

Ride on the Geospatial Revolution

ASPRS 2011 Annual Conference Milwaukee, Wisconsin, May 1-5

DIGITALGLOBE

Coastal Applications of WorldView-2 High Resolution Multi-Spectral Imagery

G. Marchisio, G. Miecznik, F. Pacifici, C. Padwick

Overview

- Information content of WV-2 bands, as applicable to bathymetric retrievals
 - Spectral characterization of WV-2 MS bands
 - Qualitative assessment of WV-2 MS bands
- More that one approach to optical bathymetry
 - Machine learning approach (mono imagery)
 - Rigorous radiative-transfer modeling combined with Bayesian error estimation (mono imagery)
 - Photogrammetric techniques (stereo imagery)
- Will answer the following questions:
 - How accurate?
 - How deep?
 - Which bands?
 - What about sea floor reflectivity?
- Conclusions

DIGITALGLOBE Spectral Response Comparison with Quickbird

Wavelength (nm)

DIGITALGLOBE Information content in shallow water imagery

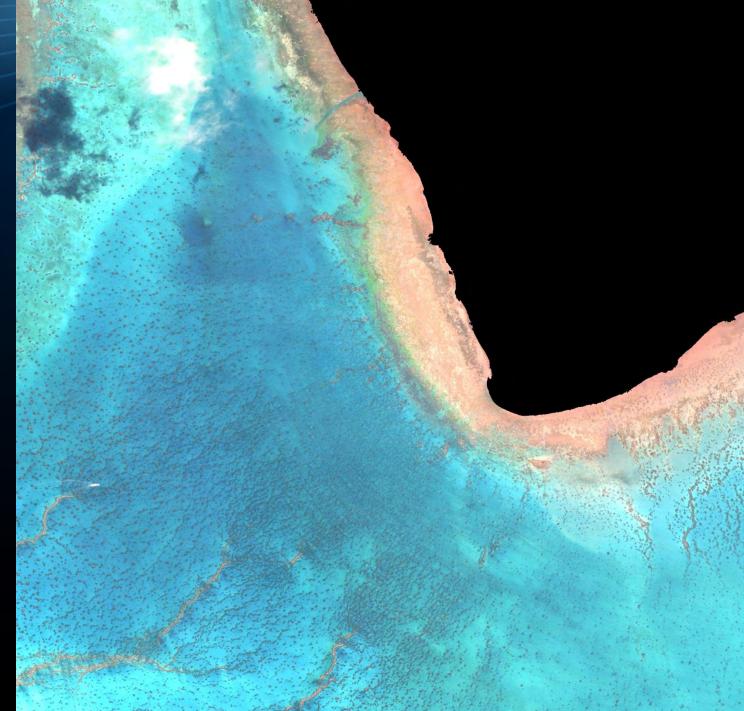
 The following sequences of slides illustrate qualitatively how the combination of:

- » Broader spectral coverage
- » Continuous spectral coverage
- » Sharper spectral channels

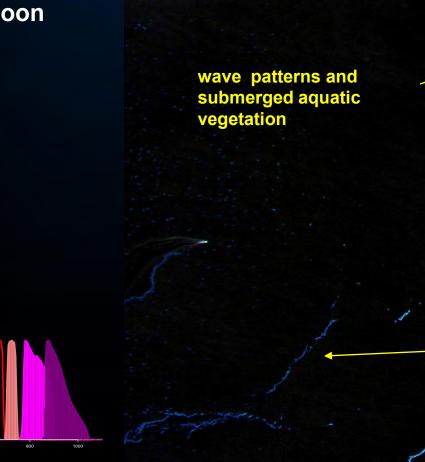
available in WorldView-2 provide a finer level of spectral penetration than is otherwise achievable with traditional VNIR sensors

