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ABSTRACT 
 
Landscape metrics rely on classifications of remote sensing data, and errors inherent to the classification scheme 
will be propagated into any spatial pattern results.  This issue is compounded for metrics derived from sub-pixel 
unmixing techniques, since a universal method for assessing the certainty of these soft classifications has not yet 
been accepted.  This study investigates the role of sub-pixel classification accuracy on landscape metrics through a 
combination of mathematical, ecological, and remote sensing methods by evaluating the fragmentation of saltcedar, 
a weedy invasive plant species, in the Rio Grande basin.  First, ecological curve fitting methods are adopted to 
model landscape metric response across sub-pixel land cover proportions, and the proportions affecting the greatest 
landscape structure changes are extracted.  Second, the classification accuracy of the tessellated linear spectral 
unmixing technique (TLSU) is assessed at narrow fractional abundances to determine whether accuracy varies with 
land cover proportion.  Lastly, the land cover proportions significantly influencing landscape structure are compared 
to the ranges of highest accuracy to examine how errors in the sub-pixel classification technique are propagated into 
metrics.  Results show that curve fitting is an appropriate technique for modeling metric responses to sub-pixel land 
cover proportion, however optimal ranges differ depending on the particular metric.  Classification accuracy varies 
across sub-pixel proportions, and pixels with lower fractional abundance exhibit higher mapping accuracies.  Since 
the most accurate classification ranges are not always coincident with the optimal ranges for metric measurement, 
agreement should be tested before applying metrics to a research problem. 
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INTRODUCTION 
 

The fusion of remote sensing with landscape metrics to analyze spatial land cover patterns is the subject of 
countless remote sensing studies and is considered a leading research topic in landscape ecology (Peng et al., 2007).  
When used in tandem, the two methods couple the benefits of global spatial data coverage with the quantitative 
power of spatial statistics to produce a robust tool for characterizing spatial patterns.  However, metric analyses 
typically rely on remote sensing classifications, and these classifications are subject to a host of errors and 
uncertainty (Shao & Wu, 2008).  If not treated properly, these errors can be propagated into the spatial pattern 
analysis and will lead to inaccurate results. 

Addressing the influence of classification accuracy on landscape metrics is an important research priority for 
both remote sensing (Liu & Chun, 2009; Zhang & Foody, 2009) and landscape ecology (Wu & Hobbs, 2002; 
Iverson, 2007), yet few studies have been conducted on this topic.  Notably, Peng et al. (2007) analyze the influence 
of changing land use categorizations on a range of landscape metrics, and Shao and Wu (2008) discuss how 
classification accuracy can affect pattern analysis.  These studies focus on pixel-based classifications though, and do 
not address the accuracy of metrics derived from sub-pixel data, which is an emerging focus area.  When working 
with soft classifications, the complexity of dealing with multiple land covers for each pixel is magnified by the 
uncertainty of unmixing accuracy.  Several techniques have been proposed to determine the accuracy of sub-pixel 
classifications (Binaghi et al., 1999; Gopal & Woodcock, 1994; Green & Congalton, 2004; Pontius & Cheuk, 2006; 
Silván-Cárdenas & Wang, 2008), but none have yet been adopted as a standard accuracy reporting measure. 

This study aims to evaluate the effect of sub-pixel classification accuracy on landscape metrics by combining 
methods from remote sensing, ecology, and mathematics in an attempt to approach the problem from a new 
perspective.  When landscape metrics are computed for sub-pixel classifications, the outcomes vary as a function of 
land cover proportion (Frazier & Wang, under review; Walsh et al., 2008), and response curves emerge when 
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sampled metric values are plotted against sub-pixel fractional abundances.  These curves form as metrics respond to 
the environmental gradient of land cover proportion, and consequentially they closely resemble types of ecological 
curves formed by species responses to environmental gradients (see Austin et al., 1994; Bongers et al., 1999; 
Heikkinen & Mäkipää, 2010; Oksanen & Minchin, 2002).  Also, much like ecological curves, metric curves are 
shaped by the underlying ecosystem processes driving the response.  In this study, we apply curve fitting methods 
regularly employed in ecology to mathematically model and analyze metric responses in order to isolate the land 
cover proportions provoking the most significant changes in spatial pattern.  These specific fractional abundance 
ranges are then utilized to guide a precise accuracy assessment to determine the effect of sub-pixel classification 
accuracy on metrics.  To our knowledge, there are no known studies that apply curve fitting techniques to landscape 
metrics and use information derived from the curves to drive an analysis of error propagation.   

