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ABSTRACT

By fusing with other sensory data, especially higgolution imagery, Lidar can be good source adrimiation for
DEM extraction and feature extraction. Nowadayba@ine Lidar system vendors such as Leica and Tepmsy
others are providing systems (Leica ALS50II, ALS&0posys FALCON II) with integrated camera captgraD

point cloud and high resolution images simultangouBhe full potential of the integrated system hashe
explored yet. This paper presents an automatic eegtion method based on the fused data of painidcand
imagery. The method automatically partitions thengcby taking into account spectral, spatial ardation
information of pixels. The segmented regions contaultiple cues of object, which can further be duéer

feature extraction. The experimental result showeg the combined segmentation is useful for bedEM

filtering and object classification than using dengource of data (Lidar or imagery).
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INTRODUCTION

During the last decade, airborne laser altimets/fd&come a promising method to capture digitaktiew data
effectively and accurately. In our text we use Li®ALight Detection And Ranging) as the abbreviafionthe
various laser altimetry methods. More and moreieafibns take advantage of the high accuracy paledense
sampling, and the high degree of automation thatli®in a quick delivery of products derived frtime raw laser
data (Schenk and Csatho, 2002). But because obthplexity the automatic data interpretation ardsbmetimes
low number of bare-earth points, LIDAR data’s falitomatic process meets great limits. (Sithole \dosiselman,
2004)

Photogrammetry and LIiDAR have their own advantagesdrawbacks for segmentation, DEM extraction and
feature extraction. It is interesting to note thame of the shortcomings of one method can be cosaped by
advantages the other method offers. Hence it maésent sense to fuse, or combine as you wishmétbeods. A
number of researches have shown the approachesnbfree data for DEM extraction and feature extaagte.g.,
LIiDAR and aerial image (Schenk and Csatho, 200)AR and three-line-scanner image (Nakagawa, Shibas
and Kagawa, 2002), LIDAR and high satellite ima@ed, 2003).

Advantages of data obtained from integrated semsae been mentioned in numerous studies yet, Spaipier
presents an automatic segmentation method basé#tedused data of point cloud and imagery. In teeord
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section we briefly discuss the advantages and disaages of the two kind of data for segmentatiod aur
motivation for the combined segmentation. In thedtection we depict our method for orienting tfieAR data
and the aerial images in to a common referenceefraamd then, we introduce two data fusion methaud a
occlusion problems. At last, we present an autansgiimentation method based on the fused datdnifghaud
and imagery.

BACKGROUND

In this section we briefly discuss the advantageksdisadvantages of the two kind of data for segatiem. We
also introduce a number of previous researchesanahotivation for the combined segmentation.

Segmentation and Previous Work

Segmentation of LIDAR data is to group points vgitinilar features into segments. In the field oétascanning
usually homogeneous regions (e.g. roof, squardaretEarth) are segmented. Many researches neetttifhute
information for DEM extraction and feature extranti therefore a number of segmentation algoritheng thbeen
developed, but they just based LiDAR data.

The first type of segmentations based on regiowigip These methods group points based on geomletric
relations of neighborhood like height, slope orvature difference. Lee and Schenk, 2001, introdueeethod
works on triangles and driven by a robust plartmdjt Filin (2002) proposed a method based on efirg} analysis.
Vosselman and Dijkman (2001) proposed Hough-transiton to detect planar roof surfaces within theegy
building boundaries.

Motivation for the Combined Segmentation

As is known to all, the results of the segmentagi@connected with the point cloud density. With Hensity,
the run of the process is easier, but the laclpetial and texture information makes difficult todf the segment
borders. With high density, the procedure is mamaglex and may produce too many small facets.

LIiDAR data provide high accurate 3D points but ldckaklines and texture information. On the comirar
optical imagery with high spatial resolution praeédmore accurate breaklines and texture informétiam LiDAR
data. By combining LIiDAR data and optical imagergstnof the disadvantages associated with eithehodetre
compensated.

CROSS SENSOR DATA REGISTRATION

Our fusion approach is also known as cross serataralignment or registration. That is to say weehi@
establish a common reference frame for LIDAR dai @erial imagery. It entails a transformationward and
backward, between sensor data and reference fralDAR point cloud is usually computed in the WGS84
reference frame. Hence it makes sense to refetbacgerial images to the WGS84 reference frame.thed we
can consider referencing aerial imagery to LiDARaasorientation problem. Fusion is important beeatisvill
affect the accuracy of segmentation. Schenk anth@sg2002) proposed a fusion method which usedémsor
invariant features to determine the relevant osigort parameters. We use their method to completdusion
process, the specific process can be found in &dgh Csatho, (2002).
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TWO MANNERS OF FUSED DATA GENERATION

From the discussion of the previous section we leatablished a common reference frame for LiDAR datd
aerial images. In this common reference, we caergés two kind fused data - imagery fused with eaimgage
re-sampled from point cloud and point cloud witkigised image pixel attributes.

Imagery Fused with Range I mage
In aerial photogrammetry, the collinearity equatias below form:
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Here, © % Y refers to the rotation matrng,xs’Ys'ZS) refers to the coordinate of perspective

center in object space coordinate systéﬁgv, y) refers to the coordinate of image point in imalga@ coordinate

f

system, refers to the principal distanﬁéx Y, 2)

refers to the coordinate in object space cooreiggstem of

Zs)

object space point corresponding to the image pdﬂntand (Xs,Ys, can be acquired from POS.

