

LAS
Specification

Version 1.0
January 15, 2002

 2

LAS FORMAT DEFINITION:
The LAS file is intended to contain LIDAR point data records. The data will generally be put into
this format from software (provided by LIDAR hardware vendors) which combines GPS, IMU, and
laser pulse range data to produce X, Y, and Z point data. The intention of the data format is to
provide an open format which allows different LIDAR vendors to output data into a format which
a variety of LIDAR software vendors can use. Software that creates the LAS file will be referred
to as “generating software”, and software that reads and writes to the LAS file will be referred to
as “user software” within this specification.

The format contains binary data consisting of a header block, variable length records, and point
data. All data is in little-endian format. The header block consists of a public block followed by
variable length records. The public block contains generic data such as point numbers and
coordinate bounds. The variable length records contain variable types of data including
projection information, metadata, and user application data.

PUBLIC HEADER BLOCK
VARIABLE LENGTH RECORDS

POINT DATA

DATA TYPES:
char (1 byte)
unsigned char (1 byte)
short (2 bytes)
unsigned short (2 bytes)
long (4 bytes)
unsigned long (4 bytes)
double (8 byte IEEE floating point format)

PUBLIC HEADER BLOCK:
Item Format Size Required
File Signature (“LASF”) char[4] 4 bytes *
Reserved unsigned long 4 bytes
GUID data 1 unsigned long 4 bytes
GUID data 2 unsigned short 2 byte
GUID data 3 unsigned short 2 byte
GUID data 4 unsigned char[8] 8 bytes
Version Major unsigned char 1 byte *
Version Minor unsigned char 1 byte *
System Identifier char[32] 32 bytes *
Generating Software char[32] 32 bytes *
Flight Date Julian unsigned short 2 bytes
Year unsigned short 2 bytes
Header Size unsigned short 2 bytes *
Offset to data unsigned long 4 bytes *
Number of variable length records unsigned long 4 bytes *
Point Data Format ID (0-99 for spec) unsigned char 1 byte *
Point Data Record Length unsigned short 2 bytes *
Number of point records unsigned long 4 bytes *
Number of points by return unsigned long[5] 20 bytes *
X scale factor double 8 bytes *
Y scale factor double 8 bytes *

 3

Z scale factor double 8 bytes *
X offset double 8 bytes *
Y offset double 8 bytes *
Z offset double 8 bytes *
Max X double 8 bytes *
Min X double 8 bytes *
Max Y double 8 bytes *
Min Y double 8 bytes *
Max Z double 8 bytes *
Min Z double 8 bytes *

All data that is not required and not filled with data must be set to zeros.

File Signature: The file signature must contain the four characters “LASF”, and it is required by
the LAS specification. These four characters should be checked by user software to determine
valid LAS files.

Reserved: This data field is reserved, and must contain zeros unless otherwise specified by
subsequent LAS format specifications.

GUID data: The Globally Unique Identifier (GUID) data fields are not required by the LAS
specification (GUID data 1, GUID data 2, GUID data 3, and GUID data 4). The GUID data fields
are intended to provide space for uniquely identifying each file created. The GUIDs provide a
method of tracking individual files regardless of file names or directory structure.

Version Number: The version number is required by the LAS specification. The version number
consists of a major and minor field. The major and minor fields combine to form the number
that indicates the format number of the current specification itself. For example, specification
number 1.0 would be 1 in the major field and 0 in the minor field.

System ID: The system identifier field is populated by the generating software application. This
field provides a mechanism for specifying the actual hardware system which gathered the LIDAR
data. The system identifier itself should be provided by the hardware system vendor and
populated by the generating software. If the character data is less than 32 characters, the
remaining data must be null.

Generating Software: The “generating software” field is also populated by the generating
software. This information is ASCII data describing the generating software itself. This field
provides a mechanism for specifying which generating software package and version was used
during LAS file creation. If the character data is less than 16 characters, the remaining data
must be null.

Flight Date Julian: The julian day of the year that the data was collected. This field should be
populated by the generating software.

Year: The year in which the data was collected. This field should be populated by the
generating software.

Header Size: The header size field is the actual header block itself. This number is required, and
must be provided by the generating software. All software should read this header size number,
and regard that number as the header size in bytes. In the event that data is added to the
header, the header size field must be updated with the new header size. Generating software is

 4

the only type of software that is allowed by the specification to add data to the general header.
The variable length records should be used whenever possible to add data to the header, and not
to extend the general header. However, this specification allows for a general header to be
larger than the specified data structure. Therefore, the header size field must at all times contain
the exact size of the header itself. In the event a generating software package adds data to the
general header, this data must be placed at the end of the specified general header structure.

Offset to data: The offset to data field is the actual number of bytes from the beginning of the
file to the data itself including the two bytes for the data start signature. This data offset must
be updated if any software adds data from the general header or adds/removes data from the
variable length records. It is recommended that additional space be allocated to the variable
length header space, so that additional variable length data can be added after the initial data is
written. This space prevents the need to rewrite the file every time a variable length record is
added.