The objectives of this study are to first standardize and interpret the shape and distribution of various metric 
response curves in order to extract the land cover proportions driving the most significant land cover changes.  
Second, the accuracy of the sub-pixel classification technique is evaluated at precise fractional abundance 
increments to determine whether classification accuracy varies with land cover proportion and to ascertain which 
proportions exhibit the highest accuracies.  Lastly, by comparing the isolated ranges from the metric response curves 
with the most accurate fractional abundance ranges, the research tests which metrics integrate the highest 
classification accuracies and can therefore be reported most confidently. 
 
 

BACKGROUND AND DATA 
 
Invasive Species Detection and Mapping 

Saltcedar (Tamarix spp.) is non-native, shrub-like vegetation that was originally introduced to the United States 
from Asia in the mid 19th century to provide windbreaks and erosion control along riverbanks.  Since being 
introduced, it has invaded riparian sites throughout the southwestern U.S. and Mexico (Everitt et al., 1996) and has 
caused acute problems along the Rio Grande where its presence increases water shortages, raises soil and water 
salinity, and degrades wildlife habitats (Barz et al., 2009).  High costs associated with eradication have spawned 
extensive research into remote sensing techniques for distinguishing saltcedar from native vegetation (Everitt & 
DeLoach, 1990; Everitt et al., 1996; Groeneveld & Watson, 2008; Hamada et al., 2007; Narumalani et al., 2009; Pu 
et al., 2008; Silván-Cárdenas & Wang, 2010) in order to map its spread.  Sub-pixel classification techniques, in 
which each pixel is spectrally unmixed into multiple land covers, are a viable and accurate method to obtain detailed 
saltcedar land cover information when high resolution imagery is not available, and the tessellated linear spectral 
unmixing technique (TLSU) has been found to be superior to other linear and non-linear unmixing techniques for 
mapping saltcedar (Silván-Cárdenas & Wang, 2010).  Utilizing the benefits of sub-pixel classifications, landscape 
metrics have been calculated to quantify the spatial and temporal distribution patterns of this highly invasive species 
(Frazier & Wang, under review). 
 
Study Area 

The study area is located along a 100 km stretch of the Rio Grande in southwest Texas referred to as the 
Forgotten River Reach.  The area of investigation comprises the riparian buffer on both the U.S. and Mexico sides of 
the river (Fig. 1).  This vegetated zone contains mostly saltcedar, but also includes mixes of native willow (Salix 
spp.) and mesquite (Prosopis spp.).  The climate in the region is semi-arid to arid, with average annual rainfall 
amounts of less than 30 cm and maximum summer temperatures as high as 40oC.  Topography is characterized by 
canyons and small valleys with elevation ranging from 2500 m to 3000 m.  In general, water sources in the region 
are scarce, and the presence of saltcedar exacerbates shortages. 

 
Data Preprocessing 

Nineteen Landsat images (path 31, row 39) collected between 1982 and 2009 comprise the remote sensing data 
for the study.  Since the late-fall, early-winter period is the optimal time to distinguish saltcedar from native riparian 
vegetation (Everitt & DeLoach, 1990; Everitt et al., 1996), only images collected in late November through 
December were considered.  The short temporal collection window precludes acquisition of a cloud-free image 
every year, and a total of 19 satisfactory images were selected from the 28-year time span.  In the event that multiple 
cloud-free images were available in a single year, the image collected nearest to December 23rd was chosen, as this 
is the acquisition day of an Airborne Imaging Spectroradiometer for Applications (AISA) image used for 
radiometric correction and classification.  Inclusion of a diverse set of images across a large collection period 



ASPRS 2011 Annual Conference 
Milwaukee, Wisconsin ▪ May 1-5, 2011 

is essential to accommodate multiple landscape structure stages, incorporate various extents of saltcedar 
invasion, and produce results that are applicable across the spatial and temporal extent of the ecosystem. 

