habitats and ecosystems exist nitié ponds,
including shallow open water and salt marsh thatilized by various waterfowl, shorebirds, and nmaas (Siegel
and Bachand 2002). In recent years, support il tharsh restoration has gained strength, and rohthe San
Francisco Bay salt ponds and marshes are currentigrgoing restoration or have been targeted ftoration in
the future.
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The first phase of the South Bay Salt Pond Restord&roject (South Bay Salt Pond Restoration Ptd64&0),
the largest tidal wetland restoration effort on Wiest Coast of the United States, began in 20@8 afmulti-year
collaborative public planning process involving tbaited States Fish and Wildlife Service, CalifernCoastal
Conservancy, and California Department of Fish @adhe. Once construction/restoration is completedhe salt
ponds, many wildlife species will benefit from trestored habitat; it will provide more nesting,dging, and over-
wintering areas. When completed, 15,100 acresoafngercial salt ponds will be converted into tidahrsh,
mudflat and other wetland habitats (SBSPRP 20Ih)e objectives of this project were to restore anflance
wetland habitats, to provide wildlife-oriented pigtdccess and recreation, and to improve flood gament in the
South Bay (SBSPRP 2010). The SBSPRP is an adaptargagement project. Currently it is investigating
scientific uncertainties and making decisions bmbming in-situ monitoring, modeling, and experirtamresearch
with a high level of attention to information maeagent and continuing data synthesis. Includediséffort is a
multi-year vegetation identification and classifioa project which will aid in determining how marsestoration is
progressing.

Studies indicate that remote sensing is highlyatiffe for monitoring wetlands, coastal systems astlaries
(Kelly and Tuxen 2009, Trabucco et al. 2009). Amaemote sensing’s advantages are non-invasiveness,
effectiveness, and the potential for encouragingipyparticipation and communication. Remote segsillows for
a “high intensity of measurements” to be takenfieroinaccessible or sensitive sites, thus elinmigathe need for
more invasive traditional field methods that cowdmage sensitive marsh and endangered speciesathabit
Additionally, remote sensing eliminates the need dapensive and labor intensive field methods ieherin
accessing the soft sediment and dense vegetatbchhracterize tidal marsh ecosystems (Kelly amde 2009).

This project team assists the SBSPRP with vegetafiassification by providing spectral measurememd
image analysis of four dominant salt marsh vegatatypes: annual picklewee&a{icornia europease), perennial
pickleweed Galicornia virginica), cordgrasspartina foliosa), and bulrushScirpus maritimus). These vegetation
types were chosen for their abundance and functier. example, pickleweed provides nesting and ictorebirds
and small mammals, and is the primary host for gicasalt marsh doddefC(scuta salina). It is also vital to the
survival of several endangered species, includmgsalt marsh harvest moudeeithrodontomys raviventris) and
the California clapper railRallus longirostris obsoletus) (Taylor 2010). The California clapper rail alsses
cordgrass, but the native cordgrass cannot out-etaribe non-native invasive cordgraSgaftina aleniflora) also
found in the marshes. This invasive species staBilthe sediment which encourages further invaaiuh alters
marsh hydrology, affecting shore birds. Native gpags is threatened with local extinction as a ltest
hybridization withSalteniflora (Invasive Spartina Project 2010). Bulrush prosideosion control, protection from
erosive wave action and stream currents, food anvercfor wildlife, and waste treatment. It alsstoges and
creates wetlands and improves plant diversity irtlameé and riparian communities (USDA-NRCS 2010).
PepperweedLgpidium latifolium) is an herbaceous perennial that invades a widgeraf ecosystems such as
riparian areas, mountain meadows, marshes, andndstRenz and Blank 2004). Pepperweed can spneiftbian
dense monospecific stands that can displace ngléwds and animals.

As temperate tidal wetlands have limited numbersspécies and genera (even considering world-wide
distributions) it is feasible to develop a usefatidunctional spectral library for wetland manag@rsabucco et al.
2009). Developing these libraries is importanindproving our capacity to utilize the full mappipgtential from
emerging sources of data provided by airborne ahdreced space-borne hyperspectral sensors (Tralmicab
20009).

