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ABSTRACT

Landscape metrics rely on classifications of rens®rsing data, and errors inherent to the claasific scheme
will be propagated into any spatial pattern resulf$his issue is compounded for metrics deriveanfigub-pixel
unmixing techniques, since a universal method &seasing the certainty of these soft classificatioas not yet
been accepted. This study investigates the rokulofpixel classification accuracy on landscaperio®ethrough a
combination of mathematical, ecological, and rensatiesing methods by evaluating the fragmentaticsatitedar,
a weedy invasive plant species, in the Rio Gramanb First, ecological curve fitting methods adopted to
model landscape metric response across sub-pixéldaver proportions, and the proportions affectimg greatest
landscape structure changes are extracted. Setlmmdlassification accuracy of the tessellate@dinspectral
unmixing technique (TLSU) is assessed at narroatifraal abundances to determine whether accuraggsvaith
land cover proportion. Lastly, the land cover mndipns significantly influencing landscape struetare compared
to the ranges of highest accuracy to examine hosvrem the sub-pixel classification technique prepagated into
metrics. Results show that curve fitting is anrappiate technique for modeling metric responsesuto-pixel land
cover proportion, however optimal ranges differ eleging on the particular metric. Classificatiomw@wacy varies
across sub-pixel proportions, and pixels with loWactional abundance exhibit higher mapping actesa Since
the most accurate classification ranges are naayaveoincident with the optimal ranges for metrieasurement,
agreement should be tested before applying metriasesearch problem.
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INTRODUCTION

The fusion of remote sensing with landscape metacanalyze spatial land cover patterns is the esubjf
countless remote sensing studies and is consi@deleatling research topic in landscape ecology (eay, 2007).
When used in tandem, the two methods couple thefiberof global spatial data coverage with the ditative
power of spatial statistics to produce a robust foo characterizing spatial patterns. However trioeanalyses
typically rely on remote sensing classificationsd ahese classifications are subject to a hostradre and
uncertainty (Shao & Wu, 2008). If not treated pdy these errors can be propagated into the adpadittern
analysis and will lead to inaccurate results.

Addressing the influence of classification accuracylandscape metrics is an important researchrifyritor
both remote sensing (Liu & Chun, 2009; Zhang & RQoA009) and landscape ecology (Wu & Hobbs, 2002;
Iverson, 2007), yet few studies have been condumteithis topic. Notably, Peng et al. (2007) analtlze influence
of changing land use categorizations on a rangtamdscape metrics, and Shao and Wu (2008) discoas h
classification accuracy can affect pattern analy3isese studies focus on pixel-based classifinattbough, and do
not address the accuracy of metrics derived frobmpsxel data, which is an emerging focus area. Wwerking
with soft classifications, the complexity of deaimvith multiple land covers for each pixel is mdgd by the
uncertainty of unmixing accuracy. Several techaghave been proposed to determine the accurasybepixel
classifications (Binaghi et al., 1999; Gopal & Waodk, 1994; Green & Congalton, 2004; Pontius & Gh@0n06;
Silvan-Cardenas & Wang, 2008), but none have yen laglopted as a standard accuracy reporting measure

This study aims to evaluate the effect of sub-potaksification accuracy on landscape metrics byilining
methods from remote sensing, ecology, and mathesati an attempt to approach the problem from a new
perspective. When landscape metrics are compateslib-pixel classifications, the outcomes var dsnction of
land cover proportion (Frazier & Wang, under reviaWalsh et al., 2008), and response curves emetgnw



sampled metric values are plotted against sub-fiizetional abundances. These curves form as esatespond to
the environmental gradient of land cover proportiand consequentially they closely resemble tygescological

curves formed by species responses to environmegntéalients (see Austin et al., 1994; Bongers et14199;

Heikkinen & Mékipad, 2010; Oksanen & Minchin, 2002hIso, much like ecological curves, metric cunse

shaped by the underlying ecosystem processes grikizn response. In this study, we apply curvenfitmethods
regularly employed in ecology to mathematically mlodnd analyze metric responses in order to isdtedand

cover proportions provoking the most significantueges in spatial pattern. These specific fractiabandance
ranges are then utilized to guide a precise acyuaasessment to determine the effect of sub-pisisification

accuracy on metrics. To our knowledge, there arknown studies that apply curve fitting technigtetandscape
metrics and use information derived from the cuteedrive an analysis of error propagation.

