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ABSTRACT

This research focuses on the very first step inathalysis of an image, the point at which one assuno prior
knowledge about the statistical characteristicthefpixels in the image and where little or nothisidggnown about
the size and shape of the objects to be detectestefore, the only available option is to look &point (or group
of points) that deviates so much from other poedsto arouse suspicion that it was generated bifferat

mechanism. This project does that by looking foe-dimensional projection (projection pursuit) opiimg some
measurement of interest (index). Following workfpemed by the authors in visualization techniquasanomaly
detection combining low components of PCA and RYo(&o and Malpica, 2009), this work analyzes andmgares
index skewness and kurtosis with the popular RX¢xd he optimization for the plane projection isfpemed with

a genetic algorithm. These indexes are tested rithsiic image and in AHS hyperspectral imagery. Thgent
project shows how these indexes have their pragsednd characteristics and how they are superiBiXtan many
ways. Further, the authors proposed visualizateohriiques for anomaly detection combining the dbiffieindexes.
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INTRODUCTION

Remote sensing uses a variety of sensors onbotaititess These sensors employ several bands arel lteen
used in various fields including cartography, ggglohydrology, and urban planning. Some good refms for
information on remote sensing are Lillesand ef24107), Jensen (2006), and Campbell (2008), amthey

Hyperspectral imaging scans multiple regions ofdleetromagnetic spectrum to determine featurastefest in a
remote scene. Since hyperspectral images havege tamber of bands, the feature space has a higimsionality.
Efficiently processing the huge amount of dataemdd by hyperspectral sensors is one of the cigalteof working
with this type of imagery.

Our work focuses on the detection of anomalieschvtdare considered targets (objects or materialbpser
signatures are spectrally distinct from their backgd, with no a priori knowledge of the targetwestral signature.
Anomalies are important features of special intetesimage analysts in their daily routines. Metblodies and
algorithms are needed to identify these atypicaluies, thereby allowing image analysts to decidetier to retain
them as interesting information or whether to éfpshem as worthless information, probably nosed remove them.
We consider the detection of anomalies in hypetsaldmages as equivalent to detecting outliethénfeature space.
For the purposes of this paper, the teamsmalies andoutliers are used synonymously, although usually the word
anomaly belongs to the remote sensing domain while thelwattier belongs to the statistical domain.
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MATERIAL

The experiment was performed on two types of imagersynthetic image and an image of a real scEhe.
synthetic image was made using two classes gedeveth a random Gaussian distribution using sixdsaand
250x250 pixels. The classes were relatively close t&emia possible to see the method’'s potential foonaaly
detection. One of the classes was small and hitidéye spectral bands (Figure 1).

projection 3,4,5 projection 0,1,2

Figure 1. The synthetic image is created with six bands aodctusters generated by a Gaussian distributiba.tivo

images on the left show two projections from adiirensional space into three-dimensional spacefarr® 4, and 5

bands; the other for 0, 1, and 2 bands. The rigiglgshows the synthetic image where the 5, 13drahds represent
the RGB.

The actual scene is one of airborne hyperspeatadeéry acquired with the sensor Airborne HyperspeStanner
(AHS). The AHS, an airborne scanner of the whiskbraype with 80 bands in the electromagnetic spettwas
acquired by the Spanish National Institute for Apare Technology, INTA (Instituto Nacional de Téani
Aeroespacial). The AHS image used here was obtainelflay 2006. This dataset was taken at a height
approximately 1300 m, with 2700 m cross-track afickrh along-track, and a resolution of approximagly m. The
experiment was performed on the original radiarate,dand no correction was performed. The imadégare 2 was
made using bands 2, 18, and 44 for the red, gm®hblue colors, respectively. The size of the enmsg262x 249
pixels.