The goals of this project were:

1. Create a spectral library of four primary salt rhavegetation types
2. Classify the vegetation types using Landsat andeflgp satellite imagery
3. Assess the historical progression of vegetatiomtiran the south San Francisco Bay
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METHODOLOGY

Study Area

The South Bay Salt Pond Restoration Project istémtat the
southern end of San Francisco Bay and consistlsreé tprimary
restoration sites: Ravenswood, Eden Landing andsél{igure
1). Ground truth measurements, polygons, and spadiometer
readings for this project were performed in eachttw three
primary restoration sites.

Field Work and Data Processing

The locations of four dominant salt marsh vegetatigpes in
the salt ponds in the form of GIS shapefiles wesedu After [l e
studying the locations of the four selected vegmtaspecies,
several field days in June 2010 were spent takimguryl
measurements to verify the existence of the pdaticspecies at
the documented locations. If other acceptableysgites were §
discovered during field work, observations and sotsere
recorded for them. GPS coordinates were takencit ebserved
site using a handheld Garmin GPSMAP 76 chart pigtteceiver.
Accuracy of the GPS measurements at each poinedabgtween |2
approximately 11 and 19 feet. Sites were deempdogpiate for
measuring and recording if they contained a homogersample )
(coverage of 80% or greater) of one of the fouecteld vegetation Landing, and Ravenswood. The salt ponds
species. Sites were also recorded where a mixtuspecies of aré located at the southern end of San
interest occurs (i.e. 50% pickleweed, 50% cordgrassaddition, ~Francisco Bay, California.
at study sites where the vegetation patch was henwmg and at
least 30m x 30m, a polygon measurement for the yoist taken using measuring tape and GPS coordindies
plot measurements were uploaded and the centelsmik¢éhe polygon were used as training sites fsupervised
and supervised classifications for Landsat TM (TagerMapper) 5 scenes. Plots were required ta bEaat 30m x
30m to match the pixel size of the majority of LaatlTM5 bands.

Spectral measurements of the different vegetaiipas were taken on June 25, 2010 and July 1, 26ibg @&
GER 1500 Spectroradiometer (Spectra Vista Corpmrati The GER 1500 has a spectral range of 350-10%0
Prior to scanning the vegetation, reference scass taken using a 99% reflectance panel. An & Veas used to
take scans of the vegetation. Between five andstams were taken at each vegetation sample fithin each
sample site, each of the spectroradiometer scassaim@ed at a different vegetation points so thagpaiesentative
spectrum of the vegetation type could be record€de measurements were taken between the hour@:@®dm
and 2:00pm in order to minimize the variance ofghe angle. At each site, the following data weirded:

* Vegetation species

» Percent cloud cover

» Universal Transverse Mercator (UTM) coordinates

* Time of measurement

* Photos

» General descriptions of the site

To create the spectral library and to qualitativelympare spectral profiles, percent reflectances@ath
vegetation type was calculated by dividing thetdighumber radiance of the vegetation target bydigagal number
radiance of the reference scans.

Satellite Image Processing

Both multispectral and hyperspectral satellite ierggwere used for the classification. One L1R Higre
image from July 7th, 2010 was acquired from thetéthiStates Geological Survey (USGS) Earth Obser¥i(igO-
1) website. There were 130 images acquired framUBGS Glovis website between the years 2000 -.20He
number of Landsat images analyzed is significamiyer than the number of Hyperion images analypsmhuse of
the limited temporal and spatial availability of prion images. Although all available Landsat iemgvere
inspected for approximately the past ten years,othly images used for classification were takenwvben the
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months of May and August (inclusive), on days wites of six feet or less, and on days with minieiald cover.
After narrowing the selection of Landsat imagesigghese criteria, one image from each year wastsal for a
supervised classification (Table 1).