• We show this progressive transition at different locations

WorldView-2 First Images 4 band 2m Image

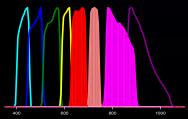

November 23, 2009

WorldView-2 First Images 4 band 2m Image


November 23, 2009

WorldView-2 First Images RE, NIR1, NIR2 2m Image November 23, 2009

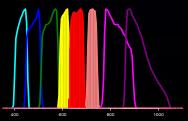
> Aitutaki Lagoon

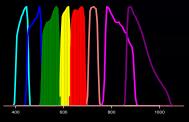


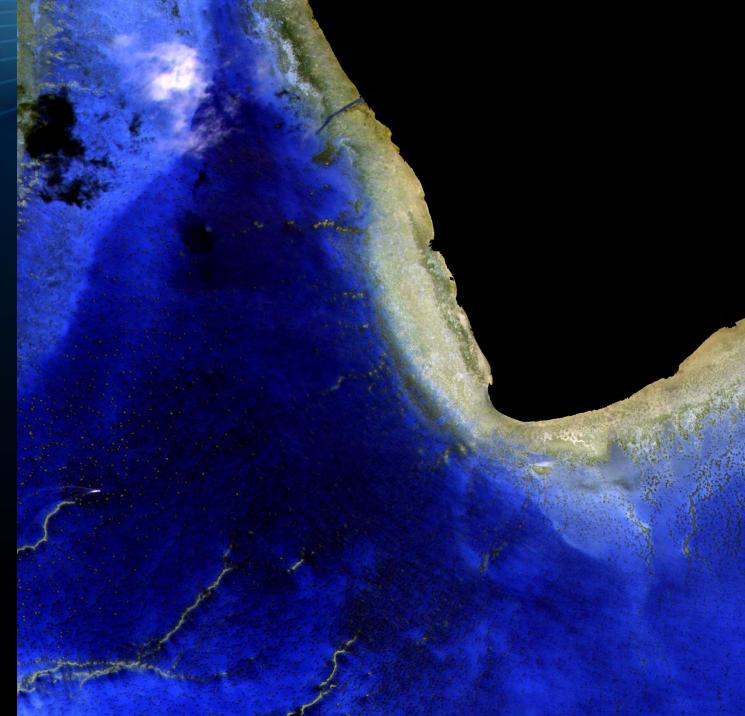
linear reefs

WorldView-2 First Images R, RE, NIR1 2m Image November 23, 2009

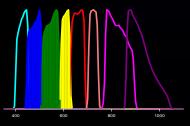
> Aitutaki Lagoon

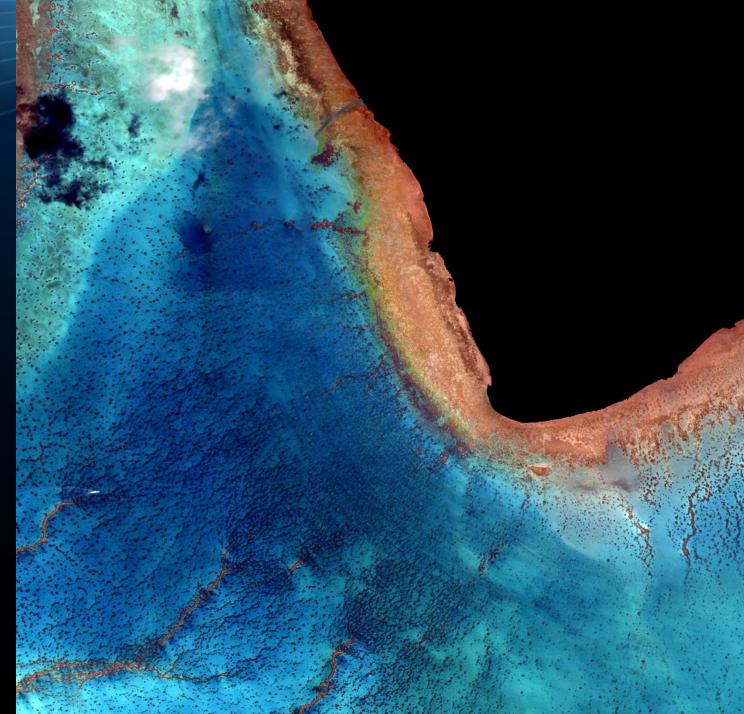

> > submerged aquatic vegetation

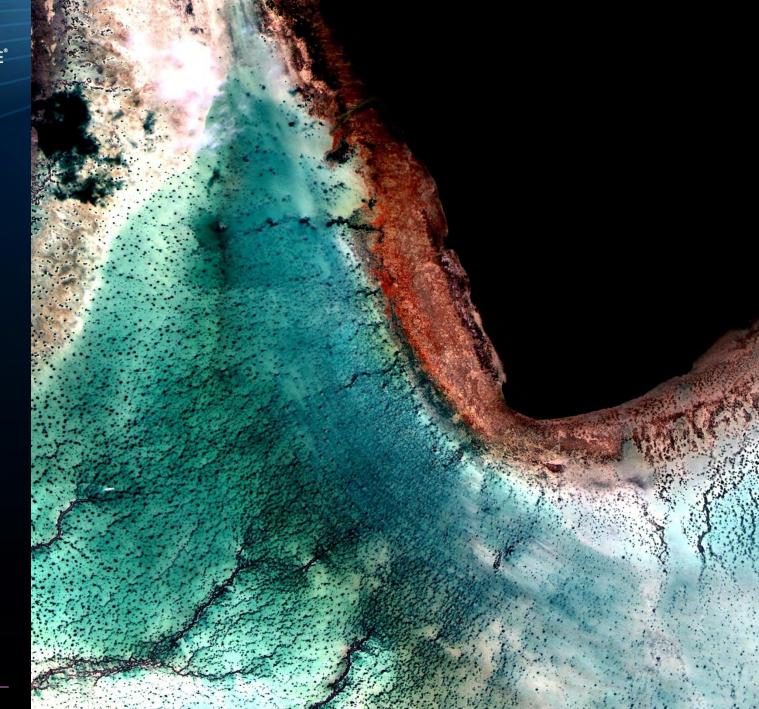

WorldView-2 First Images Y, R, RE 2m Image November 23, 2009

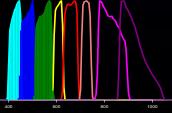

> Aitutaki Lagoon

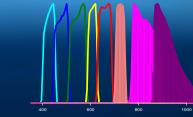
> > submerged aquatic vegetation

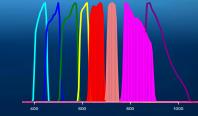



WorldView-2 First Images G, Y, R 2m Image November 23, 2009

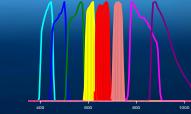


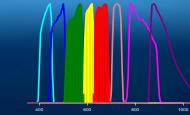

WorldView-2 First Images B, G, Y 2m Image November 23, 2009

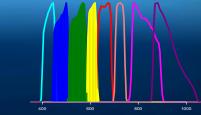

WorldView-2 First Images C, B, G 2m Image November 23, 2009

