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ABSTRACT 
 

Estimating the contribution of forests to carbon sequestration is commonly done by applying forest growth models. 
Such models inherently use field observations, such as leaf area index (LAI), whereas relevant information is also 
available from remotely sensed images. The purpose of this study is to improve the LAI estimated from the 
physiological principles predicting growth (3-PG) model by combining its output with LAI derived from Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. A Bayesian network (BN) 
approach is proposed to take care of the different structure of the inaccuracies in the two data sources. It addresses 
the bias in the 3-PG model and the noise of the ASTER images. Moreover, the EM algorithm is introduced into BN 
to estimate missing the LAI ASTER data, since they are not available for long time series due to the atmospheric 
conditions. This paper shows that the outputs obtained with the BN were more accurate than the 3-PG estimate, as 
the root mean square error reduces to 0.46, and the relative error to 5.86%. We conclude that the EM-algorithm 
within a BN can adequately handle missing LAI ASTER values, and BNs can improve the estimation of LAI values. 
Ultimately, this method may be used as a predicting model of LAI values, and handling the missing data of ASTER 
images time series. 
 
KEYWORDS: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Bayesian Networks 
(BNs), EM-algorithm, leaf Area Index (LAI), physiological principles predicting growth (3-PG).  

 
 

INTRODUCTION 
 

Forests play a critical role in carbon sequestration (Wamelink et al., 2009), thus affecting the speed of climate 
change. Therefore, monitoring forest growth has received increasing attention (Bonan, 1993). An important parameter 
in observing forest growth is the leaf area index (LAI), defined as the ratio of leaf area to per unit ground surface area. 
It is a key biophysical variable influencing land surface photosynthesis, respiration, transpiration, leaf litterfall and 
energy balance (Bonan, 1993) . The LAI is estimated using process-based models, such as the Physiological Principles 
in Predicting Growth (3-PG) model, being a stand-level model of forest growth. This model developed by Landsberg 
and Waring (1997) and has been used as a point mode. A grid mode version of 3-PG model has been developed by 
Coops et al. (1998). Similarly, remote sensing imagery has been added to estimate LAI, for example from the 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite (Heiskanen, 2006; Ito et al., 
2007).  

Statistical methods have been used to estimate LAI, in particular Bayesian Networks (BNs) (Kalacska et al., 2005; 
Mustafa et al., 2011). A BN is a directed acyclic graph consisting of nodes and arcs, to represent variables and the 
dependencies between variables, respectively (Jensen and Nielsen, 2007). Gaussian Bayesian network (GBN) have 
improved LAI estimates by combining the 3-PG model output with MODIS images (Mustafa et al., 2011). Their 
approach relies on availability of satellite images. Remote sensing data, however, often contain gaps (missing values) 
due to atmospheric characteristics. Mustafa et al. (Subm.) integrated an Expectation Maximization algorithm with GBN 
to estimate missing satellite values.  

The objective of this work is two-fold. First, we use the GBN model to estimate LAI values using the finer 
resolution satellite imagery ASTER with the point mode 3-PG model. Second, we develop a spatial GBN model to 
improve estimation of LAI by considering a grid mode 3-PG model bases on 15 m ASTER resolution.  
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ASTER imagery has been employed in this work because of its relatively high spatial resolution in the visible to 
near infrared bands, and high spectral resolution in the shortwave infrared bands. Provision of higher order data 
products, such as atmospherically corrected surface reflectance data, is increasing the applicability of ASTER images 
(Abrams, 2000). Furthermore, ASTER imagery may help to reduce the uncertainty of the estimated LAI by GBN. 
 

MATERIALS AND METHOD 
 
The 3-PG Model 

The 3-PG model is a process-based stand-level model of forest growth. A full description of the 3-PG has been 
provided by Landsberg and Waring (1997). It requires few parameters and readily available site and climatic data as 
inputs. Its primary output variables are net primary production (NPP), the standing biomass in foliage, stem (i.e. all 
above-ground woody tissue) and roots, stem number, available soil water and evapotranspiration. It infers LAI 
 mean stem diameter at breast height, main stem volume, and mean annual increment. The 3-PG model has ,(ଷ௉ீܫܣܮ)
been modified by Coops et al. (1998) and called 3-PGS. They demonstrated the application of 3-PG to forested areas 
using remote sensing data. The 3-PGS produces spatially and temporally explicitly outputs at the scale of the input 
surfaces. Spatial outputs include variables such as above and below ground biomass, LAI, stem volume, and current 
annual increment. These models have been used in many areas like eastern Brazil, and British Columbia (Almeida et 
al., 2010; Coops et al., 2010; Landsberg et al., 2001). However, it is difficult to parameterize the models precisely e.g. 
to minimize the uncertainty of the model output.  
 