The imagery used in our experiment is of a rur, $t| Escorial, a location near Madrid. In our lgsia we
consider only two classes, background and certain-mmade targets. Our analysis aims to distingdiehidtter from
many sources of background variation, such astfdiashes, roads, bare soil, rocks, and other alatbjects. Before
the flight took place, several plots of land atBSicorial were prepared with different types of tigahnd diseased
vegetation. The algorithms developed in this suslyraw data. When the flight was planned, they pduscientists and
technicians were not aware of any buildings ingheounding area, as these did not appear in thegcaphic map
used. These constructions were discovered onlytateflight took place and after we studied thages. Other objects
were present in the survey area at the time oflitiig, such as the two cars that took the reseascto the field, some
mats of synthetic fabric, and two panels and aectesed to measure canopy reflectance taken asstasgthe detection
algorithm, since these objects are man-made objeatsatural background. The scene is ideal foistbdy of anomaly
detection; we have a hyperspectral image with knavem-made objects, but it is not possible to ideritiese by
merely looking at the image.
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Figure 2. The AHS imagery of the El Escorial site. The RGRga on the left was obtained from AHS imagery
with bands 2, 18, and 44, respectively. The imadkearight corresponds to an aerial image of #mesarea taken
at another time, with the targets drawn in. Thesgets are difficult to make out in the AHS imag¢he top,
especially the cars, crane, and metallic panel.

In the picture on the right of Figure 2, the objgelshve been drawn on an aerial image from andight.fin the
AHS image, at the left of Figure 2, these objeetsnot be recognized because they are too smatédaresolution of
the image.

METHODS

RX

Several methods have been used for anomaly deteelibough the first one to be developed and diqudar
interest to us is that of Reed and Yu (1990), reteto as the RX detector, after the initials sfatoponents, Reed and
Xiaoli Yu. It is a widely used anomaly detector faultispectral and hyperspectral images (Yu etl#l97). The RX
algorithm is a likelihood ratio detector based oahdlanobis distance. It is the normalized diffeecbetween the value
of the test pixel and the mean of the background

O (X) = ()ﬁ(_[’)t Yo (X=H)
where X is the pixel spectral vectop, is the mean spectral vector for the area of isteid the number of spectral
bands, an& is the covariance matrix. The Mahalanobis distdaagsed to calculate how far each point is from th
center of the cloud formed by the rest of the gixahd the shape of the cloud is taken into acdbumtighX. The mean
is obtained by considering only a window aroundgixel being examined, not the whole image, byirstjdhis window
over every spectral pixel and calculating the nwfahe spectral pixels falling within the windowhd& algorithm returns
a matrix of confidence for each pixel. If confideris greater than a defined threshold, then thel pbis taken as an
anomaly.

Projection pursuit. Projection pursuit refers to a method that tries to maximize somesmrezof “interestingness™
called an index, and for this it uses one or mioesal combinations of the original features. Thengetric intuition tells
us that the n-dimensional space of features canthted and that the first few dimensions of thatea space are then
retained.

In our work the measure of interestingness willgbeen for a structure where it is easy to makeaulkiers. We
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have used projection pursuit to project from thdtidimensional space of feature space to one dilpenene straight
line, such as the skewness (positive or negativeluotosis is maximized. The values of this prdctcan be
represented as a gray level image.

We will first review skewness and kurtosis as iatkd by the following equation:

1 x -mean :
Skewness ;Z('—j (1)

=0 \ v/ variance

Skewness measures the asymmetry of a distribution; if tkensess is different from zero, then that distidouis
asymmetrical, whereas normal distributions are gotlf symmetrical, and its skewness is zero. A tiegaskew
indicates that the tail on the left side of thelyataility density function is longer than the tail the right side, and the
bulk of the values (including the median) lieshe tight of the mean. When the tail on the rigtiess longer than that
of the left side and the bulk of the values liethi®left of the mean, a positive skew occurs. Wherskew is zero, the
values are relatively evenly distributed on botttesi of the mean, but this is not necessarily imgha symmetric
distribution.

The following graphs reveal three distributionshwdifferent skewness (Figure 3).
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Figure 3. Skewness for different distributions.

The kurtosis is given by the equation:

1 %2y, -mean\’
Kurtosis :—Z - -
=0 variance
Kurtosis is a measure of a distribution’s peak. If the dsig clearly differs from zero, then the distributis either
flatter or more peaked than normal; the kurtosighefnormal distribution is zero, and it is calfeesokurtic. Kurtosis is
a measure of how extreme observations are in asgatarhe greater the kurtosis coefficient, the erjpeaked the
distribution around the mean.