Number of variable length records: This field contains the current number of variable length
records. This number must be updated if the number of variable length records changes at any
time.

Point Data Format ID: The point data format ID corresponds to the point data record format
type.

Number of point records: This field contains the total number of point records within the file.

Number of points by return: This field contains an array of the total point records per return.
The first unsigned long value will be the total number of records from the first return, and the
second contains the total number for return two, and so forth up to five returns.

X, Y, and Z scale factors: The scale factor fields contain a double floating point value that is used
to scale the corresponding X, Y, and Z long values within the point records. The corresponding
X, Y, and Z scale factor must be multiplied by the X, Y, or Z point record value to get the actual
X, Y, or Z coordinate. For example, if the X, Y, and Z coordinates are intended to have two
decimal point values, then each scale factor will contain the number 0.01.

X, Y, and Z offset: The offset fields should be used to set the overall offset for the point records.
In general these numbers will be zero, but for certain cases the resolution of the point data may
not be large enough for a given projection system. However, it should always be assumed that
these numbers are used. So to scale a given X from the point record, take the point record X
multiplied by the X scale factor, and then add the X offset.
Xcoordinate = (Xrecord * Xscale) + Xoffset
Ycoordinate = (Yrecord * Yscale) + Yoffset

Zcoordinate = (Zrecord * Zscale) + Zoffset

Max and Min X, Y, Z: The max and min data fields are the actual file coordinate extents of the
LAS point file data.

The projection information for the point data is required for all data. The projection information
will be placed in the variable length records. Placing the projection information within the
variable length records allows for any projection to be defined including custom projections. The
GeoTiff specification http://www.remotesensing.org/geotiff/geotiff.html is the model for
representing the projection information, and the format will be explicitly defined by this
specification.

 5

VARIABLE LENGTH RECORDS:
Item Format Size Required
Record Signature (0xAABB) unsigned short 2 bytes *
User ID char[16] 16 bytes *
Record ID unsigned short 2 bytes *
Record Length After Header unsigned short 2 bytes *
Description char[32] 32 bytes

Record Signature: The record signature is a two byte data field that must contain 0xAABB. Note
that there may be other data within the file that has 0xAABB as its data.

User ID: The user ID field is ASCII character data that identifies the user which created the
variable length record. It is possible to many variable length records from different sources with
different user Ids. If the character data is less than 16 characters, the remaining data must be
null. The user ID must be registered with the LAS specification managing body. The
management of these Ids insures that no two individuals accidentally use the same ID. The
specification will initially use two Ids. One for globally specified records (LASF_Spec), and
another for projection types (LASF_Projection).

Record ID: The record ID is dependent upon the User ID. There can be 0 to 65535 record Ids
for every User ID. The LAS specification will manage its own record Ids (User Ids owned by the
specification), otherwise record Ids will be managed by the owner of the given User ID. So each
User ID is allowed to assign 0 to 65535 record Ids as they wish. Publicizing the meaning of a
given record ID will be left to the owner of the given User ID. Unknown User ID/Record ID
combinations should be ignored.

Record Length after Header: The record length is the number of bytes for the record after the
end of the standard part of the header.

Description: Optional null terminated text description of the data. Any remaining characters not
used must be null.

Point Data Start Signature:
Two bytes after the last variable length record, and before the point data
0xCCDD

POINT DATA RECORD FORMAT 0:
Item Format Size Required
X long 4 bytes *
Y long 4 bytes *
Z long 4 bytes *
Intensity unsigned short 2 bytes
Return Number 3 bits 3 bits *
Number of Returns (given pulse) 3 bits 3 bits *
Scan Direction Flag 1 bit 1 bit *
Edge of Flight Line 1 bit 1 bit *
Classification unsigned char 1 byte
Scan Angle Rank (-90 to +90) – Left side char 1 byte *
File Marker unsigned char 1 byte
User Bit Field unsigned short 2 bytes

 6

X, Y, and Z: The X, Y, and Z values are stored as long integers. The corresponding X scale, Y
scale, and Z scale values from the public header block change these long integers to their true
floating point values. The corresponding offset values can also be used for projections with very
large numbers.

Intensity: The intensity value is the integer representation of the pulse return magnitude. This
value is optional and system specific.

Return Number: The return number is the pulse return number for a given output pulse. A
given output laser pulse can have many returns, and they must be marked in sequence of return.
The first return will have a return number of one, the second a return number of two, and so on
up to five returns.

Number of Returns (given pulse): The number of returns is the total number of returns for a
given pulse. So a laser data point may be return two (return number) with a total number of five
returns.

Scan Direction Flag: The scan direction flag denotes the direction at which the scanner mirror
was traveling at the time of the output pulse. A bit value of 1 is a positive scan direction, and a
bit value of 0 is a negative scan direction.

Edge of Flight Line: The edge of flight line data bit has a value of 1 only when the point is at the
end of a scan. It is the last point on a given scan line before it changes direction.

Classification: The classification field is a number to signify a given classification during filter
processing. The LAS specification has a public list of classifications which shall be used when
mixing vendor specific user software.