The objectives of this study are to first standegdind interpret the shape and distribution ofowsrimetric
response curves in order to extract the land cpveportions driving the most significant land cowdranges.
Second, the accuracy of the sub-pixel classificatiechnique is evaluated at precise fractional daooe
increments to determine whether classification eaxyu varies with land cover proportion and to asderwhich
proportions exhibit the highest accuracies. La$tiycomparing the isolated ranges from the megsponse curves
with the most accurate fractional abundance rantjes, research tests which metrics integrate thenelsig
classification accuracies and can therefore bertegppanost confidently.

BACKGROUND AND DATA

I nvasive Species Detection and Mapping

Saltcedar Tamarix spp.) is non-native, shrub-like vegetation thas weginally introduced to the United States
from Asia in the mid 19 century to provide windbreaks and erosion con#oing riverbanks. Since being
introduced, it has invaded riparian sites througtibe southwestern U.S. and Mexico (Everitt et 096) and has
caused acute problems along the Rio Grande wherngréisence increases water shortages, raisesnsoivater
salinity, and degrades wildlife habitats (Barz kf 2009). High costs associated with eradicatiane spawned
extensive research into remote sensing techniquredi$tinguishing saltcedar from native vegetat{&veritt &
Deloach, 1990; Everitt et al., 1996; Groeneveld &t¥én, 2008; Hamada et al., 2007; Narumalani g2@09; Pu
et al., 2008; Silvan-Cardenas & Wang, 2010) in ptdemap its spread. Sub-pixel classification teghes, in
which each pixel is spectrally unmixed into mukipand covers, are a viable and accurate methobttn detailed
saltcedar land cover information when high resolutimagery is not available, and the tessellateeali spectral
unmixing technique (TLSU) has been found to be sapéo other linear and non-linear unmixing tecjues for
mapping saltcedar (Silvan-Céardenas & Wang, 2010lizing the benefits of sub-pixel classificatigdandscape
metrics have been calculated to quantify the spatid temporal distribution patterns of this highlyasive species
(Frazier & Wang, under review).

Study Area

The study area is located along a 100 km stretcth®fRio Grande in southwest Texas referred tohas t
Forgotten River Reach. The area of investigatmmprises the riparian buffer on both the U.S. arekigb sides of
the river (Fig. 1). This vegetated zone contairostiy saltcedar, but also includes mixes of natiiéow (Salix
spp.) and mesquiteP’fosopis spp.). The climate in the region is semi-aridatal, with average annual rainfall
amounts of less than 30 cm and maximum summer teyes as high as #D. Topography is characterized by
canyons and small valleys with elevation rangirgrfr2500 m to 3000 m. In general, water sourcelerregion
are scarce, and the presence of saltcedar exaeedyairtages.

Data Preprocessing

Nineteen Landsat images (path 31, row 39) collebegdieen 1982 and 2009 comprise the remote sedaiiag
for the study. Since the late-fall, early-winteriod is the optimal time to distinguish saltceftam native riparian
vegetation (Everitt & Deloach, 1990; Everitt et, 8l996), only images collected in late Novemberouigh
December were considered. The short temporal atimlle window precludes acquisition of a cloud-friesage
every year, and a total of 19 satisfactory imagersevgelected from the 28-year time span. In tleatthat multiple
cloud-free images were available in a single y&a,image collected nearest to Decembét &@as chosen, as this
is the acquisition day of an Airborne Imaging Spawtdiometer for Applications (AISA) image used for
radiometric correction and classificationclusion of a diverse set of images across a laoflection period



is essential to accommodate multiple landscapetsitl stages, incorporate various extents of shdtce
invasion, and produce results that are applicatresa the spatial and temporal extent of the etesys
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Figure 1. Location of cropped Landsat imagery along the FiiegoRiver Reach of
the Rio Grande. Red false color composite hightighé vegetated riparian buffer
strip, which is the area of investigation.