Remote Sensing Imagery 

The estimation of LAI by satellite remote sensing, in particular ASTER sensors, has been investigated in several 
studies at various spatial scales and environments (Heiskanen, 2006; Ito et al., 2007; Peng et al., 2003; Zheng G. and 
M., 2009). The ASTER instrument acquires surface data in the visible to near infrared (VNIR, three bands at 15 
m/pixel), shortwave infrared (SWIR, six bands at 30 m/pixel), and thermal infrared (TIR, five bands at 90 m/pixel) 
wavelength regions of the electromagnetic spectrum (Abrams, 2000). Each ASTER scene captures a 60 × 60 km area. 

Estimation of the forest variables using optical remote sensing data has been based on empirical relationships 
formulated between the forest variables measured in the field and satellite data, often expressed in the form of spectral 
vegetation indices (SVI). Peng et al. (2003) compared twelve different vegetation indices (ranging from visible to 
shortwave infrared bands) with LAI and found that modified non-linear vegetation index (MNLI), simple ration (RS), 
and normalized vegetation index (NDVI) correlates best with LAI. Current techniques for estimating LAI often failed 
to provide consistent values. Furthermore, most LAI satellite data (ܫܣܮௌ஺்) products are not continuous in space and 
time because of a cloud contamination and an insufficient number of data points for retrieval.  

 
Bayesian Networks 

A Bayesian Network (BN) is a probabilistic graphical model that provides a graphical framework of complex 
domains with lots of inter-related variables (Jensen and Nielsen, 2007). Mustafa et al. (2011) designed a network to 
improve LAI estimation by combining LAI values derived from satellite images and estimated by the point mode 3-PG 
model. Figure 1(a) shows the graphical part of BN. The intermediate node (ܫܣܮ஻ே) represents the estimated LAI values 
of BN. Based on the continuous variation of LAI over time, it has shown in (Mustafa et al., 2011) that LAI follow 
normal distribution. The common type of a BN containing continuous variables is the GBN (Shachter and Kenley, 
1989). A GBN is a BN where the joint probability distribution associated with its variables ۷ۯۺ ൌ ሼܫܣܮଵ, …	,  ௡ሽ isܫܣܮ
the multivariate normal distribution ܰሺߤ, Σሻ, given by ݂ሺ۷ۯۺሻ ൌ ሺ2ߨሻି௡ ଶ⁄ |Σ|ିଵ ଶ⁄ ݌ݔ݁ ቄെ

ଵ

ଶ
	ሺ۷ۯۺ െ ۷ۯۺሻ்Σିଵሺߤ െ  .ሻቅߤ

Here ߤ is the n-dimensional mean vector, and Σ is the ݊ ൈ ݊ positive definite covariance matrix with determinant |Σ|. 
The conditional probability distribution of the ܫܣܮ௜ represented by the ܫܣܮ஻ே೔ as the variable of interest given its 
parentage, is the univariate normal distribution with density 

 

   ݂൫ܫܣܮ஻ே೔|ܽ݌௜൯~ܰ ቀߤ௜ ൅ ∑ ௜௝ߚ ቀܽ݌௜௝ െ ௣௔೔ೕቁߤ
#௣௔೔
௝ୀଵ ,  ሺ1ሻ																																																																																														௜ቁ,ߥ

 
where ߤ௜ is the expectation of ܫܣܮ஻ே೔	at time ݅, the ߚ௜௝	are a regression coefficients of ܫܣܮ஻ே೔ on its parents, #ܽ݌௜ is the 
number of parents of ܫܣܮ஻ே೔ , and ߥ௜ ൌ Σ௜ െ Σ௜௣௔೔Σ௣௔೔

ିଵ Σ௜௣௔೔
்  is the conditional variance of ܫܣܮ஻ே೔  given its parents. 