Table 1: Landsat images used for vegetation classification

Landsat | magery
August 2, 2000 June 26, 2004 June 5, 2008
June 18, 2001 June 13, 2005 July 26, 2009
July 7, 2002 May 31, 2006 June 11, 2010
May 23, 2003 August 22, 2007

Landsat Processing and Classification

Landsat TM5 orbits the earth every 90 minutes andses the equator at approximately 10:30 am Rakifie
and acquisition is made continuously in a 16-d@gated cycle. Landsat TM5 is a multispectral Bgedensor that
collects seven spectral channels with 30m spasblution in bands 1-5 and in band 7. Band 6tlseamal band
and is collected at 120m resolution, which is thesempled to 30m resolution. ERDAS Imagine 9.3.8 used to
perform image stacking, radiometric correction awdculation of reflectance values for Landsat insage~or
Landsat, only bands in the visible (1-3) and irdch(4-5, 7) ranges were used. One of the projealsgmas to
determine whether Landsat could be used to idetitéylocation of four designated species of salismaegetation
(annual and perennial pickleweed, bulrush, andgrass). The collected field data were used toar290-class
unsupervised classification on the 2009 Landsagénaln addition to the four species of vegetatimur other
categories of vegetation also needed to be idedtifnaking it a total of eight different vegetatiwategories (Table
2).

Table 2: Summary of Vegetation

Study Specific Vegetation Species Other Vegetation Species
Annual Pickleweed Pepperweed
Perennial Pickleweed Pickleweed/Cordgrass Mix
Bulrush Pickleweed/Dodder Mix
Cordgrass Pepperweed/Pickleweed

The unsupervised classification of the 2009 image wsed to run supervised classifications on thlectes
images from 2000-2010. An accuracy assessmenttheas run on the 2009 supervised classification enag
Following the first round of classifications, a ead round of classifications was conducted usirdjtexhal ground
truth data. These additional field data were usegh attempt to increase the accuracy of the malgilassification
process. The combined field data were used toar@@0-class unsupervised classification on the 2Gf¥#isat
image and this unsupervised classification was ugedin a supervised classification on the imagemf2000-
2010. An accuracy assessment was then run onOb@ Qupervised classification to determine whetuaing
more data points increased the accuracy of thergigpd classification process. Details of the sification process
and accuracy assessment are described below.

As a result of low accuracy in the supervised andgupervised classifications of vegetation speaetird
round of classification was conducted to identifiyovegetated areas versus non-vegetated arehe study sites.
In an attempt to improve accuracy results, thisawcoaf classification did not attempt to distinguisdgetation at a
species level. Instead, the classification attechpo identify the location of any vegetation i tBouth Bay salt
ponds, track its presence from 2000 through 2046 determine whether restoration of the salt pdadsvidenced
by increased vegetation) has progressed. To adistntpis, a 200-class unsupervised classificatias run on the
2009 image using the combined data described ablovArcMap, this unsupervised image was then legever a
June 2009 IKONOS image of the study sites to aith@identification of the presence or absenceegfetation.
The IKONOS image was then set to NIR so that vegetdoecame easily identifiable. The Swipe tooAitMap
was used to compare the Landsat and IKONOS imagésappropriate changes were made to the unclassifie
image by altering the signature file to include gbixlasses of vegetation that were missed by thginaf
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unsupervised classification. After all vegetatmasses were identified, a supervised classifinatvas run on all
images and an accuracy assessment was perfornteé @009 image. Accuracy assessment results soeshbwn
below.

Hyperion Processing and Classification

The EO-1 Hyperion is a hyperspectral satellite setisat collects a total of 220 spectral channéth & 10-
11nm bandwidth at a 30m resolution for every cha(®ienon and Beckmann 2005). Hyperion sceneseqeired
when requested by the general public and therefweenot collected at regular intervals.
- ] The L1R EO-1 July 7, 2010 Hyperion image downloadad used for classification

EO-1 included radiometric correction. ENVI 4.7 and fileg-in module, FLAASH (Research
Hyperion LR Systems) were used to perform atmospheric correetim to convert radiance to surface
reflectance values for the image. Only 154 ofttital 242 Hyperion bands were used in
the analysis. A total of 46 bands from the raditivally corrected image were removed

following steps described in the EO-1 User GuidedB82003). An additional 42 bands
with excessive noise, particularly at the wateroragbsorption region were also removed.
The Hyperion image was then georectified usingtal tof 20 ground control points
(GCP) and two georeferenced vector files: one dilapeutlining the Alviso salt ponds
v and one vector file containing California highway3rthorectification of the Hyperion
( ] image was omitted because the terrain in the shnelg was relatively flat and close to sea

\ 4

Atmospheric
Correction FLAASH

Georectification level.