Images were corrected for atmospheric effects uslireg Iteratively Re-Weighted Multivariate Alternati
Detection (IR-MAD) technique (Canty & Nielsen, 2008ith the AISA image acquired on December 23, 2005
serving as reference data. AISA was calibratethéasure 61 bands in the range of 430 to 1000 rensaitial
resolution of 1 m. Bands 1 through 4 were extdiétem each Landsat image to correspond with tleetspl range
of AISA for classification agreement.

METHODS

The methodology consists of three steps: (1) determptimal sub-pixel proportions for measuringdscape
structure changes using curve fitting techniquy,assess the accuracy of soft remote sensingifdatens at
specific proportional ranges to determine if accyr&aries with land cover proportions, and (3) camepthe
optimal ranges from the first step with the rangéhighest accuracy from the second step to determow sub-
pixel classification accuracy affects landscapericget

To derive optimal sub-pixel proportions, the data #&nearly unmixed and the proportion of saltcedar
extracted from the classified raster. The datattaea reclassified at multiple threshold cutoffsdxh on saltcedar
abundance. Landscape metrics are computed for #mebhold, and the results are plotted againsttifnaal
abundance threshold to produce metric responseesurifhese metric response curves are fit with emagiical
models to enable sophisticated analysis, spedifiadntification of the land cover proportions sig the greatest
metric changes. These abundances represent iheabpub-pixel proportions for landscape patteralysis.

The second part of the methodology involves a §iogle accuracy assessment of the soft classifitatio
specific fractional abundance proportions using thet mean square error (RMSE) statistic. Finatlye
proportions of highest accuracy are related todp&mal metric ranges to determine the effect afssification
accuracy on spatial pattern results. The follovsagtions describe these methods in detail.

Soft Classification

The 19 Landsat images are classified using TLSUW4dBiCardenas & Wang, 2010). TLSU is a soft
classification technique which uses the concepDelaunay tessellations to linearly unmix pixelse(s&ilvan-
Céardenas & Wang, 2010). Calculations were comglate Matlab technical computing environment (The



Mathworks, Inc. 2002) and utilize hyperspectral sugaments obtained from the AISA imagery. Endmeambe
were determined by averaging AISA reflectance walugthin ground truth GPS polygons for vegetatedaar
collected during field campaigns in 2004 and 200&dditional polygons for non-vegetated endmembeesew
selected directly from on-screen visual interpietat Pixels are unmixed into three classes: sddtcenative
vegetation, and other (Table 1). Proportions &mteclass are positive and must sum to one for giaeh

Table 1. Classes and Associated Endmembers

Class Endmember Description

Green saltcedar Tamarix w/ green/brown foliage
Saltcedar Senescent saltcedafFamarix w/ orange foliage

Dry saltcedar Tamarix w/ pale leaves
Gooding willow Salix goodingi

Native Mesquite Prosopis spp.

Vegetation Poverty weed Iva spp.
Riparian bushes Woody riparian species
Creosote bush Bush found among hillside
Grasses Dormant grass and weeds
Herbaceous Green herbaceous plants
Gravel Gravel road and desert gravel

Other Soil Bare ground, including sand
Water Rivers, ponds, lakes
Wetlands Emergent herbaceous wetlands
Road Paved road
Roof Multiple house roof types
Shadow Shadow on bare ground

Saltcedar proportions are extracted from each gorelandscape metric analysis. An example ofghiécedar
classification results for a portion of the studgais shown in Fig. 2. Red pixels contain higltceadar proportions
while green pixels contain low proportions. Sali@eis most densely concentrated in the centradsaoé the
riparian zone along the river.