Further, Σ௜ is the unconditional variance of the ܫܣܮ஻ே೔, Σ௜௣௔೔ are the covariances between ܫܣܮ஻ே೔	and the variables ܽ݌௜, 
and Σ௣௔೔ is the covariance matrix of ܽ݌௜.  
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For ݅ ൐ 2, Mustafa et al. (2011) defined equation to identify the intermediate node of the GBN based on the 
contribution of all of the satellite images, 3-PG output, and previous GBN output as follows: 
 

஻ே೔ܫܣܮ        ൌ ሺ1ߩ െ ߬ሻ	ܫܣܮௌ஺்೔ ൅ ଷ௉ீ೔ܫܣܮ	߬ ൅ ሺ1 െ ሻሺ1ߩ െ ߬ሻ	ܫܣܮ஻ே೔షభ,																																																														ሺ2ሻ 
 

 
 

Figure 1. (a) The BN for ݅௧௛ moments. Each moment consists of three nodes ܫܣܮଷ௉ீ೔,  ௌ஺்೔obtained from the 3-PG model, theܫܣܮ ஻ே೔andܫܣܮ
BN, and satellite images, respectively; (b) BN with missing satellite observations. ܻ represents an observed data set consisting of three nodes 

ௌ஺ܫܣܮ ଷ௉ீమ while ܺ represents the variableܫܣܮ ஻ேభ andܫܣܮ , ஻ேమܫܣܮ మ்
 for which an observation is missing. 

 
where ߬ and ߩ are the weighing values, defined as ߬	 ൌ หሺܫܣܮௌ஺்೔ 	െ ௌ஺்೔షభሻܫܣܮ ⁄ௌ஺்೔షభܫܣܮ ห and 

ߩ ൌ หሺܫܣܮଷ௉ீ೔ 	െ ଷ௉ீ೔షభሻܫܣܮ ⁄ଷ௉ீ೔షభܫܣܮ ห. They are proportional to the change in the LAI values obtained from the 
satellite images and 3-PG output. Hence the conditional distribution of ܫܣܮ஻ே೔  equals 
 

ܰ~஻ே೔ܫܣܮ ቀߤ௅஺ூಳಿ೔ ൅ ௅஺ூಳಿ೔௅஺ூಳಿ೔ߚ ቀܫܣܮௌ஺்೔ െ ௅஺ூೄಲ೅೔ቁߤ ൅ ௅஺ூಳಿ೔௅஺ூಳಿ೔షభߚ ቀܫܣܮ஻ே೔షభ െ ௅஺ூಳಿ೔షభቁߤ 	

൅ ௅஺ூಳಿ೔௅஺ூయುಸ೔ߚ ቀܫܣܮଷ௉ீ೔ െ ௅஺ூయುಸ೔ቁߤ , Σ௅஺ூಳಿ೔ቁ																																																																															ሺ3ሻ 

 
For more details about a GBN of improving forest growth estimates using point mode 3-PG model and satellite images, 
we refer to (Mustafa et al., 2011). 

In the current work, we modified the equation of the intermediate node in GBN model in order to model spatio-
temporal ܫܣܮ஻ே೔ೖ value by contribution from all of the satellite images, 3-PG output and previous GBN output within 
two consecutive moments as follows: 

 

஻ே೔ೖܫܣܮ ൌ ቐ
ሺ1 െ ሻሺ1ߣ െ ௌ஺்೔ೖܫܣܮሻߙ ൅ ଷ௉ீ೔ೖܫܣܮ	ߙ ൅ ሺ1	ߣ െ ஻ேሺ೔షభሻೖܫܣܮ	ሻߙ if	 ቤ

௅஺ூೄಲ೅೔ೖି௅஺ூಳಿሺ೔షభሻೖ
௅஺ூಳಿሺ೔షభሻೖ

ቤ ൑ ฬ
௅஺ூೄಲ೅೔ೖି௅஺ூయುಸ೔ೖ

௅஺ூయುಸ೔ೖ
ฬ

ሺ1ߣ െ ௌ஺்೔ೖܫܣܮሻߙ ൅ ଷ௉ீ೔ೖܫܣܮ	ߙ ൅ ሺ1 െ ሺ1	ሻߣ െ ஻ேሺ೔షభሻೖܫܣܮ	ሻߙ Otherwise
										ሺ4ሻ  

 
Here ݅ is the image number (the moment number), ݇ ൌ ሺ݊,݉ሻ is the pixel location, and α ൌ ,ߜߛ ߣ ൌ  ,ߜ ,ߛ where ,ߟ߱

