Ride on the Geospatial Revolution

Shaman

ASPRS 2011 Annual Conference Milwaukee, Wisconsin, May 1-5

Evidence of Improved Vegetation Discrimination and Urban Mapping Using WorldView-2 Multi-Spectral Imagery G. Marchisio, C. Padwick, F. Pacifici

Overview

- How information content of new WV-2 bands may help vegetative analyses and discrimination of basic land covers
- Do the 8 band make a difference?
 - Description of Comparative Machine Learning Approach
 - Spectral predictor analysis
 - Validation of land cover separability
 - Improvement in accuracy
- Additional Vegetative Analyses
 - Mapping the effect of the Gulf oil spill on wetlands
 - Mapping of Phytoplankton and algal blooms
 - Potential for crop discrimination
- Conclusions

Red Edge and WV-2 Bands

Vegetation Species and WV-2 Bands

(from Mapping the Future for Emerald Ash Borer Readiness and Response Planning, David Sivyer, City of Milwaukee, 2009

Yellow Edge and WV-2 Bands

Basic Land Covers and WV-2 Bands

Comparative Machine Learning Approach

- Spectral features:
 - Reflectance values from the 8 WV-2 bands $(b_i, i=1,8)$
 - 28 unique pairs of NDVI-style band ratios computed from the above

$$F(b_{ij}) = \frac{|b_i| - |b_j|}{|b_i| + |b_i|}$$
 $N = \frac{n(n+1)}{2}$

- Apply supervised machine learning methods:
 (PCA+Logistic Regression, Neural Networks, Classification Trees with k-fold cross-validation, Tree Ensembles)
- Produce confusion matrices
- Perform predictor analyses
- Repeat using VNIR spectral features only:
 - Converted reflectance values from the 4 VNIR bands
 - 6 unique pairs of NDVI-style band ratios computed from the above

Topology of a Neural Network

Topology of a Single Decision Tree

Natural Grouping of Land Cover Types Resulting from Predictor Analysis (Dallas)

Natural Grouping of Land Cover Types Resulting from Predictor Analysis (Dallas)

WorldView-2 First Images Natural Color 2m Image

> Dallas Texas Nov 20, 2009

WorldView-2 15 Land Covers

red_roof

Classification Agreement for 15 Land Cover Types (Dallas) - Ensemble Method Technique

Input Node -	put Node - Read Text File (793)															/	
									dicted								Totals
		01_water (02_shadow	03_tree	04_fairway	05_grass	06_golfgrn	07_tennis	08_asphalt	09_concrete	10_sand	11_groof	12_pool	13_soil	14_clay	15_rroof	Totals
	01_water	1639	28	79	5	1	0	2	0	, 0	0	1	0	0	0	0	1755
	02_shadow	139	12215	966	20	0	0	52	0	0	0	70	0	0	0	2	13464
	03_tree	162	1235	27791	0	0	0	0	0	, 0	0	0	0	0	0	0	29188
1	04_fairway	0	0	0	4726	0	0	4	0	0	0	0	0	0	0	0	4730
	05_grass	0	0	0	0	12343	68	129	53	0	1	212	1	58	13	17	12895
	06_golfgrn	0	0	0	0	9	1695	0	0	0	0	0	0	0	0	0	1704
	07_tennis	0	4	0	0	1	0	1747	1	. 0	0	19	0	0	0	0	1772
Observed	08_asphalt	0	7	0	7	91	0	6	11373	900	39	525	0	30	7	87	13072
	09_concrete	0	0	0	0	0	0	0	965	13834	132	1	72	135	0	229	15368
	10_sand	0	0	0	0	0	0	0	0	10	1274	0	1	4	0	0	1289
	11_groof	1	56	1	6	24	0	72	97	91	6	2665	0	6	1	2	3028
	12_pool	0	0	0	0	0	0	0	0	0	0	0	216	0	0	0	216
	13_soil	0	0	0	0	1	0	0	0	1	0	0	0	931	1	13	947
	14_clay	0	0	0	0	0	0	0	1	. 0	0	0	0	2	1049	10	1062
	15_rroof	0	3	0	0	4	0	0	4	, 1	0	9	0	14	11	1017	1063
To	otals	1941	13548	28837	4764	12474	1763	2012	12494	14837	1452	3502	290	1180	1082	1377	101553