Saltcedar
Proportions
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Figure 2. TLSU classification results. Left: entire stualga showing location of
zoomed in section for detail. Middle: color infedrLandsat image of the section of the
area of investigation. Right: TLSU classificatioiithe section showing the proportion

of saltcedar for each pixel.



Data Discretization

Prior to computing landscape metrics, soft clasdifilata must be discretized since metrics requiteded
classes and cannot be computed directly from coatisa sub-pixel data. Saltcedar fractions are medeénto
bounded classes using the threshold continuum appr¢Frazier & Wang, under review). In brief, thiethod
reclassifies pixels based on presence-absenceltoédar at specific fractional cover thresholdsixel® with
saltcedar proportions above the threshold are ssifi@d as 1 and included in metric analysis. Bitkat do not
satisfy the threshold criteria are reclassifiedamnd excluded from analysis. The 19 classificetiare subject to
this reclassification process in 0.05 proportionatements from 0.0 to 1.0, which produces 21 s#pgoresence-
absence rasters for each year of imagery.

Landscape Metrics

Four metrics characterizing landscape fragmentdiimber of Patches (NP), Edge Density (ED), P&ize
Coefficient of Variation (PSCOV), and Largest Patadex (LPI)] are calculated for each of the 21sprece-
absence rasters for all 19 years. Metric valuesptotted against fractional abundance threshealdd,data points
are linearly interpolated to generate metric respoourves (Fig. 3). Despite some variation, theee obvious
trends across the fractional abundance threshotdsaich metric.

(a) NP (b) ED (c) PSCOV (d) LPI

9000 T 5000 - 4
1 4000 - 3 |

6000 i, = 3000 4

; 3 i NN ]

3000 7 21 4 £ .

; / N\ 1000 - 1
0 ; i i e 0! . . " SUSSSN 0 - - B D+ —
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Fractional Abundance Threshold

Figure 3. Metric response curves for (a) Number of Patchigy)((b) Edge Density (ED), (c) Patch Size Coetiiti
of Variation (PSCQV), and (d) Largest Patch IndeRlj. Each graph contains 19 curves, one for gaci of data.

CurveFitting and Evaluation

Although measurement of metrics at specific frawioabundance thresholds is discrete, continucrsdé
emerge when sampled data are linearly interpolaedshown in Fig. 3. Linear interpolation ‘conrsetiie dots’
between measurements and can foster visual anafsibange. However, in any sampling program there
typically inherent random error associated with saeaments, and basic linear interpolation will irethis error.
Furthermore, sophisticated analyses cannot be npeefb on linear interpolations since they are notdehed
mathematically. Curve fitting is the process ofgtoucting a mathematical function that has thé fiefor a set of
data points. Fitting mathematical curves to ravadaddresses the issue of random sampling errpposis
interpolation of unmeasured values, and allowsrftarpretation of the data.

Theoretical Basis for Curve Fitting. The practice of fitting curves to environmentidta arose from
recognition that most physical phenomena are coatjrbut measurement of them is typically discigi@ncaster
and Salkauskas, 1986). Curve fitting has beenlwigéopted in the biological and ecological scienteorder to
derive meaningful information from sampled envir@ntal data (Bongers et al., 1999; Ficetola & Den@éD9;
Heikkinen & Makipaa, 2010), and with the rising toassociated with field surveying, the predictifrvegetation
and other environmental values from environmengédia ds increasingly necessary. However, in deptilyaes of
these predicted data are only reliable once thie shape of the response has been establishedr{Atst., 1994).

Landscape metrics derived from soft classified rens@nsing data are an ideal case for curve fitinge the
ultimate goal of most spatial pattern studies isitgover the underlying environmental and ecoldgicacesses
driving landscape structure responses. ExtanarelBen remote sensing is mainly limited to the akeurve fitting
to determine the behavior of vegetation indices tansiatistically fill or smooth data gaps for tirperiods where
images are not available (Bradley et al., 2007r&2aet al., 2010; Fang et al., 2008; Garung eahD9; Hermance
et al., 2007; Jonsson et al., 2010). This rese@rdhe first known study to apply curve fittingogedures to
landscape metrics, and explicitly to those derifrech sub-pixel remote sensing classifications.