 

 
 
 
 
 

Images were corrected for atmospheric effects using the Iteratively Re-Weighted Multivariate Alternation 
Detection (IR-MAD) technique (Canty & Nielsen, 2008) with the AISA image acquired on December 23, 2005 
serving as reference data.  AISA was calibrated to measure 61 bands in the range of 430 to 1000 nm at a spatial 
resolution of 1 m.  Bands 1 through 4 were extracted from each Landsat image to correspond with the spectral range 
of AISA for classification agreement. 

 
 

METHODS 
 

The methodology consists of three steps: (1) determine optimal sub-pixel proportions for measuring landscape 
structure changes using curve fitting techniques, (2) assess the accuracy of soft remote sensing classifications at 
specific proportional ranges to determine if accuracy varies with land cover proportions, and (3) compare the 
optimal ranges from the first step with the ranges of highest accuracy from the second step to determine how sub-
pixel classification accuracy affects landscape metrics. 

To derive optimal sub-pixel proportions, the data are linearly unmixed and the proportion of saltcedar is 
extracted from the classified raster.  The data are then reclassified at multiple threshold cutoffs based on saltcedar 
abundance.  Landscape metrics are computed for each threshold, and the results are plotted against fractional 
abundance threshold to produce metric response curves.  These metric response curves are fit with mathematical 
models to enable sophisticated analysis, specifically identification of the land cover proportions causing the greatest 
metric changes.  These abundances represent the optimal sub-pixel proportions for landscape pattern analysis. 

The second part of the methodology involves a fine-scale accuracy assessment of the soft classifications at 
specific fractional abundance proportions using the root mean square error (RMSE) statistic.  Finally, the 
proportions of highest accuracy are related to the optimal metric ranges to determine the effect of classification 
accuracy on spatial pattern results.  The following sections describe these methods in detail. 
 
Soft Classification 

The 19 Landsat images are classified using TLSU (Silván-Cárdenas & Wang, 2010).  TLSU is a soft 
classification technique which uses the concept of Delaunay tessellations to linearly unmix pixels (see Silván-
Cárdenas & Wang, 2010).  Calculations were completed in Matlab technical computing environment (The 

Figure 1. Location of cropped Landsat imagery along the Forgotten River Reach of 
the Rio Grande. Red false color composite highlights the vegetated riparian buffer 

strip, which is the area of investigation. 
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Mathworks, Inc. 2002) and utilize hyperspectral measurements obtained from the AISA imagery.  Endmembers 
were determined by averaging AISA reflectance values within ground truth GPS polygons for vegetated areas 
collected during field campaigns in 2004 and 2005.  Additional polygons for non-vegetated endmembers were 
selected directly from on-screen visual interpretation.  Pixels are unmixed into three classes: saltcedar, native 
vegetation, and other (Table 1).  Proportions for each class are positive and must sum to one for each pixel. 
 

Table 1. Classes and Associated Endmembers  

Class Endmember Description 

 Green saltcedar Tamarix w/ green/brown foliage  
Saltcedar Senescent saltcedar Tamarix w/ orange foliage 
 Dry saltcedar Tamarix w/ pale leaves 

Gooding willow Salix goodingi 
Mesquite Prosopis spp. 
Poverty weed Iva spp. 

Native 
Vegetation 

Riparian bushes Woody riparian species 
Creosote bush Bush found among hillside 
Grasses Dormant grass and weeds 
Herbaceous Green herbaceous plants 
Gravel Gravel road and desert gravel 
Soil Bare ground, including sand 
Water Rivers, ponds, lakes 
Wetlands Emergent herbaceous wetlands 
Road Paved road 
Roof Multiple house roof types 

Other 

Shadow Shadow on bare ground 

 
Saltcedar proportions are extracted from each pixel for landscape metric analysis.  An example of the saltcedar 

classification results for a portion of the study area is shown in Fig. 2.  Red pixels contain high saltcedar proportions 
while green pixels contain low proportions.  Saltcedar is most densely concentrated in the central areas of the 
riparian zone along the river.    