߱, and ߟ are the weights, defined as ߛ ൌ ฬ
௅஺ூೄಲ೅ೖି௅஺ூೄಲ೅ೖషభ

௅஺ூೄಲ೅ೖషభ
ฬ,  ߜ ൌ ቤ

௅஺ூೄಲ೅೔ೖି௅஺ூೄಲ೅ሺ೔షభሻೖ
௅஺ூೄಲ೅ሺ೔షభሻೖ

ቤ, ߱ ൌ ฬ
௅஺ூయುಸೖି௅஺ூయುಸೖషభ

௅஺ூయುಸೖషభ
ฬ, and  

ߟ ൌ ቤ
௅஺ூయುಸ೔ೖି௅஺ூయುಸሺ೔షభሻೖ

௅஺ூయುಸሺ೔షభሻೖ
ቤ. They are proportional to the spatial and temporal change in the LAI values obtained from 

the satellite images and 3-PG output. 
Expression (4) includes the GBN output from the previous time step (ܫܣܮ஻ேሺ೔షభሻೖ) to ensure that the LAI values in 

the new node are consistent with the ܫܣܮௌ஺் images, the ܫܣܮଷ௉ீ, and the ܫܣܮ஻ே at the previous iteration. This is based 
on the assumption that the LAI values do not sharply change in a short period of time. In fact, this choice for ߜ and ߟ 
addresses the difference between the LAI field data (ܫܣܮி஽), ܫܣܮଷ௉ீ values, and ܫܣܮௌ஺் images at two consecutive 
time steps. Moreover, ߛ and ߱ consider the difference between the ܫܣܮଷ௉ீ values, and ܫܣܮௌ஺் images at two neighbor 
pixels. Weighing these values as in (4) reduces the impact of large discrepancies between the LAI values of 3-PG and 
satellite images.  
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EM-algorithm for Estimating Missing Values in a GBN 
The Expectation Maximization (EM)-algorithm is a technique for estimating parameters of statistical models from 

incomplete data. The EM-algorithm is applicable for maximizing likelihoods. The EM-algorithm is formulated and 
applied to handle the problem of missing satellite data by estimating the missing parameters that are needed to 
implement a GBN approach (Mustafa et al., Subm.). In this section we give in brief the derivation of EM-algorithm 
with GBN model.  

Consider missing data of satellite images at the ݅௧௛ moment (݅ ൐ 1) of the GBN as shown in Figure 1(b). The 
GBN output, ܫܣܮ஻ே೔ , conditionally depends on three nodes (variables), i.e., ܫܣܮ஺ௌ்೔, ܫܣܮ஻ே೔షభ, and ܫܣܮଷ௉ீ೔, where 
,஺ௌ்೔ is considered as a missing value. Let ሺܺܫܣܮ ܻሻ be the complete data set at the ݅௧௛ moment of GBN, with observed 

(complete) data ܻ ൌ ൛ܫܣܮ஻ே೔షభ, ,ଷ௉ீ೔ܫܣܮ ܺ ஻ே೔ൟ and missing dataܫܣܮ ൌ  ௌ஺்೔ (Figure 1(b)). For clarity, we re-nameܫܣܮ
the variables in the GBN model as ݕ ൌ ஻ே೔ܫܣܮ ݔ , ൌ ݖ ,ௌ஺்೔ܫܣܮ ൌ ஻ே೔షభܫܣܮ ݓ , ൌ  ଷ௉ீ೔, such that the GBNܫܣܮ	
model’s parameters named as ߤ௟, ߪ௟, and ߚ௬௟, where ݈ ∈ ሼݔ, ,ݕ ,ݖ  .ሽݓ
Hence expression (3) can be reformulated as: 
 

 

               ݂ሺݔ|ݕ, ,ݖ ௬ߤሻ~ܰ൫ݓ ൅ ݔ௬௫ሺߚ െ ௫ሻߤ ൅ ݖ௬௭ሺߚ െ ௭ሻߤ ൅ ݓ௬௪ሺߚ െ ,௪ሻߤ  ሺ5ሻ																																																									௬ଶ൯.ߪ
 
The EM-steps to find new ML estimates for the parameters ߠ ൌ ሺߤ௫, Σ௫ሻ are as follows: 
 