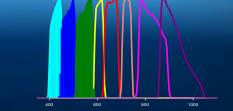

-

WorldView-2 ^{2m Image} LSR Dec 26, 2010

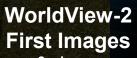



Copyright, DigitalGlobe, 2010



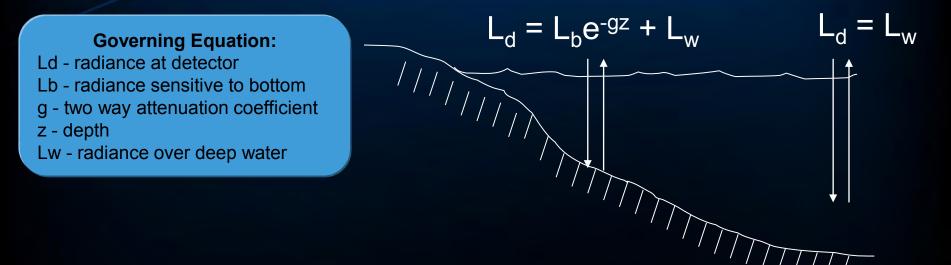




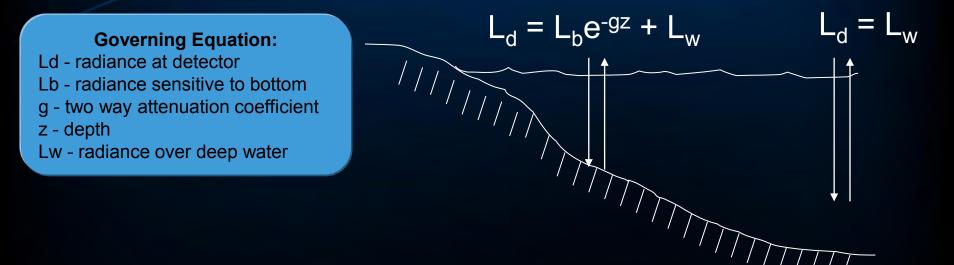


First Images ^{2m Image} November 28, 2009

600


First Images ^{2m Image} November 28, 2009

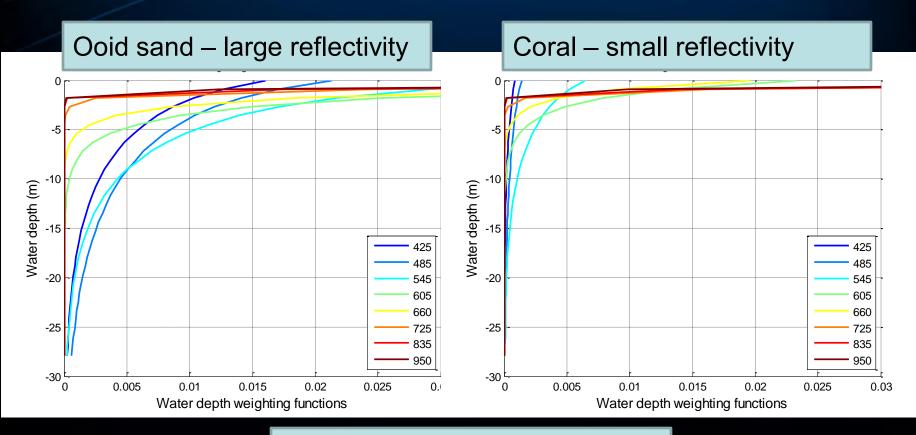
-


DIGITALGLOBE Bathymetry Using Worldview2 Spectral Bands

Source: Lyzenga, 1978, Applied Optics. 17:379-383, and generalized by Philpot, 1989, Applied Optics. 28:1569-1578.

- Water absorptivity varies spectrally from band to band
- As the depth increases, the reflected irradiance decreases faster in the highabsorptivity spectral band (e.g. green band) than in the low-absorptivity band (e.g. blue band)

DIGITALGLOBE Bathymetry Using Worldview2 Spectral Bands



Source: Lyzenga, 1978, Applied Optics. 17:379-383, and generalized by Philpot, 1989, Applied Optics. 28:1569-1578.

Observed spectrum is a function of:

- 1. water depth
- 2. bottom reflectance spectra
- 3. water column inherent
 - optical properties (IOPs)
- 4. viewing geometry

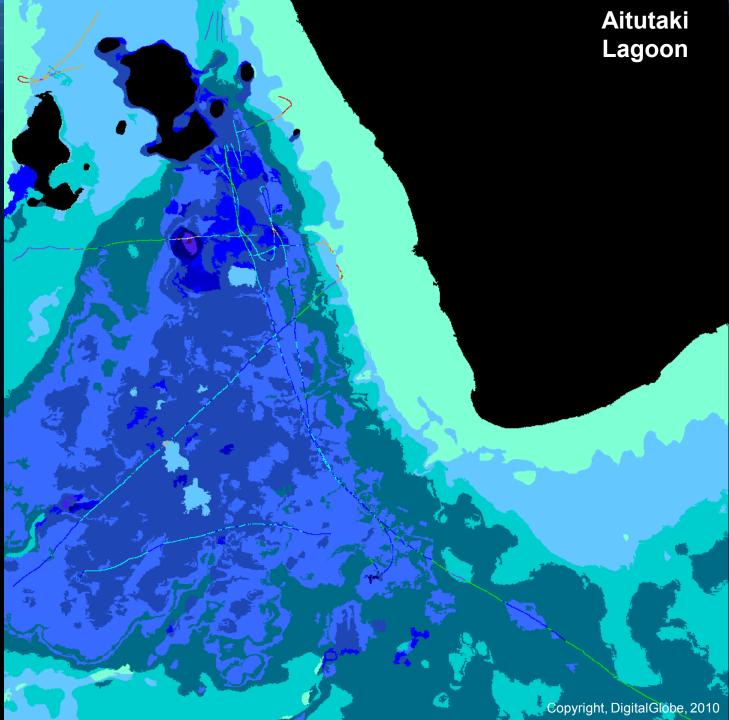
Sensitivity of WV02 bands to seafloor type