 

 

Figure 2. TLSU classification results.  Left: entire study area showing location of 
zoomed in section for detail.  Middle: color infrared Landsat image of the section of the 
area of investigation.  Right: TLSU classification of the section showing the proportion 

of saltcedar for each pixel. 
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Data Discretization 
Prior to computing landscape metrics, soft classified data must be discretized since metrics require bounded 

classes and cannot be computed directly from continuous sub-pixel data.  Saltcedar fractions are hardened into 
bounded classes using the threshold continuum approach (Frazier & Wang, under review).  In brief, this method 
reclassifies pixels based on presence-absence of saltcedar at specific fractional cover thresholds.  Pixels with 
saltcedar proportions above the threshold are reclassified as 1 and included in metric analysis.  Pixels that do not 
satisfy the threshold criteria are reclassified as 0 and excluded from analysis.  The 19 classifications are subject to 
this reclassification process in 0.05 proportional increments from 0.0 to 1.0, which produces 21 separate presence-
absence rasters for each year of imagery. 
 
Landscape Metrics 

Four metrics characterizing landscape fragmentation [Number of Patches (NP), Edge Density (ED), Patch Size 
Coefficient of Variation (PSCOV), and Largest Patch Index (LPI)] are calculated for each of the 21 presence-
absence rasters for all 19 years.  Metric values are plotted against fractional abundance thresholds, and data points 
are linearly interpolated to generate metric response curves (Fig. 3).  Despite some variation, there are obvious 
trends across the fractional abundance thresholds for each metric. 
 
 

 
 

Figure 3. Metric response curves for (a) Number of Patches (NP), (b) Edge Density (ED), (c) Patch Size Coefficient 
of Variation (PSCOV), and (d) Largest Patch Index (LPI).  Each graph contains 19 curves, one for each year of data. 

Curve Fitting and Evaluation 
Although measurement of metrics at specific fractional abundance thresholds is discrete, continuous trends 

emerge when sampled data are linearly interpolated, as shown in Fig. 3.  Linear interpolation ‘connects the dots’ 
between measurements and can foster visual analysis of change.  However, in any sampling program there is 
typically inherent random error associated with measurements, and basic linear interpolation will retain this error.  
Furthermore, sophisticated analyses cannot be performed on linear interpolations since they are not modeled 
mathematically.  Curve fitting is the process of constructing a mathematical function that has the best fit for a set of 
data points.  Fitting mathematical curves to raw data addresses the issue of random sampling error, supports 
interpolation of unmeasured values, and allows for interpretation of the data. 

Theoretical Basis for Curve Fitting.  The practice of fitting curves to environmental data arose from 
recognition that most physical phenomena are continual, but measurement of them is typically discrete (Lancaster 
and Salkauskas, 1986).  Curve fitting has been widely adopted in the biological and ecological sciences in order to 
derive meaningful information from sampled environmental data (Bongers et al., 1999; Ficetola & Denoël, 2009; 
Heikkinen & Mäkipää, 2010), and with the rising costs associated with field surveying, the prediction of vegetation 
and other environmental values from environmental data is increasingly necessary.  However, in depth analyses of 
these predicted data are only reliable once the basic shape of the response has been established (Austin et al., 1994). 

Landscape metrics derived from soft classified remote sensing data are an ideal case for curve fitting since the 
ultimate goal of most spatial pattern studies is to uncover the underlying environmental and ecological processes 
driving landscape structure responses.  Extant research in remote sensing is mainly limited to the use of curve fitting 
to determine the behavior of vegetation indices and to statistically fill or smooth data gaps for time periods where 
images are not available (Bradley et al., 2007; Carrao et al., 2010; Fang et al., 2008; Garung et al., 2009; Hermance 
et al., 2007; Jönsson et al., 2010).  This research is the first known study to apply curve fitting procedures to 
landscape metrics, and explicitly to those derived from sub-pixel remote sensing classifications. 