	Observed 01_water 02_shadow 03_tree 04_fairway 05_grass 06_golfgrn 07_tennis 08_asphalt 09_concrete 10_sand 11_groof 12_pool 13_soil 14_clay 15_rroof 15_r															Overall
	01_water	02_shadow	03_tree	04_fairway	05_grass	06_golfgrn	07_tennis	08_asphalt	09_concrete	10_sand	11_groof	12_pool	13_soil	14_clay	15_rroof	Overan
% Agree	93.4%	90.7%	95.2%	99.9%	95.7%	99.5%	98.6%	87.0%	90.0%	98.8%	88.0%	100.0%	98.3%	98.8%	95.7%	93.1%

Top Predictors for Resolving all 15 Land Covers Types at Once (Dallas)

Sharp Resolution of Shadows

shadow in water

WorldView-2 First Images Vegetation Analysis

Dallas Texas

fairway

grass

golf_green

WorldView-2 First Images Vegetation Analysis

Dallas Texas

fairway

grass

golf_green

WorldView-2 First Images Natural Color 2m Image

> Dallas Texas Nov 20, 2009

Top Predictors for Man-made Features (Dallas Scene)

band name abbreviations are b1-C, b2-B, b3-G, b4-Y, b5-R, b6-RE, b7-NIR1, b8-NIR2 band ratio combinations are denoted by b_1 - b_2 (so NIR1-R = NDVI)

Validating Land Cover Separability

WorldView-2

4 band
2m Image
November 7, 2009

Bangkok Thailand

DIGITALGLOBE WV2 13 land covers Bangkok Thailand water shadow tree2 tree3 grass A grass B asphalt concrete blue roof red roof gray roof metal roof

Classification Agreement for 14 Land Cover Types (Bangkok) – Tree Ensembles

nput Node - Predict: Tree Ensemble (8)
--

									Predic	cted						Totals
		water	shadow	tree1	tree2	tree3	grassA	grassB	asphalt	concrete	blue_roof	red_roof	gray_roof	metal_roof	soil	Totals
	water	9388	19	0	0	0	0	0	7	4	0	0	0	1	0	9419
	shadow	36	2899	20	10	16	0	0	70	75	0	1	. 0	0	4	3131
	tree1	0	3	7685	8	1	0	0	0	0	0	0	0	0	0	7697
	tree2	0	0	0	10431	149	2	67	0	0	0	0	0	0	1	10650
	tree3	0	0	0	112	4878	0	36	0	0	0	0	17	0	12	5055
	grassA	0	0	0	0	0	1077	29	2	0	0	0	7	0	62	1177
Observed	grassB	0	0	0	74	61	. 16	1824	0	0	0	0	12	. 0	23	2010
Obseived	asphalt	14	21	0	0	0	6	2	6214	171	. 0	8	22	. 3	155	6616
	concrete	18	73	0	0	0	0	0	177	5464	1	. 5	132	2 20	80	5970
	blue_roof	0	1	3	0	3	2	3	0	1	278	0	20	0	1	312
	red_roof	5	2	0	0	0	0	0	8	4	0	823	1	. 4	89	936
	gray_roof	0	0	0	4	20	11	0	12	135	11	. 2	4223	0	74	4492
	metal_roof	5	0	0	0	0	0	0	2	33	0	0	0	968	3	1011
	soil	3	0	0	1	51	. 49	18	109	109	1	. 57	125	0	3916	4439
Tot	als	9469	3018	7708	10640	5179	1163	1979	6601	. 5996	291	. 896	4559	996	4420	62915

	Observed														Overall
	water	shadow	tree1	tree2	tree3	grassA	grassB	asphalt	concrete	blue_roof	red_roof	gray_roof	metal_roof	soil	Ovcidii
% Agree	99.7%	92.6%	99.8%	97.9%	96.5%	91.5%	90.7%	93.9%	91.5%	89.1%	87.9%	94.0%	95.7%	88.2%	95.5%

Urban Classification

Honolulu, HI Apr 25, 2010

Urban Classification

WorldView-2
Honolulu, HI
Apr 25, 2010

Urban Classification with RE, NIR1, NIR2 Wave Layer

Honolulu, HI Apr 25, 2010

Urban Classification

Honolulu, HI Apr 25, 2010

DIGITALGLOBE[®]

Comparison in Classification Accuracy for 34 Land Covers (QB vs. WV2)