)
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Figure 4.Kurtosis for different distributions.

Genetic algorithm. Now the problem is to find the maximum or minimuifrtlee index, since there is no known
analytical procedure to do the optimization; theref we use a Genetic Algorithm (GA) to optimizerth Stochastic
global search methods, GAs generate solutionstimization problems using techniques inspired bgleon, such as
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survival of the fittest, using operators borroweahf natural genetics, such as mutation and crosséves differ from
traditional search and optimization methods in ttiety do not require derivative information, usehabilistic
transition rules, and work on encoding the paranseterather than in the parameter set itself. Mietail about genetic
algorithms can be found in Golberg (1989) and nwthgr sources.

We have optimized the skewness (Equation 1) withpibsitive sign (that we will call SP) and with thegative
sign (SN). We have also minimized Kurtosis (KN) Eguation 2, or what equals minimizing:

_ 4
Ni X; - mean
o \ W variance

This signifies obtaining the most platykurtic distrtion possible or getting the most rounded peake possiblevith
skinny tails (Figure 4).

Because the GA is a stochastic search method,diffisult to formally specify convergence and témation
criteria. For a number of iterations the optimdlSon may remain static before a superior optis@ution is found.
We have found that within 100 iterations the aloni finds acceptable solutions.

RESULTS WITH SINTECTIC IMAGE

The experiment was performed on the synthetic inad@égure 1 by applying RX, SP, SN, and KN methods

@ (b) © (d)

Figure 5. Results of applying RX (a), SP (b), SN (c), and ¢I\Nto the synthetic image of Figure 1.

Figure 5(a) shows the results of applying RX to #iyathetic image of Figure 1. The degree of deiacts
represented by the brightness value; althoughencise of Figure 5(b), the darker pixels repreentdetection by
minimizing the positive skewness. Minimizing SP &id gave opposite values since one is the oppafsitee other (as
explained above). The kurtosis also gave goodtseasican be seen in Figure 5.

Using the naked eye, one cannot determine whidrittigh has performed the best detection; the oelgraesult
is that RX has performed less satisfactorily tham other three. To do this we have utilized recetyeerating
characteristics (ROC) analysis. Such ROC graphss®til for organizing classifiers and visualizthgir performance.
The ROC provides a probability of detection vespsobability of false alarm curve (Fawcett, 2006).

As can be observed in Figure 6 the three—SN, StP Kdir—perform better than RX for a small range (lesw
0.0 and 0.2) of false alarms, and SP, SN, and Kkkwinilarly. Some authors take the area underRBX curve
(AUROC) as a measurement of the model's accura@sifiér and Lemeshow, 2000). The area is a measure of
discrimination, that is, the ability of the techmixjto classify those pixels correctly with and withsome probability of
belonging to the target. This threshold-independenstisure of discrimination between both classesstalalues
between 0.5 (no discrimination) and 1 (perfectritisioation). Therefore, the closer the ROC plotaghe upper left
corner, the higher the overall accuracy of the tstarea of 1 represents a perfect test and ancdr@.5 represents a
worthless test. A rough guide for knowing the aacyrof a classifier is 0.5-0.6 for a fail, 0.6—7 poor, 0.7-0.8 for
fair, 0.8-0.9 for good, and 0.9-1 for excellente®rea corresponding to the RX algorithm is 0.98688%le for both
the SN and the SP it is 0.99990, and for the K #lmost the same at 0.99985. This indicates yhigh predictive
capacity for the three projection pursuit modetstifiis synthetic image. Table 1 allows us to seedifference between
the methods from the point at which the ROC cuaresconstructed (Figure 6). The ROC curve for tNeaBd SP are
quite similar and better than the ROC curve forhe while the RX has the poorest ROC curve.
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Table 1. Quantitative details of probability of detction (first column) versus probability of false déarm
(second column) for each detector