Cubic Polynomial Models.  Among the various types of curves available to model environmental data, cubic 
polynomials are particularly well suited because they yield modal data, which have meaningful ecological 
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interpretation (Heikkinen & Mäkipää, 2010).  Cubic polynomials are also advantageous because they capture the 
inflection point, the specific location where the curvature changes sign and reverses shape from concave up to 
concave down (or vice versa).  The inflection point corresponds to the ecological threshold value where a break in 
slope occurs, and it signals an abrupt change in the ecosystem (Toms & Lesperance, 2003).  Ascertaining the 
inflection point from fitted curves to determine significant points of change is used extensively in remote sensing to 
delimit the red-edge of spectral reflectance curves (Darvishzadeh et al., 2009; Gupta et al., 2003; Jayaraman & 
Srivastava, 2002; Ren et al., 2010), however to our knowledge this research is the only study applying these 
mathematical and ecological interpretation techniques to landscape metrics. 

Based on the fundamental shape of the NP and ED response curves (see Fig. 3), these two metrics are best 
modeled with cubic polynomials.  The curve fitting procedure calculates the cubic polynomial equation that will 
most closely fit the measured data points and fits that equation line to the data.  The equation can then be used to 
derive complex ecological information from the curve.  Metric response curves are each fit with a separate cubic 
polynomial equation producing 19 mathematical curves for each metric (Fig. 4).  All curve fitting was completed 
using the Curve Fitting Toolbox in the Matlab computing environment (The Mathworks Inc., 2002).  

 

 
Figure 4. Cubic polynomial curves fit to the 19 years of measured metric data 

for (a) Number of Patches (NP) and (b) Edge Density (ED).   

 
Exponential Decay Models.  The basic shape of the PSCOV and LPI response curves do not follow the typical 

trends of cubic polynomials (see Fig. 3) and therefore must be fit with a different type of model.  After testing the fit 
of various curves, exponential decay curves, which have been used in ecology to model community structure as a 
function of habitat size (Millar et al., 2005), were selected.  Exponential decay curves decrease at a rate which is 
proportional to the value of x, where x in this case is the fractional abundance threshold.  The greatest rate of change 
occurs at the lowest values of x, and each increasing step in threshold exhibits progressively smaller amounts of 
change until an asymptote is eventually approached.  The modeled exponential decay response curves for PSCOV 
and LPI are shown in Fig. 5. 

Ecological Interpretation of Optimal Ranges.  Curve interpretation for ecosystem studies utilizes ecological 
thresholds, the points or zones of abrupt change in an ecosystem property where small changes in an environmental 
driver produce a large ecosystem response (Ficetola & Denoël, 2009; Groffman et al., 2006; Muradian, 2001).  
Ecological thresholds are significant to ecosystem management because they signal the point along the 
environmental gradient where the dependent variable is most sensitive, and they can be located on curves through 
mathematical derivatives.  The derivative of a point on the curve equals the slope of the tangent line to the graph of 
the function at that point.  By calculating the first derivative of the curve, the fractional abundance value for the 
local minimum and maximum metric values can be determined.  Likewise, the second derivative will produce a 
value for the inflection point.  This inflection point is the location where the greatest change in metric takes place 
across the smallest change in fractional abundance threshold. 
 



ASPRS 2011 Annual Conference 
Milwaukee, Wisconsin ▪ May 1-5, 2011 

 
Figure 5. Exponential decay curves fit to the 19 years of measured metric data for 

(a) Patch Size Coefficient of Variation (PSCOV) and (b) Largest Patch Index (LPI). 
 

First and second derivatives are calculated for all NP and ED curves, and the fractional abundance threshold 
values for the 19 inflection points are averaged for each metric.  Ecological studies typically employ a one standard 
deviation envelope around the mean to determine species abundance envelopes (Birks et al., 1990; Huff et al., 
2005).  Therefore, a one standard deviation envelope was constructed around the mean inflection point to delineate 
the optimal range of land cover proportions from which to calculate each respective landscape metric. 