 Choose an initial setting for the parameters ߠ and name it as ߠ୭୪ୢ. These are guessed based on seasonal changes 

of LAI values that are obtained from satellite observations as: 
 

୭୪ୢߠ           ൌ ൫ߤ୭୪ୢ, ୭୪ୢ൯ߪ	 ൌ ൞
൬ߤ௫ െ ฬ

ఓೣ೔షమିఓೣ೔షభ
ఓೣ೔షభ

ฬ , ௫ߪ െ ฬ
ఙೣ೔షమିఙೣ೔షభ

ఙೣ೔షభ
ฬ൰ 							if				ߤ௫೔షమ ൑ ௫೔షభߤ

൬ߤ௫ ൅ ฬ
ఓೣ೔షమିఓೣ೔షభ

ఓೣ೔షభ
ฬ , ௫ߪ ൅ ฬ

ఙೣ೔షమିఙೣ೔షభ
ఙೣ೔షభ

ฬ൰ 																	Otherwise
																																					ሺ6ሻ 

 
where ߤ௫, ߪ௫	are the mean and the standard deviation values of the ܫܣܮௌ஺், and obtained either for the period from 
September to February (non-growing season), or for the period from March to August (growing season). The 
determination of which period needs to obtain the ߤ௫, ߪ௫, is based on the occurrence of missing observation in that 

period. The ฬ
ఓೣ೔షమିఓೣ೔షభ

ఓೣ೔షభ
ฬ and ฬ

ఙೣ೔షమିఙೣ೔షభ
ఙೣ೔షభ

ฬ are the relative changes of the mean and the standard deviation of the 

previous two ܫܣܮௌ஺் observations. Adding or subtracting these relative changes are based on the condition of 
increase or decrease the ܫܣܮௌ஺் during the period of non-growing or growing season. 
 
 E-step: compute the expectation (with respect to the ܺ data) of the likelihood function of the model parameters by 

including the missing variables as they were observed, 
 
     ܳ൫ߠ, ୭୪ୢ൯ߠ ൌ ௑ൣlogܧ ݂ሺܻ, ,ܻ|ሻߠ|ܺ  ୭୪ୢ൧ߠ
                       ൌ ׬ log ݂ሺܻ, ሻߠ|ܺ ݂൫ܺ|ܻ, ୭୪ୢ൯݀ܺߠ ൌ ׬ log ݂ሺݔ, ,ݕ ,ݖ ሻߠ|ݓ ݂൫ݕ|ݔ, ,ݖ ,ݓ ݔ݀	୭୪ୢ൯ߠ 																																			ሺ7) 
 
 M-step: compute the ML estimates of the parameters ߠ by maximizing the expected likelihood found during the 

E-step i.e.,  ߠ୬ୣ୵ ൌ argmaxఏ ܳ൫ߠ, ,ߠ୭୪ୢ൯. Hence, by differentiation ܳ൫ߠ  and solve the ,ߠ ୭୪ୢ൯ with respect toߠ
differentiation equations for ߠ ൌ ሺߤ௫,  :௫ሻ, the maximum values are foundߪ
 

௫୬ୣ୵ߤ  ൌ ඥథାஏయ

଺ఒ
൅

ଶ൫ିଷఋఒାఈమ൯

ଷఒ ඥథାஏయ ൅ ఈ

ଷఒ
	 and ߪ௫୬ୣ୵ ൌ ටሺߤ௫୬ୣ୵ሻଶ െ

ଶ஼

஻
௫୬ୣ୵ߤ ൅

ா

஻
	,																																																																							ሺ8ሻ 

 

where ߶ ൌ െ36	ߣߙߜ ൅ ଶߣߟ	108 ൅ ଷ, Ψߙ	8 ൌ 12√3ඥ4	ߜଷߣ െ ଶߙଶߜ െ ߟߣߙߜ	18 ൅ ଶߣଶߟ	27 ൅ ߣ ,ߣଷߙߟ	4 ൌ  ,ܤܣ