The formula above is a procedure from (iby) to 3D(>< Y, Z) , SO we need to assume an approximation

(X1,Y1)

for £0 in order to obtain(x’ y) from (X’Y’Z). Obtaining , we can get heightZl at point
(X3,Y3) from LiDAR data using bilinear interpolation metholhen calculate(XZ’YZ) by the formula (1).

lterative like this until the difference betweeft® and Xn-11Yn and Yn-1 20 and £n-1 in last two

calculation is small enough ( for example, 0.01) we take

X — Xn+Xn—1
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as the coordinate of the ground point corresponttirte image poin(tx’ y). Repeat the above steps and we can

add 3D coordinate information to every pixel in image. We can get the depth image depending aa tievery

pixel, as well. The result was showed in figure 1.
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Figure 1. The first one (from left to right) is the originaDAR point cloud, the second is the original imagand
the last depicts the range image.

Point Cloud with Assigned I mage Pixel Attributes
In aerial photogrammetry, the collinearity equati@s another form:

g Dal(X = Xs) +by(Y =Ys) +c(Z — Zs)

X =
as( X = Xs) +bs(Y = Ys) + ¢ci(Z - Zs)
__¢ Daz(X = Xs) +b:(Y =Ys) +c(Z - Z5)
as( X = Xs) +bs(Y —Ys) + coZ — Z3) H3
a a as
R=|b. b: bs

C. C. C . . . .
Here, t % 2 refers to the rotation matr»éxs’YS’ Zs) refers to the coordinate of perspective

center in object space coordinate systé?ﬁ’, y) refers to the coordinate of image point in imalga@ coordinate

s:ys.tem,f refers to the principal distanﬁéx Y,2) refers to the coordinate in object space coordiggstem of

object space point corresponding to the image pc%tand (%s,Ys, Zs) can be acquired from POS.

From formula (3), we know that it is an easy pracedrom 3D to 2D to add RGB information to eveipAR

point. At this moment, we just need to p(ﬁ(’Y’Z) of every LIDAR point, high accuracy POS and camera
parameter into formula (3) to obtain coordine(l)é’ y) in image space coordinate system correspondiegeny

LiDAR point. Then assign the (R, G, B) at cooaj'en(x’ y) in the image to the corresponding LIDAR point.

Figure 2 shows the result.
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Figure 2. Point cloud with assigned pixel attributes.

OCCLUSION PROBLEMSAND HOW TO SOLVEIT

With the improvement of image resolution and adearia LIDAR technology, the true orthophotos depelo
rapidly. Compared with the traditional orthophotite true orthophotos compensate the occludedopsertaused
by the sensor tilt and terrain relief. Since théstexce of height displacement, may make some LiOpbitits
invisible in the image. Before compensation, wedrteedetect these invisible points and the mostmonty used
method is z-Buffer algorithm proposed by Amharl€t1898). The z-Buffer method resolves the ambigaiising
from having more than one object point competinglie same image pixel. Among the competing olpeatts,
the point closest to the perspective center ofraage is considered to be visible, while the othaints are
considered to be invisible in that image.

In order to improve the speed, we achieved the ffeBualgorithm using depth-buffer in OpenGL. The
workflow is as follows:

1)  Build TIN OTriangulated Irregular Network

2)  Render TIN with polygon mode GL_FILL.

3) Read and store the depth value in the degffierb

Calculate the depth value of every point and comfiarith the value in depth-buffer to determineetiter the
point is visible.

Because vertexes and polygons are not rasterizeddotly the same way in OpenGL, the depth values
generated for pixels on a vertex are usually restime as the depth values for a polygon verteotder to ensure
the accuracy of the final judgments, we can enadilggon offset and render the point cloud betweep 8) and 3).
In addition, in order to save memory, we can partithe TIN into blocks after step 1) and procdssnt

block-by-block. Figure 3 shows the result.
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Figure 3. Original LIDAR data(the first one) and the resafter the elimination of invisible points.

COMBINED SEGMENTATION

Our segmentation method applied and describedvieseoriginal developed for terrestrial laser scamnlaga.
It is based on region growing and usesrtimearest neighbors of the points and their speidi@mation captured
from aerial imagery. Algorithm realization steps as follows:

1) Randomly select a seed point and establigied lsank (seed array);

2) Find the k-nearest neighbors of the curremidspoint as the candidate points. Check whether the
candidate point is to meet the specific criteree(below) one by one, if satisfied, put the candigaint to the seed
bank and marked as belonging to the current region;

3) If the seed bank is not empty, goes to stmfBerwise the growing procedure is complete.

In determining whether the candidate point is a seed point, we use all the points belonging toctireent
region (more than 3 points) to fit a plane, anihete the plane’s normal vector, the specific psscean be seen
in Roggero (2002). The criteria of determine whethe current candidate point is the seed poias ifollows:

- similarity of normal vectorsd ),

- distance of candidate point to the adjusting @@

- difference of current candidate point’s elevationl the region’s average elevatidg) (

- texture (see blow) differences. (

When a new point is accepted as the current relgoamat, the plane need to be calculated againhVigards
to the texture feature, the Local Binary Pattermt@st (LBP/C) distribution is chosen and approxedausing a
discrete two-dimensional histogram of size 25@bwhere b is set to 8. This texture descriptor praposed by
Ojala et al. (1996) and has shown great powendute discrimination and computation simplicity. \Yoan see a
detailed computational process in my previous @eXhe process is affected by 3 parametdi®; r, dz, t.

Our fused data can compensate for their shortcarang make full use of their advantages. In ouriGoed
segmentation algorithm which is based on multiplget data group points based on geometrical rektal
neighborhood (e.g., height, slope and plane veeatmi)spectral property captured from high resafuitioagery. A
result of the segmentation has been shown in figurdifferent segments are shown in different color
Homogeneous regions have been divided into theirldekes and different parts of the terrain hawentsplit at the

respective break lines.
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Figure4: Original laser scanning (above) data and segmentafilaser scanning data.
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