A total of two spectral libraries were constructesing the spectral analysis
workstation in ERDAS IMAGING, and the libraries weused as the reference or target
spectra to classify the Hyperion image. The fiibtary used the GER 1500 data
(converted to apparent reflectance), and the selforaaty used image derived spectral data
based on the known locations of vegetation polygoapped during fieldwork using GPS
coordinates.

The Material Mapping Wizard (MMW) in ERDAS IMAGINRas used to apply the
spectral angle mapper (SAM) algorithm on the Hyperidata (Equation 1). The image
spectrum (X in equation 1), corresponds to thelpikethe image that are to be analyzed.
The reference or target spectra can be obtaineth ffield or laboratory spectral
measurements, or extracted from the satellite imageckleweed, the most prevalent
vegetation type in the study
sites, was used as the input

A 4

Spectral Library
ERDAS IMAGINE

A 4

Spectral Angle Mapper
Classification Algorithm

-

Figure2: Flow Chart
Showing Methods for

P ing H i I
| rocessing Ryperion target spectrum for both Z‘\',}',
mage. e : :
classifications using GER =] i
o = COo8 = (1)
1500 as well as image “ " '
derived spectral data. Following the MMW steps, ZX: Z}:g
additional bands, particularly in the three wataper .

ab;orption_ regions, were remov_ed and the minin |, = humber of bands

noise fraction (MNF) transformation was used ont « = angle formed between reference spectrum anderspgctrum
Hyperion to further remove noise in the da X image spectrum

(Shlppert 2003) = reference or target spectrum

Hyperion-Spectral Angle Mapper (SAM):

The cosine mode of the spectral angle mapper (Séaéksification algorithm was applied to the Jully, 2010
Hyperion image in ERDAS IMAGINE. The cosine SAMgafithm computes a spectral angle between a target
spectrum and each pixel in the image using alhefliands in the image (Shippert 2003). The loWwerspectral
angle value between a pixel and a target specttiwenmore similar the pixel and target. The outgsult from
cosine SAM displays the image in a scale of gradieior corresponding to the cosine of spectralarglue from
-1 to 1. Determination of the threshold values Wwased on two of the field polygons of known piekéed
locations.
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RESULTS

Comparison of Spectral Profiles

Spectral profiles were compared for four differgagetation types: perennial and annual picklewbatiush,
and cordgrass. Table 3 summarizes the numbemaatidn of spectroradiometer readings taken foh eagetation
type. Figure 3 shows the spectral profiles for eaetetation type. Each spectral profile represdmsaverage of
the spectroradiometer scans taken at that sit&leRieed was more prevalent in large patches thasgcass and
bulrush. Therefore, more samples were collectgaakdeweed than of other vegetation types.

Table 3. Number of GER 1500 Scans Taken by Location

Alviso Ravenswood Eden Landing
Bulrush 10 scans at 1 site 10 scans at 1 site drissat 1 site
Cordgrass 5 scans at 1 site 10 scans at 1 site --
Annual Pickleweed 5 scans at 1 site 25 scansited s --
Perennial Pickleweed 25 scans at 3 sjtes 20 stansites 20 scans at 2 sites
Cordgrass Bulrush
35 35
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Figure 3. Spectral Profiles by Vegetation Type.

Figure 4 shows the average reflectance (by wavdi¢rand standard deviation for the samples of each
vegetation type. Although the vegetation spegtrafiles have similar shapes, the individual retce values vary
and the mean appears different for each vegetatg@ However, when dispersion of the sample®isiclered, it
is evident that the spectral profile samples cddde significant overlap and be difficult to digfinsh within the
bands shown here. This dispersion is evidenigiaré 4, which shows the mean compared to one siadaiation
above and below the mean for each vegetation tyffee majority of the means and standard deviatfonghe
vegetation types fall within one standard deviaabove and below the cordgrass mean.
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Figure 4. Means and Standard Deviations for Vegetation Sasnple