ߙ ൌ ܥܣ	2 ൅ ߜ ,ܤܦ ൌ ܧܣ ൅ ଶܤ ൅ ߟ ,ܥܦ	2 ൌ ܤܥ ൅ ܣ ,ܧ݀ ൌ 4	
௔మஐఉ೤ೣ

మ

ఙ೤
మ ܤ , ൌ 4	ܽଶ, ܥ ൌ 2	ܾܽΩ, ܧ ൌ 2	ܽΩ ൅ ܾଶΩ, 

ܦ ൌ 2
௔௕ஐఉ೤ೣ

మ

ఙ೤
మ െ 4

௔మஐ൫௬ିఓ೤ିఉ೤೥ሺ௭ିఓ೥ሻିఉ೤ೢሺ௪ିఓೢሻ൯ఉ೤ೣ
ఙ೤
మ .  
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Here Ω ൌ ܸ	ට
గ

௔
݁
൬ି௖ା

್మ

రೌ൰, ܸ ൌ
ටఙ೤

మାఉ೤ೣ
మ ൫ఙ౥ౢౚ൯

మ

√ଶగටఙ೤
మ൫ఙ౥ౢౚ൯

మ
, ܽ ൌ ଵ

ଶ
൬ ଵ

൫ఙ౥ౢౚ൯
మ ൅

ఉ೤ೣ
మ

ఙ೤
మ ൰, ܾ ൌ ቆ

ቀ௬ିఓ೤ାఉ೤ೣఓ౥ౢౚିఉ೤೥ሺ௭ିఓ೥ሻିఉ೤ೢሺ௪ିఓೢሻቁఉ೤ೣ

ఙ೤
మ ൅

ఓ౥ౢౚ

൫ఙ౥ౢౚ൯
మቇ and ܿ ൌ ௕మ

ସ௔
 . 

 
 Check for convergence of ߠ୬ୣ୵ values. If หߠ୬ୣ୵ െ ୭୪ୢหߠ ൑ ୭୪ୢߠ is not satisfied, then let ߝ ←  ୬ୣ୵, and theߠ

algorithm returns to E-step, where ߝ is the stop criterion which has been selected to be 10-5. 
 
For the calculation details of integration EM-algorithm with GBN approach, we refer to (Mustafa et al., Subm.). 
 
Study Area Description 

The Speulderbos forests reserves are located between 52°15’08.1” N, 05°41’25.8” E, (Figure 2), covering 2390 
ha, near the village of Garderen, The Netherlands. A climate station is placed within a dense 2.5 ha Douglas-fir 
(Pseudotsuga menziesii) stand planted in 1962. The tree density is 785 trees ha−1. The tree height in 1995 was 
approximately 22 m, and it has increased to 32 m in 2006. The single sided LAI varies between 8 and 11 throughout 
the year(Steingröver and Jans, 1995). The stand is surrounded by a larger forested area of approximately 50 km2. The 
nearest edge is at a distance of 1.5 km southeast from the site. A small clearing of 1 ha is situated to the north of the 
stand (Van Wijk et al., 2001). For this work, we consider the area around the tower which is of 2.5 ha Douglas-fir trees 
only (Figure 2). 

 

 
 

Figure 2. Location of the study area in the Speulderbos forest 
 

Data Description 
The study is primarily based on the ASTER surface reflectance products (AST_07) data and fieldwork 

measurements from June 3, 2010 to October 16, 2010.  
Ground data: They were collected at the observation tower of the Speulderbos forest, which is equipped with a 

weather station and various scientific instruments. The required data for 3-PG model are climate data (16-day mean 
temperature, solar radiation, rainfall, vapor pressure deficit, and frost days), site factors (site latitude, maximum 
available water stored in the soil, and soil fertility rating),  initial conditions (stem, root, and foliage biomass; stocking; 
and soil water at some time), and 3-PG parameters. The parameters values which are used in this work are obtained 
and used by Waring and McDowell (2002). The spatial datasets were required to run the grid mode 3-PG model in this 
work contained soil data as the stored water in the soil and the grid location at 15 m resolution same as ASTER 
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resolution. In addition, the LAI was measured in the ground to validate the estimates of the ܫܣܮ஻ே values. The LAI is 
indirectly measured from the canopy transmission by the inversion of the measurements of the photosynthetically 
active radiation (PAR) above and below the canopy. These LAI values are adjusted by a clumping factor. For more 
details about calculating LAI at the Speulderbos forest, we refer to (Mustafa et al., 2011). Furthermore, spatial 
measurements of the LAI were surveyed in June 2010. A total 15 measurements were randomly taken at the study area 
using LAI-2000 Plant Canopy Analyzer (Li-COR). These measurements are considered as an effective LAI (݁ܫܣܮி஽). 
The ground points of the spatial LAI measurements were located using a handheld GPS device (Magellan Meridian 
Platinum). According to the manufacturer the device should have an accuracy of 7m for 95% of time. Furthermore, the 
GPS measurements were averaged over several minutes in order to enhance the accuracy. The spatial ݁ܫܣܮி஽ values 
used to establish the empirical relationship with ASTER data. We used effective LAI due to the fact that it is more 
closely associated with the nature of information gathered by above canopy remote sensors (Chen et al., 2004). Chen 
and Cihlar (1996) suggested using effective LAI for radiation interception consideration because ݁ܫܣܮி஽ is less 
variable and easier to measure than LAI, and because it has better correlation to the satellite vegetation indices than 
does LAI. 