Cubic Polynomial Models. Among the various types of curves available twdat environmental data, cubic
polynomials are particularly well suited becauseythyield modal data, which have meaningful ecolalgic



interpretation (Heikkinen & Makipaa, 2010). Culgolynomials are also advantageous because theyreatbte

inflection point, the specific location where therwature changes sign and reverses shape from w®nga to

concave down (or vice versa). The inflection paiotresponds to the ecological threshold value a/ifaebreak in
slope occurs, and it signals an abrupt change eénettosystem (Toms & Lesperance, 2003). Ascergitiie

inflection point from fitted curves to determingusificant points of change is used extensivelyemote sensing to
delimit the red-edge of spectral reflectance curiigarvishzadeh et al., 2009; Gupta et al., 2008ardzanan &

Srivastava, 2002; Ren et al., 2010), however to loowledge this research is the only study applyingse

mathematical and ecological interpretation techesgio landscape metrics.

Based on the fundamental shape of the NP and Efbmes curves (see Fig. 3), these two metrics ase be
modeled with cubic polynomials. The curve fittipgocedure calculates the cubic polynomial equatiat will
most closely fit the measured data points andtfiégé equation line to the data. The equation ban be used to
derive complex ecological information from the aeirvMetric response curves are each fit with a reépacubic
polynomial equation producing 19 mathematical csrfag each metric (Fig. 4). All curve fitting wasmpleted
using the Curve Fitting Toolbox in the Matlab conipg environment (The Mathworks Inc., 2002).

(a) NP (b) ED
8000 !

6000 5

4000 AL 3
2000
14/
0

) -1
2000 00 02 04 06 08 10 00 02 04 06 08 1.0

Fractional Abundance Threshold

Figure 4. Cubic polynomial curves fit to the 19 years ofasred metric data
for (2) Number of Patches (NP) and (b) Edge Der{ify).

Exponential Decay Models. The basic shape of the PSCOV and LPI responsesdo not follow the typical
trends of cubic polynomials (see Fig. 3) and theeefnust be fit with a different type of model. téftesting the fit
of various curves, exponential decay curves, whiate been used in ecology to model community siracas a
function of habitat size (Millar et al., 2005), weselected. Exponential decay curves decreaseadé avhich is
proportional to the value of wherex in this case is the fractional abundance threshdlik greatest rate of change
occurs at the lowest values xfand each increasing step in threshold exhibibgnessively smaller amounts of
change until an asymptote is eventually approachite modeled exponential decay response curveBS@OV
and LPI are shown in Fig. 5.

Ecological Interpretation of Optimal Ranges. Curve interpretation for ecosystem studies agdi ecological
thresholds, the points or zones of abrupt changeiacosystem property where small changes in @éinoemental
driver produce a large ecosystem response (Fic&olzenoél, 2009; Groffman et al., 2006; Muradia®02).
Ecological thresholds are significant to ecosystemanagement because they signal the point along the
environmental gradient where the dependent varisbiaost sensitive, and they can be located onesuthrough
mathematical derivativesThe derivative of a point on the curve equals thpesof the tangent line to the graph of
the function at that point. By calculating thesfiderivative of the curve, the fractional abundawmalue for the
local minimum and maximum metric values can be rdeiteed. Likewise, the second derivative will produa
value for the inflection point. This inflection ipb is the location where the greatest change itrimtakes place
across the smallest change in fractional abundémeshold.
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Figure5. Exponential decay curves fit to the 19 years efsured metric data for
(a) Patch Size Coefficient of Variation (PSCOV) ghjiLargest Patch Index (LPI).

First and second derivatives are calculated foN&land ED curves, and the fractional abundancsiioid
values for the 19 inflection points are averagedefach metric. Ecological studies typically empsogne standard
deviation envelope around the mean to determineiespebundance envelopes (Birks et al., 1990; dufal.,
2005). Therefore, a one standard deviation eneelogs constructed around the mean inflection gointelineate
the optimal range of land cover proportions fromahkito calculate each respective landscape metric.