The spectral library created for classificatiortted Hyperion image was based on these spectradtsigs.
This spectral library could be improved by spendimgre time gathering spectral data of other endneesnfound
in the salt marshes (other vegetation types, sifi], water, etc.). The similarity of spectral s&ures among the
four vegetation types suggests that more sampligamalysis of vegetation spectral signatures éxleé to fully
distinguish them using remote sensing techniquésing the current data, only bulrush has a distéigature and
this distinctness only occurs at lower wavelendgbeow 700nm). Additional sampling of vegetatiosuld aid in
classification by reducing dispersion among thenaigres. Once dispersion is reduced, it would dbésable to
analyze imagery from sensors focusing on wavelengthere the dispersion is the lowest. Alternayivet
dispersion is not reduced significantly by obtainimore samples, more sophisticated classificatigorizhms than
those used in this study could be applied to tha.da

Satellite Data

The Landsat unsupervised classification data wepplied to other images through a supervised
classification. The accuracy assessment producedudt of 32.56% accuracy from the supervisedsdiaation of
an image. An accuracy assessment was then donbeonupervised images and produced a result of 32.66
accuracy. Unable to distinguish between the diffespecies of salt marsh vegetation, the decisias made to
broaden the scope of concentration and try to ifjetite presence of all types of vegetation witthie salt ponds.
Unsupervised classification with the field work ygbns yielded to 26% accuracy for a 2009 image.s&ldata
with SBSPRP’s polygons yielded to 32% accuracyaf@009 image. The spectral signature from the 20@@e
was applied to a 2006 image, yielding to 1% acourakhe vegetation change over time model has a &@aracy
displaying the areas that have vegetation versimdi species.
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Figure5: Supervised Classification of Landsat Images. Frefintd right: August 2, 2000; June 13, 2005; Jubge 1
2010. These three images show the increase ofatége(shown in red) over the past decade in thsoay area
of San Francisco Bay. The three study sites afleedtin yellow.

Table 4. Change in Vegetation over time

Years Increased Decreased
2000-2001 General increase No visible decrease
2001-2002 No visible increase General decrease
2002-2003 No visible increase No visible decrease
2003-2004 No visible increase Slight decrease
2004-2005 General increase No visible decrease
2005-2006 General increase No visible decrease
2006-2007 No visible increase General decrease
2007-2008 General increase No visible decrease
2008-2009 No visible increase Slight decrease
2009-2010 General increase No visible decrease

Hyperion

The results of the SAM classification algomit are shown in Figure 6, with pickleweed showimgdad. Pixels
representing areas of pickleweed were classifi@#gusosine SAM threshold value of 0.993936 from GERO
spectral data, and 0.993687 from the image despedtral data.
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Figure6. A subset image of the classified July 7th, 2010

Hyperion data showing the Alviso area using the SAM Spectral similarity to picklweed

classification algorithm with spectral library congted in - . .
ERDAS IMAGINE. Figure 6a is the classification u3iBER
1500 spectral data. Figure 6b shows the classiicaising less more

image derived spectral data. Pickleweed is displayeed.

DISCUSSION

Landsat imagery with 30m pixel resolution is to@xse to distinguish among the different vegetasioecies in
the salt marsh environment, although it is veryusate with classifying vegetation vs. non-vegetatioMany
Landsat images had qualities such as banding, ,ncliseds, a fog layer, and high tides that predutteeir use.
However, because of Landsat's frequent overpasseésgaod availability, it is likely that enough higjuality
Landsat images could be selected to potentiallyplenacking of large scale changes in marsh véigetaver
time. According to the classification, the vegietatn the study sites has generally increased theepast decade,
though in some years the vegetation cover decread@alsed on a cursory analysis of rainfall, tresr@ase could
possibly have been due to years with below normedipitation.)

With the capability of hyperspectral data, a piekéed map was produced using the July 2010 Hyperion
image and the SAM classification algorithm. Thassification from both the GER 1500 data and tregerderived
data are able to identify the occurrence of pickdew in the Alviso area based on the field obseymatiand
knowledge of the area. However, the SAM algorithmisclassified portions of urban vegetation featuass
pickleweed. The low number of field polygons ugeddetermine the threshold for pickleweed could ehav
contributed to the misclassification. In additi@nsufficient number of large, homogeneous fieldygohs would
need to be obtained to perform an accuracy assaes$onéhe SAM classification.