Remotely sensed data: Three cloud free ASTER scenes of 
level 2 surface reflectance product (AST_07) were acquired from 
June 3, to October 16, 2010. Each scene was rectified using 10 
GCPs collected from 1: 25 000 topographic map sheets with a 
final Root Mean Square Error (RMS) of about 0.5 pixels. The 
VNIR bands of all images were resampled to a pixel size of 
15m2 using nearest-neighbor resampling. A nonlinear 
relationship has been found between the calculated NDVI from 
ASTER images (NDVI୅ୗ୘) and the spatial measurements of 
ி஽ܫܣܮ݁) ி஽ܫܣܮ݁ ൌ 0.74݁ଶ.ଵଵ	୒ୈ୚୍ఽ౏౐, R2=0.80, Figure 3). The 
LAI is calculated based on the empirical relationship and it has 
been considered as the LAI values from ASTER images 
 ஺ௌ் used in GBN model as the input source ofܫܣܮ This .(஺ௌ்ܫܣܮ)
the satellite imagery. 

  
                                                                                                                    Figure 3. The relationship between 

                                                                                                                     NDVI୅ୗ୘ and ݁ܫܣܮி஽. 
 

IMPLEMENTATION 
 
The GBN is applied to the Speulderbos forest in The Netherlands where the ܫܣܮி஽ is available as a time series 

from June 3, 2010 until October16, 2010. Only three ASTER images are available during the time study, whereas five 
images are missing due to the cloud coverage. The EM-algorithm is applied to estimate five missing ܫܣܮ஺ௌ் and used 
as an input into the GBN. The implementation of this work includes two cases. First, implementation of the GBN of 
point mode 3-PG model for the full period of four months after estimating missing ܫܣܮ஺ௌ் values using the EM-
algorithm. Second, is to implement GBN of grid mode 3-PG model for one ASTER data.  
 

RESULTS 
 
GBN Performance with Point Mode 3-PG Model 

Figure 4 shows the LAI values estimated from the GBN for a period of four months, along with the LAI derived 
from the 3-PG model, LAI ground observations, and the LAI ASTER that were found from the empirical relationship 
between NDVI୅ୗ୘ and ݁ܫܣܮி஽. The accuracy of the LAI 3-PG output is tested 
using the RMSE and the relative error (RE) rate with respect to the LAI 
ground observation. We found an RMSE of 1.40 and an RE of 18.74% (Table 
1). The 3-PG overestimated the LAI values across the studied period. The 
 ி஽, with an RMSE andܫܣܮ ஺ௌ் shows a big difference with respect to theܫܣܮ
an RE of 3.08 and 45.58%, respectively (Table 1). The missing ܫܣܮ஺ௌ் values 
are estimated with significant values such that no big deviation noticed with 
respect to the non-missing ܫܣܮ஺ௌ் values. They are indicated in Figure 4 as a 
black square symbols. For the four month period, we notice that the 

Table 1.  Mean, RMSEs, and REs for 
the various way to estimate the LAI. 
 

 Mean RMSE RE rate 

   ி஽ 6.68ܫܣܮ

 ஺ௌ் 3.61 3.08 45.82%ܫܣܮ

 ଷ௉ீ 7.88 1.40 18.74%ܫܣܮ

 ஻ே 6.51 0.46 5.86%ܫܣܮ
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combination of the ܫܣܮ஺ௌ் values and ܫܣܮଷ௉ீ in a GBN reduces the RMSE to 0.41 and the RE to 5.86%. 
 

  
 

Figure 4. LAI distribution of the Douglas-fir trees obtained from four sources, namely, the field data, the 3-PG 
model, the ASTER data, and the GBN. 