Exponential decay curves do not inflect, and tr@eebptimal ranges must be evaluated using differgteria.
The greatest rate of change in an exponential degase occurs at the smallest fractional abundémashold. In
order to standardize the ranges across the twa typeurves, the average metric change absorbéldebgnvelope
for the polynomial curves (45%) is applied to thep@nential decay curves to determine the exterthefrange
envelopes. The envelopes for PSCOV and LPI origirsé 0.0 and increase until 45% of the values calibre
average curve are included. This method to staimamultiple curves using the percentage of vaareompassed
by the envelope is applicable for comparison of yiigpes of curves, not just those utilized in ttisdy.

Accur acy Assessment

The second step of the methodology is to assesacth@acy of the sub-pixel classification techniqid.SU
accuracy is assessed using RMSE. RMSE expressesndignitude of the average error generated by the
classification and is commonly used to validatectpd unmixing results (Foody et al., 2010; Misletaal., 2009;
Pacheco & McNairn, 2010), although it is not knawrhave ever been used to test sub-pixel classditaccuracy
in landscape metric applications. A spectral amgépper (SAM) classification generated from the Alighage
serves as the basis for the reference data. SAMrasa single class (see Table 1) to each 1m AJiR&l using
ground truth reflectances collected during the 280d 2005 field campaigns. The SAM classificai®aggregated
to 30m (hereafter referred to as AlgAto match the spatial resolution of the Landsaadand reference saltcedar
proportions are calculated for each AlApixel. There is no cloud-free Landsat TM imagaikble from 2005 to
correspond with the acquisition date of the AlISAaga. Therefore, the 2004 image is used. Basddhowledge
gained from the 2004 and 2005 field campaigns, basebeen taken to assure that no significant tapdschanges
occurred within the study area during this timeiqur

To select pixels for the accuracy assessment, @gh0Lgrids (1,000 pixels) are randomly placed ia tbgion
covered by the AISA image, and corresponding piXedsn the AISA, and the 2004 TLSU classification are
extracted. The 1,000 test pixels are divided tatodistinct ranges based on the Ai$sub-pixel proportions (i.e.,
0.0-0.1, 0.1-0.2, etc.), and are referred to hézeafs proportional ranges (PR). RMSE values ateutated for
each PR using the following equation:

T (R — Ai)

Y n—1

RMSEFR =

where R is the proportion of saltcedar in the referenceelp{AISAsy), A is the proportion of saltcedar in the
assessed pixel (2004 TLSU), amdis the number of reference pixels in each randa. step three of the
methodology, RMSE accuracies are compared to lapgsmetrics to determine whether the highest ¢ieaton
accuracies coincide with the optimal ranges at lwhicmeasure metrics.



RESULTSAND DISCUSSION

CurveFitting

According to coefficient of determination YRvalues (Table 2), fitted curves correlate veryhhy with actual
measured metric values. The majority of Vlues are above 0.9, and all values are abov& @Bich is an
excellent fit for all curves. The strong predietivapability of the models is due to proper cumdedtion for each
metric based on the trends that emerged from lingarpolation of the initial metric response dafBhese high
performance values support the assumption thatstapd structure is ultimately driven by natural sgstem
processes related to land cover proportions.

Table2: R? Valuesfor Fitted Curves

Image R? Values

Year NP* ED* PSCoOVt LPIT

1982 0.9955 0.9803 0.8887 0.9684
1984 0.9860 0.9718 0.9608 0.9516
1985 0.9536 0.9985 0.9589 0.9845
1986 0.9655 0.9826 0.9826 0.9742
1992 0.8648 0.9675 0.9417 0.9771
1993 0.9304 0.9869 0.9005 0.9708
1994 0.9825 0.9616 0.9104 0.9793
1995 0.9565 0.9986 0.9799 0.9874
1996 0.8852 0.9833 0.9032 0.9837
1997 0.9867 0.9773 0.9396 0.9673
1998 0.9472 0.9665 0.8439 0.9870
1999 0.9163 0.9785 0.9077 0.9525
2000 0.9617 0.9850 0.9691 0.9812
2002 0.9237 0.9829 0.9064 0.9614
2003 0.8843 0.9754 0.9703 0.9937
2004 0.9528 0.9709 0.9893 0.9870
2006 0.8672 0.9784 0.9392 0.9500
2008 0.9899 0.9973 0.9158 0.9389
2009 0.9372 0.9915 0.9223 0.9742