Sensor right above the water surface Clear water 1m/s wind speed

Generated from lookup tables provided by Anthony Vodacek, Rochester Institute of Technology

Machine Learning Assessment of Worldview2 Potential for Bathymetry Studies

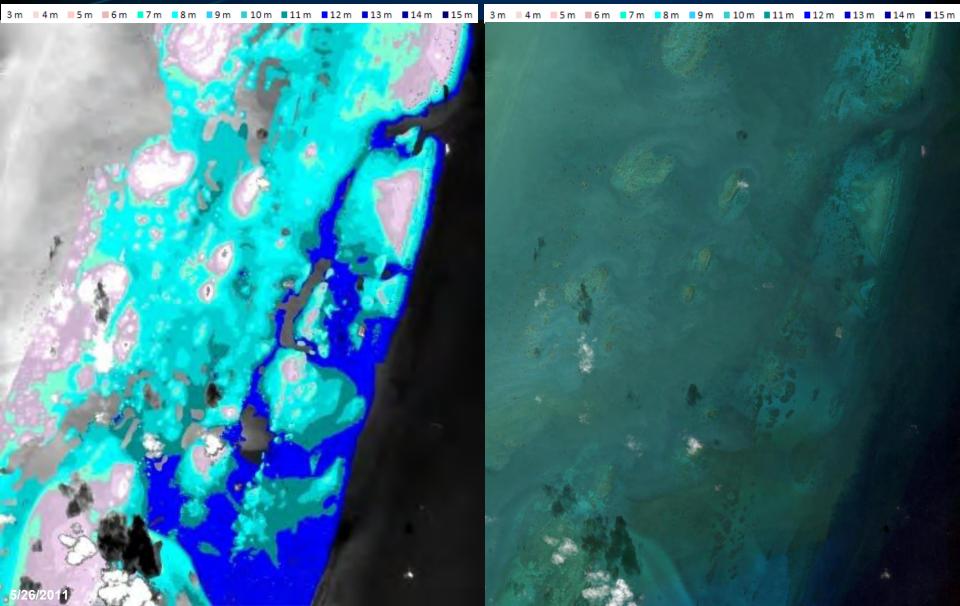
- Input a stack of WV-2 spectral features:
 - Converted radiance values from the 8 WV-2 bands
 - 28 unique pairs of NDVI-style band ratios computed from the above
- Apply supervised machine learning methods:
 - Logistic Regression
 - Classification Trees with k-fold Cross-Validation
 - Tree Ensembles
 - Neural Networks
- Train and validate on independent ground truth
- Generate confusion matrices
- Perform predictor ranking