RX SP SN KN
0,000000| 0,00000( 0,000000 0,056766 0,000000 3035 0,000000 0,07877[7
0,000000( 0,00000 0,000000 0,130925 0,000000 4882 0,000000 0,167556
0,000000{ 0,00000( 0,000000 0,248593 0,000000 903 0,000000 0,302730
0,000000( 0,00000 0,000000 0,406611 0,000000 50389 0,000000 0,471697
0,000000| 0,00000( 0,000000 0,584540 0,000000 3a4&y 0,000000 0,646452
0,000000( 0,00000 0,000000 0,744048 0,000000 50338 0,000000 0,79377[7
0,000000| 0,00000( 0,000000 0,864939 0,000000 86385 0,000000 0,89826[7
0,000000( 0,00000 0,000000 0,939034 0,000000 56/B 0,000000 0,956780
0,000000| 0,00000( 0,000000 0,977092 0,000000 50@Y 0,000000 0,98475¢4
0,000000( 0,00000 0,000000 0,992946 0,000000 262D 0,008264 0,99591p
0,000000| 0,149137 0,008264 0,998269 0,008264 8049 0,016529 0,998990
0,000000| 0,756344 0,049587 0,999663 0,041322 963® 0,066116 0,999840
0,049587| 0,960227 0,115702 0,999936 0,107438 90.3® 0,198347 0,999984
0,280992| 0,995479 0,314050 0,999984 0,297521 9089 0,38843(0 0,999984
0,611570| 0,999423 0,537190 0,999984 0,495868 9039 0,619835 0,999984
0,776860( 0,999952 0,685950 1,000000 0,685950 00@D 0,760331 1,000000
0,900826| 1,00000( 0,842975 1,000000 0,842075 00D 0,884298§ 1,000000
0,942149| 1,00000 0,933884 1,000000 0,933884 00@D 0,942149 1,000000
0,983471| 1,00000( 0,975207 1,000000 0,9660942 00D 0,975207 1,000000
0,991736| 1,00000 0,991736 1,000000 0,991736 00@D 0,991736 1,000000
g.s
g 0.2
N I;fzobab?lﬁy of Df;lse aﬂi;rm h
1,000 W o —i
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Figure 6. The ROC curves for the RX algorithms with the sgtithimage; the graph represents the probability of
detection versus the probability of false alarnise €urve for the SP, SN, and RP cannot be seendmeitas
confounded with the frame of the graph (above)o®et the zoom graph, where it can be distinguished
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RESULTS WITH THE REAL IMAGE

Some authors have shown (Eisman et al. 1995; Malpical. 2008) that hyperspectral imagery could imid
discriminating between natural and man-made obj#atsspectral characteristics of one class diffesignificant ways
from the spectral characteristics of the other.

Figure 7. Original image and detection results with RX, SR, BN, respectively.

The degree of detection is represented by the lgrag}l of the result layer of the corresponding &thm. The
pixels with the highest value occur in the pataimied by the two cars. If the first few pixels witigher, brighter values
are taken, then the cars, the metallic panel antksof the buildings are detected. Figure 7 showsréisults of
algorithms RX, SP, SN, and KN, applying a threstaalfistments or brightness tuning, this threshiotdvs the outliers
that better represent each algorithm (Figure 7)caksbe observed, all the algorithms have detentadmade objects.

CONCLUSIONS

This paper has presented new indexes for projeptimsuit for anomaly detection in hyperspectralgerg. The
main objective was to seek a projection that diffedsfrom the main body of the distribution usitige tails of the
distribution for detecting outliers.

The RX detector is prone to high false alarms beedhe local Gaussian assumption is largely inateun real
data. However, the indexes proposed and used snsthidy—based in statistical moments—do not stiften this
problem; therefore they find outliers not foundm¥. In that sense they are superior to RX.

The behavior of the different indexes is cohereit e theoretical interpretation for each of thée, skewness
with its asymmetry provides the outlier to the &fthe right of the distribution, and the kurtosiéen it is rolled down
by the optimization effect of the genetic algoritbrposes the outliers.

We can say that no unique index in projection pguiserves best for all cases; each one has itsntayes and
disadvantages depending on the data and the typatlars to be detected. Therefore, the authamsmenend using a
combination of all possible indexes and procedunejding RX, in the search for outliers.
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