		LC	CLASSIFICATION ACCURACY											IMPROVEMENT						TOP PREDICTORS						
			VNIR			WV2																	ban			
			LR			TE	NN	LR		CT	TE	NN		LR	CT	TE	NN	AVE		С	В	G	Υ	RF	₹EN	11 N2
		water		86.7	89.5	90.0				90.5	91.1	90.6		1.1	1.0	1.1	4.1	1.8								
		shadow		77.8	72.4	75.6	74.0		7.5	83.8	83.0	78.1		9.7	11.4	7.4	4.1	8.2								
		tree		95.4	95.0	93.4			6.9	95.2	95.0	94.6		1.5	0.2	1.6	4.8	2.0								
		grass A		95.5	88.6	91.5			7.2	89.6	91.7	92.9		1.7	1.0	0.2	3.4	1.6								
	•	grass B		83.4	88.9	91.5			5.7	99.9	99.9	94.5		12.3	11.0	8.4	6.8	9.6								
	SCENE 1	grass C		96.9			96.2	_	7.0	98.4	98.7	97.5		0.1	0.2	2.9	1.3	1.1								
>		tennis		64.8	79.5	78.9).9	89.5	92.9	93.3	_	26.1	10.0	14.0	10.7	15.2								
=>		asphalt		84.8	72.1	72.9			9.2	75.3	77.6	81.3		4.4	3.2	4.7	19.6									
	SC	concrete		76.6		82.1	74.2	_	2.5	93.0	88.0	84.1		5.9	5.1	5.9	9.9	6.7								
		sand		93.7	91.5	93.5		_	7.7	98.4	98.3	98.7		4.0	6.9	4.8	2.2	4.5								
		gray roof		35.1	70.0	68.5		_	9.3	82.6	74.3	76.2		24.2	12.6	5.8	3.4	11.5								
		pool		91.8		96.3		_	1.9	96.3	97.2	99.1		0.1	1.1	0.9	0.1	0.6								
		soil		86.4		83.2			1.8	96.0	91.3	92.9		5.4	5.7	8.1	7.1	6.6								
		clay		92.2	89.5	91.8		_	5.9	92.5	96.0	98.5		3.7	3.0	4.2	2.3	3.3								
		red roof		46.6		83.2		_		93.2	86.3	88.5		34.8	4.0	3.1	4.7	11.7								
		water		96.2	96.1	95.5	96.5		3.7	96.1	96.4	98.1		2.5	0.0	0.9	1.6									
	1	turbidity		79.5	78.5	81.6	79.3		.7	82.1	87.9	83.5		5.2	3.6	6.3	4.2	4.8								
		shadow		91.7	95.2	95.3	83.0		3.2	97.1	97.1	85.9		6.5	1.9	1.8	2.9	3.3								
	.	conifer		93.5	91.3	93.6	95.1			93.9	94.0	96.1		4.4	2.6	0.4	1.0	2.1								
	Ε2	conifer #		92.8	96.2	94.1	94.2	100		99.4	99.4	97.6		7.2	3.2	5.3	3.4	4.8								
	CENE	deciduous		96.0	95.3	89.8	93.6		7.4	95.8	93.7	94.8		1.4	0.5	3.9	1.2	1.8								
	SC	grass		89.1	86.2	90.7	91.8		6.6	94.2	94.5	92.7		7.5	8.0	3.8	0.9	5.1								
		soil		88.7	88.1	86.6			9.1	89.8	89.4	89.6		0.4	1.7	2.8	5.1	2.5								
		asphalt		90.4	85.8	90.0			1.5	88.8	90.0	92.0	_	1.1	3.0	0.0	1.1	1.3								
		gray roof		76.3	79.9	80.1	82.4).5	90.2	81.2	84.5		4.2	10.3	1.1	2.1	4.4								
		rice paddy		93.0	90.7	88.6		98	3.4	96.2	94.6	97.7		5.4	5.5	6.0	8.1	6.3								
		trees		90.8	88.0	89.1	94.2	_	_	88.4	89.6	94.6	_	0.8	0.4	0.5	0.4	0.5								
		water		99.5	99.7	99.6		_	9.9	99.9	100.0	100.0		0.4	0.2	0.4	1.0	0.5								
	3	soil		96.3	89.2	86.4	73.6	96	5.4	89.5	88.6	88.5		0.1	0.3	2.2	14.9	4.4			П					
	SCENE	asphalt		88.9	93.8	92.3	93.2	90).4	95.7	96.8	95.6		1.5	1.9	4.5	2.4	2.6							\top	
	2	dirt		96.0	96.0	95.9	95.9	96	6.6	96.8	96.9	97.6		0.8	0.8	1.0	1.7	1.1								
	0,	gray roof		0.0	61.6	59.6	65.2	8	1.3	84.3	78.4	82.1		81.3	22.7	18.8	16.9	34.9								
		red roof		95.1	87.8	90.2	93.5	98	3.4	96.7	96.7	96.7		3.3	8.9	6.5	3.2	5.5								
		bush		82.8	78.0	97.9	79.5	86	5.2	86.7	98.6	86.0		3.4	8.7	0.7	6.5	4.8								