WorldView-2 First Images natural color 2m Image November 23, 2009

WV2 Bathymetry with GT

land
shadow
cloud
01m
02m
03m
04m
05m
06m
07m
08m
09m
10m
11m

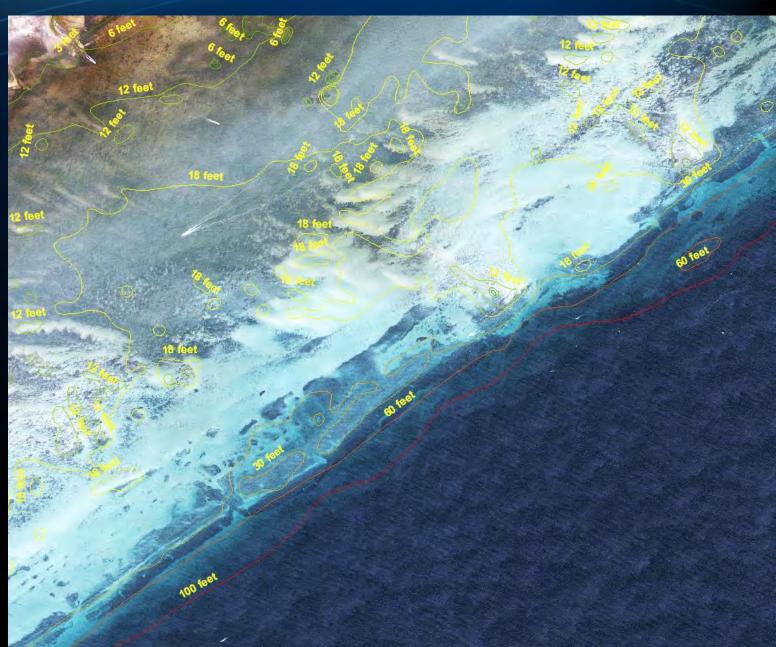
Classification Agreement


DIGITALGLOBE

	01m	02m	03m	04m	05m	06m	07m	08m	09m	10m	11m	Acc(%)	Acc[1 m]
01m	105	14	0	0	0	0	0	0	0	0	0	88.24%	100.00%
02m	1	317	24	2	3	4	0	0	0	0	0	90.31%	97.44%
03m	0	5	357	38	2	0	0	0	0	0	0	88.81%	99.50%
04m	0	0	10	594	200	3	0	0	0	0	0	73.61%	99.63%
05m	0	0	0	72	1172	201	2	0	0	0	0	81.00%	99.86%
06m	0	0	1	6	179	1041	14	0	0	0	0	83.88%	99.44%
07m	0	0	0	0	7	146	289	0	0	0	0	65.38%	98.42%
08m	0	0	0	0	0	8	21	22	0	0	0	43.14%	84.31%
09m	0	0	0	0	0	0	0	0	23	0	0	100.00%	100.00%
10m	0	0	0	0	0	0	0	0	0	20	0	100.00%	100.00%
11m	0	0	0	0	0	0	0	0	0	0	7	100.00%	100.00%
Acc(%)	99.06%	94.35%	91.07%	83.43%	74.98%	74.20%	88.65%	100.00%	100.00%	100.00%	100.00%	80.39%	98.05%
Acc[1 m]	100.00%	100.00%	99.74%	98.88%	99.23%	98.93%	99.39%	100.00%	100.00%	100.00%	100.00%	99.65%	99.23%

More than 99% of the 4,910 validation samples are in the {+/-1 m} accuracy

WV2 Bathymetry


Classification Agreement for Bathymetry (Against LIDAR GT – Florida)

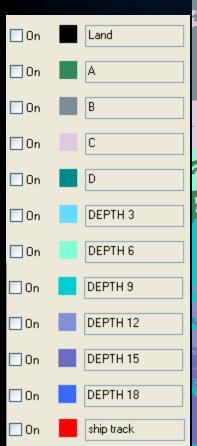
	3	4	5	6	7	8	9	10	11	12	13	14	15	Acc (%)	Acc[1 m]	Acc[2 m]
3	179612	13256	60	5	0	0	0	0	0	0	0	0	0	93.10	99.97	100.00
4	27665	352906	28206	1539	191	66	0	0	0	0	0	0	0	85.95	99.56	99.94
5	615	27430	333128	31600	687	95	5	0	0	0	0	0	0	84.64	99.64	99.97
6	215	2630	48827	430157	36937	1120	117	8	3	0	0	0	0	82.72	99.21	99.93
7	454	3329	8229	90985	556612	108822	10320	1654	335	135	35	6	0	71.28	96.86	99.24
8	6	1096	1818	4131	59775	598783	127239	5496	528	442	407	0	0	74.87	98.26	99.46
9	40	447	575	1240	6348	80149	674765	59474	1628	0	0	0	0	81.82	98.75	99.72
10	15	167	356	1384	6232	31926	253858	970762	83048	830	13	0	0	71.98	96.97	99.39
11	0	55	296	500	1598	9255	26054	138817	630299	121000	7355	1192	210	67.29	95.03	98.60
12	0	0	0	14	75	512	1875	4924	39824	524400	35399	296	0	86.35	98.73	99.59
13	0	0	0	1	14	216	612	1643	6140	54961	314355	34659	2138	75.80	97.40	99.40
14	0	0	0	0	0	37	254	287	217	520	3727	25748	2748	76.77	96.08	97.63
15	0	0	0	0	0	3	11	19	33	31	120	1134	5771	81.03	96.95	98.64
Acc (%)	86.09	87.94	79.03	76.6	83.27	72.06	61.62	82.05	82.71	74.67	86.98	40.85	53.11	77.00	97.96	99.35
Acc[1 m]	99.36	98.08	97.31	98.43	97.73	94.80	96.42	98.81	98.83	99.72	97.81	97.63	78.39	96.41		
Acc[2 m]	99.65	98.73	99.28	99.44	98.79	98.77	99.74	99.69	99.85	99.91	99.87	98.10	98.07	99.22		

DIGITALGLOBE

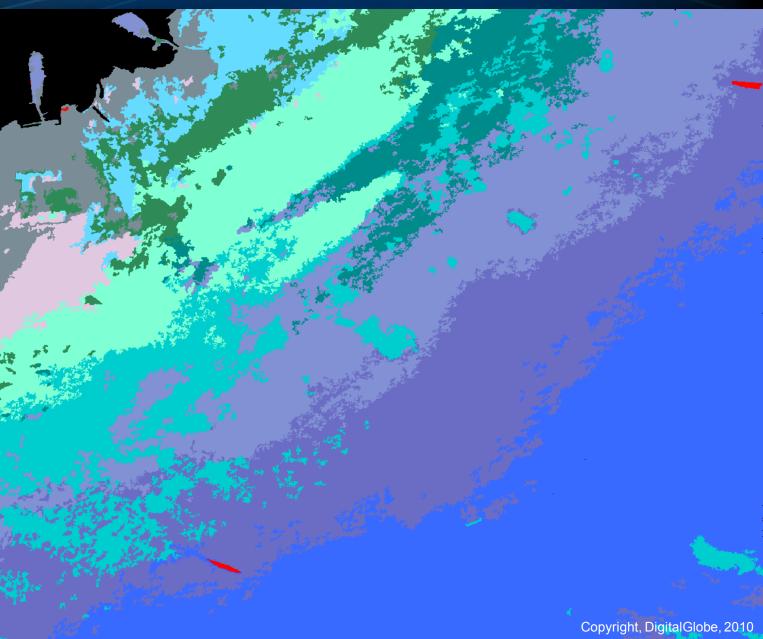
WorldView-2 First Images ^{4 band} 2m Image November 28, 2009