*Data modeled using cubic polynomial curves
tData modeled using exponential decay curves

Optimal Threshold Ranges

Optimal ranges for testing the four metrics areegiin Table 3. The metrics fit with cubic polynadsi (NP
and ED) have average inflection points of 0.73 r&b respectively. Therefore the optimal rangesompass
higher saltcedar proportions than PSCOV and LRLesihe ranges for those two metrics begin at z@ittere are
slight differences in range size between metricish \& maximum of 0.22 for NP and a minimum of 0fb®
PSCOV. However, since the ranges were selectedctade equivalent amounts of data values, thesallsm
variations are inconsequential.

Table 3. Aver age I nflection Points and Optimal Fractional Abundance Ranges for
Metric M easur ement

. Average Standard .
Metric I nflection Point Deviation Optimal Range
Number of Patches (NP) 0.73 0.11 0.62-0.84
Edge Density (ED) 0.65 0.10 0.55-0.75

Patch Size Coefficient of
Variation (PSCOV)

Largest Patch Index (LPI) - - 0.00-0.21

- - 0.00 - 0.10




Proportional Range Error

Classification accuracy was evaluated using RMSigl, @esults are given in Table 4. Low RMSE values
indicate better accuracy. The classification penfed best in PR 0.2-0.3 with an RMSE of 0.192 ofe#d by PR
0.1-0.2 and 0.3-0.4 with RMSE values of 0.206 ar2d 8 respectively. Overall, TLSU was more accufatéower
sub-pixel ranges, with the five lowest RMSE valaesurring in the lowest five PRs. Highest RMSH]igating
low classification accuracy, are found in PR 0.8-#nd 0.9-1.0 with 0.580 and 0.579 respectively.

Table4. Root Mean Square Error (RM SE)
Resultsfor Sub-Pixel Proportional Ranges

Proportional  Reference

Range (PR) Pixels (n) RMSE
0.0-0.1 238 0.280
0.1-0.2 90 0.206
0.2-0.3 110 0.192
0.3-04 85 0.214
0.4-0.5 94 0.236
0.5-0.6 85 0.320
0.6-0.7 86 0.359
0.7-0.8 55 0.450
0.8-0.9 66 0.580
0.9-1.0 91 0.579

One possible explanation for the pattern of highusacies in low saltcedar proportions is the dittue
spectral characteristics of endmembers for thevemetated other class (see Table 1) versus thoshefovegetated
saltcedar and native vegetation classes. Thendisthdmembers may achieve accurate mapping dpaith high
proportions of non-vegetated areas (and consequlenl proportions of saltcedar or other vegetatio§pectral
signatures for saltcedar and native vegetatiomeme closely related. Coupled with having all vagjen clustered
within the narrow riparian zone, the classificatioray not produce accurate results when saltced@rnative
vegetation are mixed together in high proportica®] this may have resulted in lower classificatimeuracies.
Further research investigating the exact breakdofvtand cover proportions for pixels classified anectly is
necessary to determine if specific classes inflaethe classification accuracy. Overall, the accynesults are
encouraging as there is evidence to suggest thattam and control of invasive species is mostiediearly on in
the invasion process (Hamada et al., 2007; Walsth.,e2008). With high accuracy at low proportipsaltcedar is
best detected in the early stages of its spread.