Exponential decay curves do not inflect, and therefore optimal ranges must be evaluated using different criteria.  
The greatest rate of change in an exponential decay curve occurs at the smallest fractional abundance threshold.  In 
order to standardize the ranges across the two types of curves, the average metric change absorbed by the envelope 
for the polynomial curves (45%) is applied to the exponential decay curves to determine the extent of the range 
envelopes.  The envelopes for PSCOV and LPI originate at 0.0 and increase until 45% of the values along the 
average curve are included.  This method to standardize multiple curves using the percentage of values encompassed 
by the envelope is applicable for comparison of many types of curves, not just those utilized in this study. 

 
Accuracy Assessment 

The second step of the methodology is to assess the accuracy of the sub-pixel classification technique.  TLSU 
accuracy is assessed using RMSE.  RMSE expresses the magnitude of the average error generated by the 
classification and is commonly used to validate spectral unmixing results (Foody et al., 2010; Mishra et al., 2009; 
Pacheco & McNairn, 2010), although it is not known to have ever been used to test sub-pixel classification accuracy 
in landscape metric applications.  A spectral angle mapper (SAM) classification generated from the AISA image 
serves as the basis for the reference data.  SAM assigns a single class (see Table 1) to each 1m AISA pixel using 
ground truth reflectances collected during the 2004 and 2005 field campaigns.  The SAM classification is aggregated 
to 30m (hereafter referred to as AISA30) to match the spatial resolution of the Landsat data, and reference saltcedar 
proportions are calculated for each AISA30 pixel.  There is no cloud-free Landsat TM image available from 2005 to 
correspond with the acquisition date of the AISA image.  Therefore, the 2004 image is used.  Based on knowledge 
gained from the 2004 and 2005 field campaigns, care has been taken to assure that no significant landscape changes 
occurred within the study area during this time period. 

To select pixels for the accuracy assessment, ten 10x10 grids (1,000 pixels) are randomly placed in the region 
covered by the AISA image, and corresponding pixels from the AISA30 and the 2004 TLSU classification are 
extracted.  The 1,000 test pixels are divided into ten distinct ranges based on the AISA30 sub-pixel proportions (i.e., 
0.0-0.1, 0.1-0.2, etc.), and are referred to hereafter as proportional ranges (PR).  RMSE values are calculated for 
each PR using the following equation: 

 

  
 
where Ri is the proportion of saltcedar in the reference pixel (AISA30), Ai is the proportion of saltcedar in the 
assessed pixel (2004 TLSU), and n is the number of reference pixels in each range.  In step three of the 
methodology, RMSE accuracies are compared to landscape metrics to determine whether the highest classification 
accuracies coincide with the optimal ranges at which to measure metrics.   
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RESULTS AND DISCUSSION 
 
Curve Fitting 

According to coefficient of determination (R2) values (Table 2), fitted curves correlate very highly with actual 
measured metric values.  The majority of R2 values are above 0.9, and all values are above 0.84, which is an 
excellent fit for all curves.  The strong predictive capability of the models is due to proper curve selection for each 
metric based on the trends that emerged from linear interpolation of the initial metric response data.  These high 
performance values support the assumption that landscape structure is ultimately driven by natural ecosystem 
processes related to land cover proportions. 

 
Table 2: R2 Values for Fitted Curves 

Image  R2 Values 

Year  NP* ED* PSCOV† LPI† 
1982  0.9955 0.9803 0.8887 0.9684 
1984  0.9860 0.9718 0.9608 0.9516 
1985  0.9536 0.9985 0.9589 0.9845 
1986  0.9655 0.9826 0.9826 0.9742 
1992  0.8648 0.9675 0.9417 0.9771 
1993  0.9304 0.9869 0.9005 0.9708 
1994  0.9825 0.9616 0.9104 0.9793 
1995  0.9565 0.9986 0.9799 0.9874 
1996  0.8852 0.9833 0.9032 0.9837 
1997  0.9867 0.9773 0.9396 0.9673 
1998  0.9472 0.9665 0.8439 0.9870 
1999  0.9163 0.9785 0.9077 0.9525 
2000  0.9617 0.9850 0.9691 0.9812 
2002  0.9237 0.9829 0.9064 0.9614 
2003  0.8843 0.9754 0.9703 0.9937 
2004  0.9528 0.9709 0.9893 0.9870 
2006  0.8672 0.9784 0.9392 0.9500 
2008  0.9899 0.9973 0.9158 0.9389 
2009  0.9372 0.9915 0.9223 0.9742 