Florida Keys

Bathymetry and Sea Bed Modeling


WorldView-2 First Images 4 band 2m Image November 28, 2009

Florida Keys

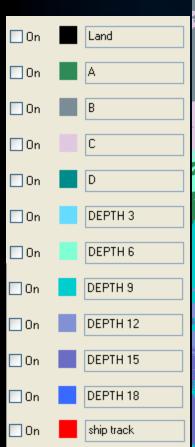


WorldView-2 First Images 4 band 2m Image November 28, 2009

Florida Keys

Bathymetry and Sea Bed Modeling

Classification Agreement for Bathymetry + Sea Bed


Input Node - Predict: Tree Ensemble (363)

		Predicted													
		01_A	02_B	03_C	04_D	05_DEPTH3	06_DEPTH6	07_DEPTH9	08_DEPTH12	09_DEPTH15	10_DEPTH15	11_DEPTH18	12_shiptrac	Totals	
	01_A	1285	8	0	0	0	0	0	0	0	0	0	0	1293	
	02_B	0	1300	0	0	0	0	0	0	0	0	0	0	1300	
	03_C	0	7	1727	0	6	0	0	0	0	0	0	0	1740	
	04_D	3	0	0	683	0	0	0	6	0	0	0	0	692	
	05_DEPTH3	5	0	3	0	1093	0	0	0	0	0	0	0	1101	
Observed	06_DEPTH6	0	0	7	0	0	2504	21	0	0	0	0	0	2532	
Obscived	07_DEPTH9	0	0	0	1	0	1	1502	3	0	0	0	0	1507	
	08_DEPTH12	0	0	0	12	0	0	0	3584	39	0	0	0	3635	
	09_DEPTH15	0	0	0	0	0	0	0	7	2595	1	0	0	2603	
	10_DEPTH15	0	0	0	0	0	0	0	0	4	2136	11	0	2151	
	11_DEPTH18	0	0	0	0	0	0	0	0	0	15	2779	0	2794	
	12_shiptrac	0	0	0	0	0	0	0	0	0	0	0	245	245	
Tot	als	1293	1315	1737	696	1099	2505	1523	3600	2638	2152	2790	245	21593	

		Observed													
	01_A	02_B	03_C	04_D	05_DEPTH3	06_DEPTH6	07_DEPTH9	08_DEPTH12	09_DEPTH15	10_DEPTH15	11_DEPTH18	12_shiptrac	Overall		
% Agree	99.4%	100.0%	99.3%	98.7%	99.3%	98.9%	99.7%	98.6%	99.7%	99.3%	99.5%	100.0%	99.3%		

WorldView-2 First Images 4 band 2m Image November 28, 2009

Florida Keys

Bathymetry and Sea Bed Modeling

rectilinear edge guides discharges from channels 1 and 2

sewage water collects here

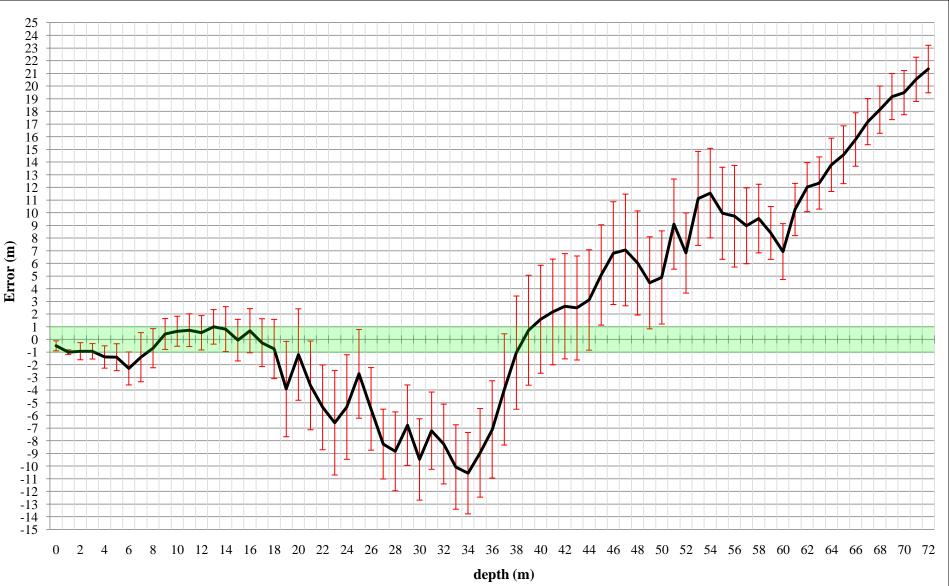
Bathymetry and Sea Bed Modeling

WorldView-2 First Images 4 band 2m Image November 28, 2009

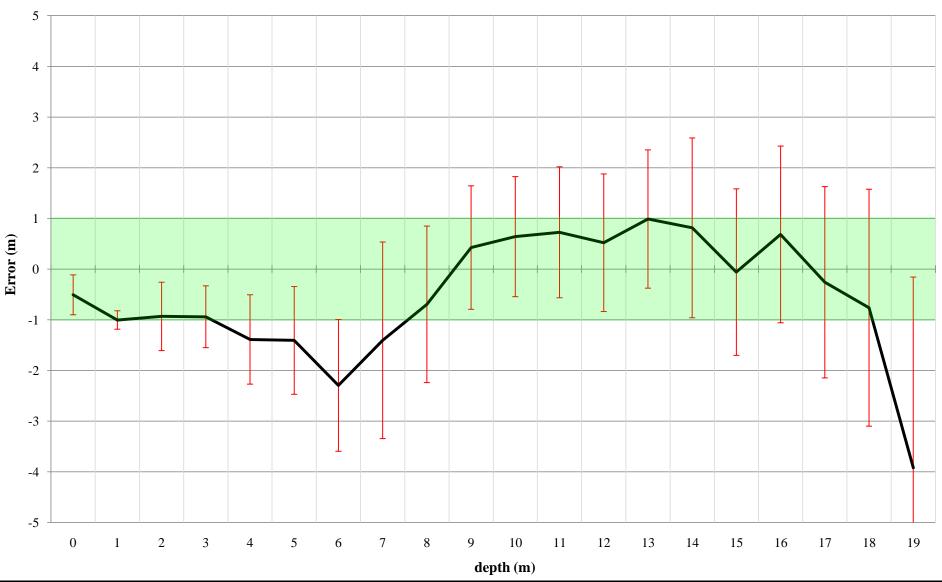
Florida Keys

rectilinear edge guides discharges from channels 1 and 2

sewage water collects here


How Deep Can We See?