DIGITALGLOBE Spectral Predictors and LC Separability

Spectral Distance Estimation – I

(Single Tree Regression Model)

The partition in a Regression Tree is given by the leaves of the tree. Each sample in a training set is assigned to a leaf. The deviance for the regression model at each node j is defined as

$$D = \sum_{cases j} (y_j - \mu_{[j]})^2$$

Where y_j is the class probability label. We should estimate the constant μ_i for leaf i by mean of the value of the training set assigned to that node.

Then the deviance is the sum over leaves of D_i and the entropy reduction of a split is the reduction in the residual sum of the squares.

The obvious probability model is to take a normal $N(\mu_i, \sigma^2)$ distribution within each leaf, so D is the usual scaled deviance for a Gaussian GLM. However, the distribution at internal nodes of the tree is then a mixture of distributions, and so D_i is only appropriate at the node.

The tree-construction process has to be seen as a hierarchical refinement of probability models.

Spectral Distance Estimation II (A More Refined Model of Deviance)

At each node j of a classification tree we have a probability distribution p_{jk} over the classes. At each leaf we have a random sample n_{ik} from the multinomial distribution specified by p_{jk}

The conditional likelihood is then proportional to:

$$\prod_{cases j} p_{[j]y_j} = \prod_{leaves i} \prod_{classes k} p_{ik}^{n_{ik}}$$

Where [j] denotes the leaf assigned to sample j. This allows us to define a deviance for the tree as a sum over leaves

$$D = \sum_{i} D_i, \quad D_i = -2\sum_{k} n_{ik} \log p_{ik}$$

Spectral Distance Estimation IV

(A More Refined Model of Deviance)

Consider splitting node s into nodes t and u. This changes the probability model within node s, so the reduction in deviance for the tree is

$$D_s - D_t - D_u = 2\sum_k \left[n_{tk} \log \frac{p_{tk}}{p_{sk}} + n_{uk} \log \frac{p_{uk}}{p_{sk}} \right]$$

or, in the terms of the sample proportions in the split node

$$D_s - D_t - D_u = 2\sum_{k} \left[n_{tk} \log \frac{n_{tk} n_s}{n_{sk} n_t} + n_{uk} \log \frac{n_{uk} n_s}{n_{sk} n_u} \right]$$

DIGITALGLOBE Spectral Predictors and LC Separability

WorldView-2
natural color
2m image
March 13, 2010

WorldView-2 classification March 13, 2010

Best Predictors

relative importance of WV-2 spectral bands for rice paddies

WorldView-2
natural color
2m Image
April 15, 2010

WorldView-2 classification April 15, 2010

Mapping Wetlands Health after the Spill

healthy vegetation

normal /egetatior

stressed vegetation

vegetati

Mapping Wetlands Health after the Spill

WorldView-2
true color image
Bu Tinah Island
Abu Dhabi
Mar 13, 2010

Chlorophyll concentration based on estimation of upwelling radiance, similar to Coastal Zone Color Scanner & SeaWiFS (after Gordon et al., 1983)

Employ radiances at 443, 520, 550 nm.

In addition, WV-2 Yellow band ideally positioned for cyanobacteria detection.

WorldView-2
chlorophyll map
Bu Tinah Island
Abu Dhabi
Mar 13, 2010

Cyanobacteria monitoring from space a reality with WV-2!

WorldView-2 true color image Tromsö Norway May 26, 2010

WorldView-2
land covers
Tromsö
Norway
May 26, 2010

Conclusions

- The added spectral dimensions in WV-2 improve classification accuracy as much as 5-20% over ordinary VNIR imagery for certain land cover types.
- The C and NIR2 bands, by extending the usable range of the spectrum, provide more discriminatory power for man-made surfaces, such as gray roofs, red roofs, asphalt, concrete and sport fields. Our ability to resolve shadow greatly increases
- The Y and RE bands target vegetation phenomenology with applications in agriculture, forestry and coastal studies
- The more detailed WV2 spectral signature in conjunction with textural attributes from the 50 cm panchromatic band allow us to produce more accurate classifiers for certain crop types.