*Data modeled using cubic polynomial curves 
†Data modeled using exponential decay curves 

 
 
Optimal Threshold Ranges 

Optimal ranges for testing the four metrics are given in Table 3.  The metrics fit with cubic polynomials (NP 
and ED) have average inflection points of 0.73 and 0.65 respectively.  Therefore the optimal ranges encompass 
higher saltcedar proportions than PSCOV and LPI, since the ranges for those two metrics begin at zero.  There are 
slight differences in range size between metrics, with a maximum of 0.22 for NP and a minimum of 0.10 for 
PSCOV.  However, since the ranges were selected to include equivalent amounts of data values, these small 
variations are inconsequential.  
 

 
Table 3. Average Inflection Points and Optimal Fractional Abundance Ranges for 

Metric Measurement 

Metric Average 
Inflection Point 

Standard 
Deviation Optimal Range 

Number of Patches (NP) 0.73 0.11 0.62 - 0.84 

Edge Density (ED) 0.65 0.10 0.55 - 0.75 

Patch Size Coefficient of 
Variation (PSCOV) 

- - 0.00 - 0.10 

Largest Patch Index (LPI) - - 0.00 - 0.21 
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Proportional Range Error 
Classification accuracy was evaluated using RMSE, and results are given in Table 4.  Low RMSE values 

indicate better accuracy.  The classification performed best in PR 0.2-0.3 with an RMSE of 0.192, followed by PR 
0.1-0.2 and 0.3-0.4 with RMSE values of 0.206 and 0.214 respectively.  Overall, TLSU was more accurate for lower 
sub-pixel ranges, with the five lowest RMSE values occurring in the lowest five PRs.  Highest RMSE, indicating 
low classification accuracy, are found in PR 0.8-0.9 and 0.9-1.0 with 0.580 and 0.579 respectively.     

 
Table 4. Root Mean Square Error (RMSE) 
Results for Sub-Pixel Proportional Ranges 

Proportional 
Range (PR) 

Reference 
Pixels (n) RMSE 

0.0-0.1 238 0.280 
0.1-0.2 90 0.206 
0.2-0.3 110 0.192 
0.3-0.4 85 0.214 
0.4-0.5 94 0.236 
0.5-0.6 85 0.320 
0.6-0.7 86 0.359 
0.7-0.8 55 0.450 
0.8-0.9 66 0.580 
0.9-1.0 91 0.579 

 
 
One possible explanation for the pattern of high accuracies in low saltcedar proportions is the distinctive 

spectral characteristics of endmembers for the non-vegetated other class (see Table 1) versus those for the vegetated 
saltcedar and native vegetation classes.  The distinct endmembers may achieve accurate mapping of pixels with high 
proportions of non-vegetated areas (and consequently low proportions of saltcedar or other vegetation).  Spectral 
signatures for saltcedar and native vegetation are more closely related.  Coupled with having all vegetation clustered 
within the narrow riparian zone, the classification may not produce accurate results when saltcedar and native 
vegetation are mixed together in high proportions, and this may have resulted in lower classification accuracies.  
Further research investigating the exact breakdown of land cover proportions for pixels classified incorrectly is 
necessary to determine if specific classes influence the classification accuracy.  Overall, the accuracy results are 
encouraging as there is evidence to suggest that detection and control of invasive species is most crucial early on in 
the invasion process (Hamada et al., 2007; Walsh et al., 2008).  With high accuracy at low proportions, saltcedar is 
best detected in the early stages of its spread.   