WorldView-2 true color image San Diego, CA February 14, 2010



Cumulative Error for Bathymetry

gitalGlobe Proprietary

Cumulative Error for Bathymetry (20 m depth)

DIGITALGLOBE

DigitalGlobe Proprietary

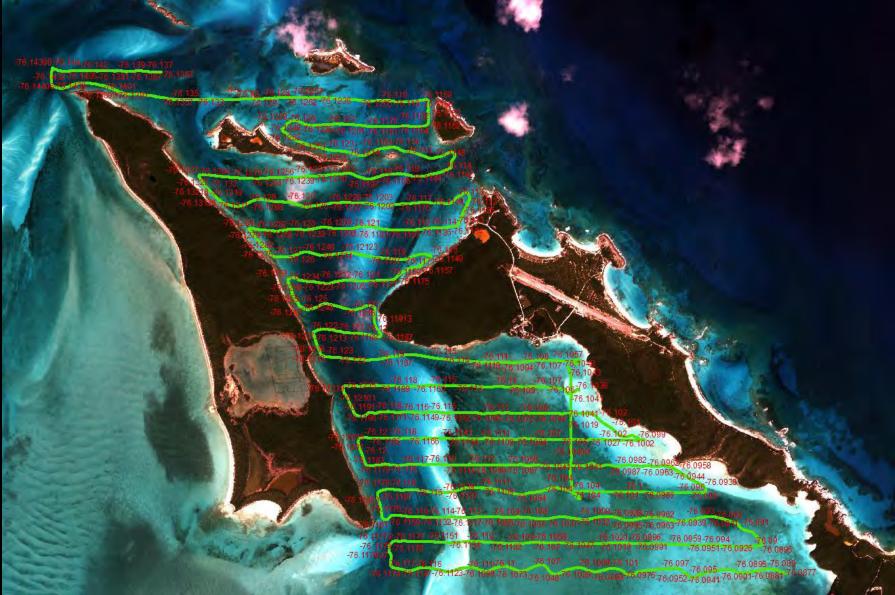
Where is Most of the Predictive Power?

 NIR bands play little role except in the near surface

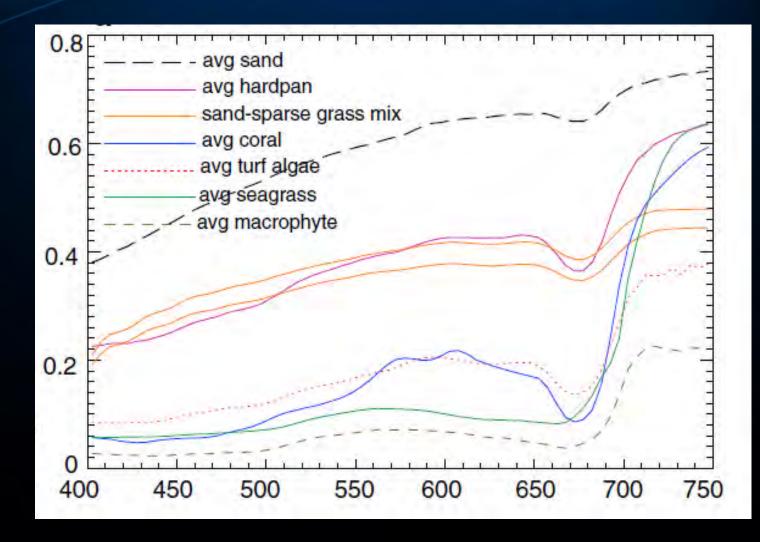
 C, B, G most useful for pure bathymetry

• Y, R, RE track submerged aquatic vegetation and coral, which in turns correlate with depth levels

	LC		TOP PREDICTORS										
			(best 4 out of 8 bands) C B G Y R REN1N2										
		LR	CT	TE	NN	С	в	G	Y	R	RE	N1	N2
SCENE 1	depth 2m	94.4		97.6									
	depth 4m	79.0											
	depth 6m	94.6	83.5	83.1	85.4								
SC	depth 8m	56.5	92.6	93.2	94.9								
	depth 10m	83.7	99.8	95.7	89.1								
	sandy1	99.8	98.1	98.5	97.2								
	sandy2	99.8	99.8	99.0	98.7								
	coral1	99.7	96.5	96.5	96.4								
8	coral2	97.3	98.3	98.5	96.1								
۳	depth 3m	99.9	98.7	98.5	99.3								
SCENE	depth 6m	99.9	98.6	93.5	99.2								
S	depth 9m	99.8	98.9	98.6	99.8								
	depth 12m	99.0	97.3	89.8	91.4								
	depth 15m	93.3	99.0	92.2	95.7								
	depth 18m	99.7	98.4	96.0	93.6								
	depth 3m	99.2	99.7	99.7	99.8								
33	depth 5m	84.2	97.7	97.3	99.6								
SCENE 3	depth 7m	73.8	83.9	90.6	93.3								
	depth 9m	73.0	84.6	88.0	80.6								
	depth 11m	89.0	85.5	92.1	83.6								
	depth 13m	93.3	93.8	95.3	83.1				1				
	depth 15m	94.9	95.8	98.6	95.2								