Attempts were made to use all of the GER 1500 spledaita collected in the field to classify Hyperiat the
sub-pixel level using multiple endmember spectrakimy analysis (MESMA) (Roberts et al. 2007). The
classification was unsuccessful in unmixing thdedént endmembers within the 30 m pixel of Hyperiorage.
This suggests that additional GER 1500 spectral de¢ needed to achieve a full classification usiyperspectral
data.

More time is needed in the field to collect addiibspectroradiometer readings of the four vegmtatypes as
well as readings of mud, water, silt and other |aypks commonly found in the salt ponds to distislyibetween
marsh vegetation types. Spectroradiometer readirege taken for annual and perennial pickleweeddgrass,
bulrush, and pepperweed. Readings were attemptali three ponds to determine whether vegetatictné three
ponds have uniform signatures. However, certaindpchad significantly more vegetation eligible &ampling
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(e.g. much of the Eden Landing cordgrass had rigckeen sprayed with pesticides which would afteet spectral
signature).The experience in the field taking regdialso shows that many factors need to be caesidehen
attempting to obtain spectral vegetation data gmplyaspectral profiles to image analysis. For epmwhen
taking readings of perennial and annual picklewdedas noticed that annual pickleweed is generfdiynd on
mud (of various wetness) that could potentiallyeeffthe spectral readings. It was also noticed dioader is
commonly found on perennial pickleweed and afféwtsspectral profile of pickleweed.

CONCLUSION

The first round of classification yielded an acayraof 32.56%. This was unsuccessful possibly due t
insufficient field data being collected. In paviiar, large homogenous plots of marsh vegetatiore wet prevalent
throughout the study sites. Even if plots at 1&8nx30m were located, it is difficult to know whet these plots
were contained within one pixel on the image. liksly that each pixel contained multiple speaids/egetation.
The classification process was also challenging tduthe existence of certain field data indicatmgixel class
should be labeled as one species (e.g. pepperweleith,other field data (collected from nearby sjtedicated that
the same pixel class should be labeled as mulspkcies (e.g. pickleweed/cordgrass mix). More categ of
vegetation (e.g. pepperweed/ pickleweed/cordgrasy aould have been created, but the goal of thdystvas to
identify the originally designated categories ratih@n create additional categories to validataltes

The second round of classification, which includedtitional field data samples during the classiiica
process, also produced low accuracy results. Afiidtiple attempts to identify the presence of filngr vegetation
species, the conclusion was reached that iderttdicaf individual salt marsh vegetation could hetachieved by
applying our classification methods to Landsat iergg

The third round of classification, which did noteshpt to distinguish vegetation species, yieldeduah higher
accuracy than the two previous classification aptesm This shows that although Landsat is not ablalentify
individual species of vegetation in this ecosysteandsat is able to adequately identify the presexfosegetation
in the South Bay Salt Ponds. After running theesuised classification on the images from 2000-2@b@anges in
the presence of vegetation were evident, thoughdéground truth measurements data from 2000-26@8ented
an accuracy assessment from being performed. Siecamount of vegetation pixels present can beutztkd for
each image (one image per year), an extrapolatialdde obtained of the relative amount of vegetafiresent for
that image based on how many vegetation pixelpi@sent. After graphing the amount of vegetatioelp in each
image for each year, it can then be roughly stétatithe amount of vegetation in the South Bay Baltds has
increased from 2000-2010. Certain factors mustaken into account when analyzing the amount oftatgpn
present in each image, such as the month the invageaken (vegetation present varies due to semsbtime of
bloom), the amount of annual rainfall for each ya&d other environmental variables.

Using Hyperion imagery, a classification of one etadion species was obtained using the SAM algorith
However, additional data are needed to improveasseéss classification accuracy. The preliminaagsification
from the Hyperion image showed that it could beduf® vegetation detection. Further research wtiperion
imagery could be performed using a more powerfolginel level classification with additional fielahd spectral
data to distinguish between multiple vegetatiorcsse
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