 
Metric Performance 

To assess the effect of sub-pixel classification accuracy on landscape metrics, RMSE PR values are interpolated 
to the optimal metric ranges (see Table 3).  For metrics with optimal ranges stretching across multiple RMSE 
ranges, a weighted sum is calculated by multiplying the percent of the range within the PR by the RMSE summing 
across the range.  In this way, RMSE for the ranges can be compared.  Results (Table 5) show that LPI has the 
lowest aggregated RMSE for its optimal sampling range at 0.240, followed by PSCOV with 0.280.  NP has the 
highest aggregated RMSE and therefore encompasses the lowest classification accuracy.   
 

Table 5. Root Mean Square Error (RMSE) Values 
for Metric Optimal Ranges 

Metric Optimal Range 
RMSE 

Number of Patches (NP) 0.441 

Edge Density (ED) 0.305 

Patch Size Coefficient of 
Variation (PSCOV) 

0.280 

Largest Patch Index (LPI) 0.240 
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Overall, these results indicate that there are differences in the accuracy of the soft classification at different PRs, 
and these varying accuracies can affect metric measurements.  In general, the RMSE values in Table 5 are highly 
dependent on the alignment of the highest accuracies with the optimal range for measurement.  The superior 
performance of TLSU at lower fractional abundance ranges combined with the high initial rates of change for the 
exponential decay models explain the higher accuracies of PSCOV and LPI compared to NP and ED.  These results 
do not aim to denigrate the usefulness of specific landscape metrics nor do they attempt to promote the use of certain 
metrics over others.  Rather, these results highlight that classification accuracy does not affect all metrics evenly, 
and certain metrics may be more robust to measure spatial patterns in a certain study given the accuracy of a specific 
classification scheme.   
 
 

CONCLUSIONS 
 

Measures that rely on remote sensing classifications are subject to error propagation from those classifications, 
yet little research has been conducted to deduce the impact of classification accuracy on spatial patterns.  Building 
on previous research, which found that landscape metrics vary as a function of land cover proportion, this study 
tested the application of ecological curve fitting techniques to remote sensing-derived spatial patterns, interpreted 
those curves in the context of the sub-pixel proportions driving metric changes, and assessed the accuracy of a sub-
pixel classification technique in relation to the landscape metrics derived from it.   

Several key findings emerge from this research.  First, this study found that ecological curve fitting methods are 
appropriate and practical for mathematically analyzing landscape metric data derived from sub-pixel remote sensing 
classifications.   Metric responses to varying land cover proportions behave similarly to species responses across 
ecological gradients, and it is probable that landscape structure changes are driven by underlying ecosystem 
processes.  Determining saltcedar proportions that induce the most extreme shifts in structural response is the first 
step to eventually controlling invasion.  These proportions can also be used by ecosystem managers to target areas 
for eradication and control measures. 

A second key finding from this work is that the classification accuracy of the TLSU technique is not constant 
across all fractional abundances.  Accuracies are higher for pixels with low saltcedar proportions.  These higher 
accuracies may stem from the distinct spectral signatures of the non-vegetated class which aid in mapping pixels 
with minimal amounts of saltcedar or native vegetation.  However, this finding is unexpected since pure spectral 
endmembers were collected for all classes within the area of investigation.  The pure pixels representing the 
reflectance values for 100 percent saltcedar land cover proportion should have generated high accuracy when 
mapping other pixels dominated by high proportions of saltcedar. 

Finally, comparison between the ranges with highest sub-pixel classification accuracy and the selected ranges 
for metric measurement determined that these two sets of optimal ranges do not always coincide.  Optimal metric 
performance depends on proper alignment of the most accurate classification ranges.  Since each metric is optimally 
measured at different fractional abundance thresholds, accuracy should be tested and compared before applying 
metrics to sub-pixel data. 

Developing landscape metrics from sub-pixel, or soft classifications is a relatively new research focus, but one 
that deserves attention considering recent advances in spectral unmixing techniques.  Future work should investigate 
error propagation from the perspective of both the magnitude of classification errors across land cover proportions 
as well as the spatial variability of classification errors.  Examining the distribution of varying degrees of accuracy 
across the landscape may provide insight into the spatial processes affecting saltcedar invasion. 
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