Metric Performance

To assess the effect of sub-pixel classificatiozugacy on landscape metrics, RMSE PR values azepolated
to the optimal metric ranges (see Table 3). Fotriogewith optimal ranges stretching across muitigMSE
ranges, a weighted sum is calculated by multiplyheg percent of the range within the PR by the RM8@Eming
across the range. In this way, RMSE for the rargggsbe compared. Results (Table 5) show thathaBlthe
lowest aggregated RMSE for its optimal samplinggeaiat 0.240, followed by PSCOV with 0.280. NP Haes
highest aggregated RMSE and therefore encompdssésiest classification accuracy.

Table5. Root Mean Square Error (RM SE) Values
for Metric Optimal Ranges

Optimal Range

Metric RMSE
Number of Patches (NP) 0.441
Edge Density (ED) 0.305
Patch Size Coefficient of 0.280

Variation (PSCOV)
Largest Patch Index (LPI) 0.240




Overall, these results indicate that there aredifices in the accuracy of the soft classificadiodifferent PRs,
and these varying accuracies can affect metric ameawents. In general, the RMSE values in TableeShighly
dependent on the alignment of the highest acclwsawith the optimal range for measurement. The soipe
performance of TLSU at lower fractional abundarmeges combined with the high initial rates of cheaifoy the
exponential decay models explain the higher ac@esaaf PSCOV and LPI compared to NP and ED. Theselts
do not aim to denigrate the usefulness of speleifidscape metrics nor do they attempt to proma@eisie of certain
metrics over others. Rather, these results highligat classification accuracy does not affectnaditrics evenly,
and certain metrics may be more robust to meagatas patterns in a certain study given the acouod a specific
classification scheme.

CONCLUSIONS

Measures that rely on remote sensing classificatéye subject to error propagation from those ifieagons,
yet little research has been conducted to dedwe@ntpact of classification accuracy on spatialgrat. Building
on previous research, which found that landscapiicsevary as a function of land cover proportitims study
tested the application of ecological curve fittieghniques to remote sensing-derived spatial pestténterpreted
those curves in the context of the sub-pixel prbpos driving metric changes, and assessed theancof a sub-
pixel classification technique in relation to tledilscape metrics derived from it.

Several key findings emerge from this researchst,Rihis study found that ecological curve fittimgthods are
appropriate and practical for mathematically analyzandscape metric data derived from sub-pixela& sensing
classifications. Metric responses to varying laader proportions behave similarly to species oasps across
ecological gradients, and it is probable that laage structure changes are driven by underlyingystem
processes. Determining saltcedar proportionsitithice the most extreme shifts in structural respan the first
step to eventually controlling invasion. Thesepgmmtions can also be used by ecosystem managéasget areas
for eradication and control measures.

A second key finding from this work is that the sddication accuracy of the TLSU technique is nohstant
across all fractional abundances. Accuracies ayieeh for pixels with low saltcedar proportions.heBe higher
accuracies may stem from the distinct spectralatiges of the non-vegetated class which aid in ingppixels
with minimal amounts of saltcedar or native vedgetat However, this finding is unexpected sinceepapectral
endmembers were collected for all classes withim dhea of investigation. The pure pixels represgnthe
reflectance values for 100 percent saltcedar lamebre proportion should have generated high accukslegn
mapping other pixels dominated by high proportiohsaltcedar.

Finally, comparison between the ranges with higlsestpixel classification accuracy and the selectanes
for metric measurement determined that these tws afeoptimal ranges do not always coincide. Optimetric
performance depends on proper alignment of the amsirate classification ranges. Since each mistdptimally
measured at different fractional abundance threlshalccuracy should be tested and compared befipigireg
metrics to sub-pixel data.

Developing landscape metrics from sub-pixel, ot stassifications is a relatively new research &daut one
that deserves attention considering recent advanagsectral unmixing techniques. Future work stidnvestigate
error propagation from the perspective of bothrttegnitude of classification errors across land cqveportions
as well as the spatial variability of classificatierrors. Examining the distribution of varyinggdees of accuracy
across the landscape may provide insight into pla¢ia processes affecting saltcedar invasion.
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