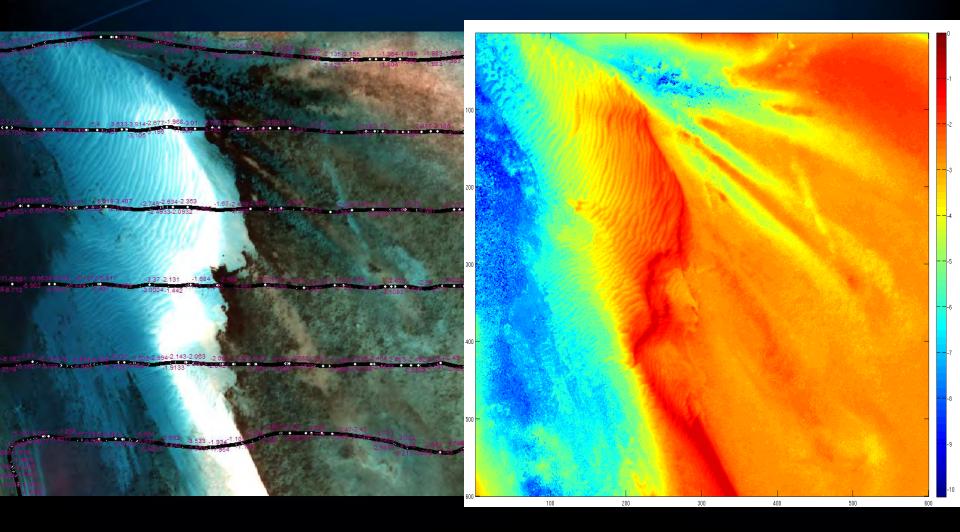

DIGITALGLOBE[®] Physical Modeling vs. Machine Learning

- Machine learning models need to be retrained with GT for each individual scene making it currently impractical for automated and unsupervised application.
- Radiative-transfer approach combined with optimal estimation retrieval methodology offers more flexibility.
 - Top of the atmosphere (TOA) radiances are modeled using rigorous radiative transfer equations in water (HYDROLIGHT) and atmosphere (MODTRAN).
 - Bayesian approach, with real (TOP radiances) and pseudo (*a-priori*) measurements is used to derive unknown water depth.

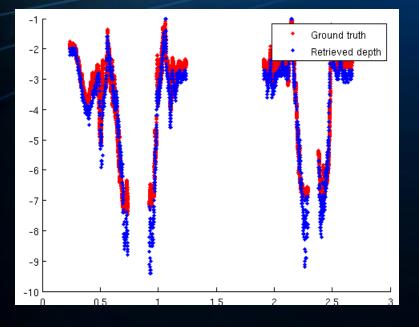

Lee- Stocking Island test site

Sounding data acquired in June 2001 Image collected in December 2010

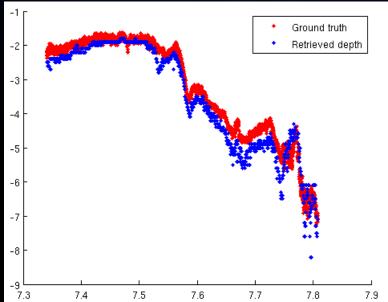
Spectral libraries from Lee-Stock Islands used to simulate the environment

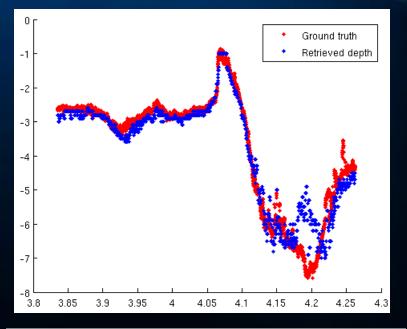

Source: Lesser & Mobley, 2007, Coral Reefs. 26:819:829

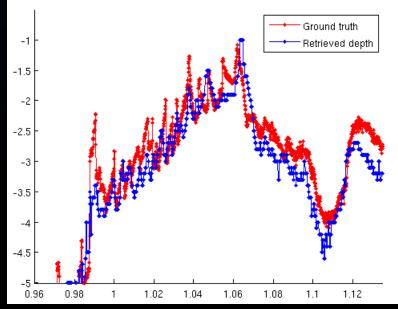
Copyright, DigitalGlobe, 2010



SONAR GT


WV2 Bathymetry




Accuracy (RMS error < 30 cm)

DIGITALGLOBE

Conclusions

- There is sufficient information content in WV02 spectral bands to retrieve water depths with 1-2m errors for waters as deep as 18 m.
- Coastal, Green, and Blue bands help with near-shore bathymetry
- Coastal, Green, Yellow and RE bands help with Benthic Habitat and Substrate/Sea Floor Mapping
 - Habitat maps can have accuracy ~90%
- Accuracy may not be high as Lidar or Sonar but wider geographic coverage and high refresh rate at a fraction of the cost
- Physical retrievals require very small training set (bottom reflectance and water IOP) compared with supervised classification methods.
 - Rich spectral libraries are available
 - Spectral libraries are typically representative of millions of square kilometers.