Scan Angle Rank: The scan angle rank is a signed one-byte number. The scan angle rank is the
angle at which the laser point was output from the laser system including the roll of the aircraft.
The scan angle is within 1 degree of accuracy from +90 to –90 degrees. The scan angle is an
angle based on 0 degrees being NADIR, and –90 degrees to the left side of the aircraft in the
direction of flight.

File Marker: The file marker is an optional field that should be used in conjunction with the
variable length records. The file marker allows for the LAS flight-line based files to be combined
into single files with more than one flight-line. The actual original flight-line should be tracked in
the variable length records, so that individual flight lines can be separated from a given combined
file.

User Bit Field: A bit field that is to be used at the users discretion.

Other point data formats must be derived from the “Point Data 0” structure with the additional
data added thereafter.

POINT DATA RECORD FORMAT 1:
Item Format Size Required
X long 4 bytes *
Y long 4 bytes *
Z long 4 bytes *
Intensity unsigned short 2 bytes
Return Number 3 bits 3 bits *
Number of Returns (given pulse) 3 bits 3 bits *

 7

Scan Direction Flag 1 bit 1 bit *
Edge of Flight Line 1 bit 1 bit *
Classification unsigned char 1 byte
Scan Angle Rank (-90 to +90) – Left side unsigned char 1 byte *
File Marker unsigned char 1 byte
User Bit Field unsigned short 2 bytes
GPS Time double 8 bytes *

GPS Time: The GPS time is the double floating point time tag value at which the point was
acquired.

DEFINED VARIABLE LENGTH RECORDS:
Georeferencing Information

Georeferencing for the LAS format will use the same robust mechanism that was developed for
the GeoTIFF standard. The variable length header records section will contain the same data
that would be contained in the GeoTIFF key tags of a TIFF file. With this approach, any vendor
that has existing code to interpret the coordinate system information from GeoTIFF tags can
simply feed the software with the information taken from the LAS file header. Since LAS is not a
raster format and each point contains its own absolute location information, only 3 of the 6
GeoTIFF tags are necessary. The ModelTiePointTag (33922), ModelPixelScaleTag (33550), and
ModelTransformationTag (34264) records can be excluded. The GeoKeyDirectoryTag (34735),
GeoDoubleParamsTag (34736), and GeoASCIIParamsTag (34737) records will be used.

Only the GeoKeyDirectoryTag record is required. The GeoDoubleParamsTag and
GeoASCIIParamsTag records may or may not be present, depending on the content of the
GeoKeyDirectoryTag record.

GeoKeyDirectoryTag Record
User ID: LASF_Projection
Record ID: 34735

This record contains the key values that define the coordinate system. A complete description
can be found in the GeoTIFF format specification. Here is a summary from a programmatic point
of view for someone interested in implemention.

The GeoKeyDirectoryTag is defined as just an array of unsigned short values. But,
programmatically, the data can be seen as something like this:

struct sGeoKeys
{
 unsigned short wKeyDirectoryVersion;
 unsigned short wKeyRevision;
 unsigned short wMinorRevision;
 unsigned short wNumberOfKeys;
 struct sKeyEntry
 {
 unsigned short wKeyID;
 unsigned short wTIFFTagLocation;
 unsigned short wCount;
 unsigned short wValue_Offset;
 } pKey[1];

 8

};

Where:
wKeyDirectoryVersion = 1; // Always
wKeyRevision = 1; // Always
wMinorRevision = 0; // Always
wNumberOfKeys // Number of sets of 4 unsigned shorts to follow

For each set of 4 unsigned shorts:
wKeyID Defined key ID for each piece of GeoTIFF data. IDs contained in the

GeoTIFF specification.
wTIFFTagLocation Indicates where the data for this key is located:

0 means data is in the wValue_Offset field as an unsigned short

34736 means the data is located at index wValue_Offset of the
GeoDoubleParamsTag record.

34767 means the data is located at index wValue_Offset of the
GeoAsciiParamsTag record.

wCount Number of characters in string for values of GeoAsciiParamsTag ,
otherwise is 1

wValue_Offset Contents vary depending on value for wTIFFTagLocation above

GeoDoubleParamsTag Record
User ID: LASF_Projection
Record ID: 34736
This record is simply an array of doubles that contain values referenced by tag sets in the
GeoKeyDirectoryTag record.

GeoASCIIParamsTag Record
User ID: LASF_Projection
Record ID: 34737
This record is simply an array of ascii data. It contains many strings separated by null terminator
characters which are referenced by position from data in the GeoKeyDirectoryTag record.

Classification lookup
User ID: LASF_Spec
Record ID: 0
Length: 256 recs X 16 byte struct len
struct CLASSIFICATION
{
 unsigned char ClassNumber;
 char Description[15];
};

Header lookup for flight-lines
User ID: LASF_Spec
Record ID: 1
Length: 256 recs X struct len

 9

Struct FLIGHTLINE
{
 unsigned char FileMarkerNumber;
 char Filename[256];
};

Histogram
User ID: LASF_Spec
Record ID: 2

Text area description
User ID: LASF_Spec
Record ID: 3