 
Spatial GBN Performance with Grid Mode 3-PG Model 

In this work, a full spatial LAI field dataset for the study area is not available at the ASTER resolution. The spatial 
output of the GBN is averaged over all pixels and compared with the ܫܣܮி஽ calculated from the PAR data at the tower. 
Therefore, the accuracy of the spatial GBN is assessed using the absolute error of the averaged spatial GBN with 
respect to the LAI ground observation at the tower. The absolute error between ܫܣܮி஽ and the ܫܣܮ஺ௌ், ܫܣܮଷ௉ீ, and 
 ி஽ is lower than the absoluteܫܣܮ ஻ே andܫܣܮ ஻ே are 3.02, 1.65, and 0.64, respectively. The absolute error betweenܫܣܮ
error between ܫܣܮଷ௉ீ and ܫܣܮி஽. This indicates that the output of the GBN is more accurate than the 3-PG model 
output. Figure 5 (a), (b), and (c) show the spatial LAI values of ASTER images, grid mode 3-PG model, and spatial 
GBN output of the study area.  

 

 
 

Figure 5.  Spatial LAI values of the Speulderbos forest obtained from one observation at June 3, 2010.  (a) LAI 
ASTER, (b) LAI output of grid mode 3-PG model, and (c) LAI estimated by the spatial GBN. 
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DISCUSSION AND CONCLUSION  
 

In this work, the GBN of the point mode 3-PG model with the EM-algorithm is applied to the Douglas-fir trees in 
the Speulderbos forest to estimate the missing LAI ASTER and improve LAI values during the period of four months 
(June until October, 2010). Moreover, the spatial estimation of LAI with 15m resolution is achieved for one ASTER 
image acquired in June 2010, by modifying the GBN model of the grid mode 3PG model.  

Our results show that the missing ܫܣܮ஺ௌ் is estimated with a small deviation among the non-missing ܫܣܮ஺ௌ் 
values. From the results we observed that the deviation of the GBN output and ܫܣܮி஽ is lower than the deviation 
between the 3-PG model output and the ܫܣܮி஽, indicating that the LAI output of the GBN is more accurate than that of 
the 3-PG model output alone and is closer to the ܫܣܮி஽. 

A major contribution of this work is to apply the methods of (Mustafa et al., Subm.; Mustafa et al., 2011) to finer 
spatial resolution images (ASTER). It shows the applicability of their methods with different satellite imagery. 
Moreover, the GBN is modified to infer 15m spatial estimation of LAI using a grid mode 3-PG model. It addresses the 
spatial LAI values pixel by pixel of ASTER image and 3-PG model output. As a strategy for the consideration of these 
two products, ASTER and 3-PG model, in a spatial GBN node, we resorted to the mathematical formulation in (4). 
From this equation, we can identify the intermediate node of the spatial GBN based on the contribution of the ASTER 
images, 3-PG output, and previous spatial GBN output. However, to account for the uncertainty in both ASTER images 
and 3-PG model, weighing factors are introduced. This new expression also includes the spatial GBN output of a 
previous moment due to the fact that the LAI values have no large changes within a relatively short period of space and 
time. 

A drawback of this work is that the spatial values of the LAI ground measurements of the study area are not 
available. This was a restriction during validation with respect to the spatial GBN and that was also the reason of 
applying the spatial GBN for one ASTER observation. However, this study can be applied to a small or a big area 
whenever the appropriate field data are available.  

Also, some other issues require further work. For instance, the time period of this study needs to be extended to 
include at least one year. This may show a better explanation of the model in terms of LAI seasonal change. Also, 
ground measurements should be collected for the study area as much as possible to the spatial and temporal 
resolution as the ASTER images to use as a validation of the spatial GBN model. Further, the modified version of 
GBN needs to be applied for more than one satellite image. This may be addressed by developing the EM-algorithm 
with the GBN of (Mustafa et al., Subm.) by integrating the EM-algorithm with the spatial version of the GBN to 
estimate the spatial missing LAI values of satellite images.  

From the present work, we conclude that the GBN model can be applied with different satellite images. 
Moreover, spatial estimation of LAI can be done with the modified version of the GBN, such that the deviation of 
the averaged LAI output of spatial GBN and LAI ground measurement is less than the deviation between the 
averaged LAI output of 3-PG and LAI ground measurement. 
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