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ABSTRACT

Object-based approaches to image analysis havevathconsiderable prominence in the last decadeasndow
widely considered superior to pixel-based approscharticularly when extracting features from highelution
remotely sensed data. The oft-cited advantagehefabject-based approach is the ability to simelbasly
incorporate spectral, geometric, textural, and extofl information into the classification processiowever,
context has been ignored in many applications @atdbased techniques, despite its importance maamucognition
and the current technical capacity to accommodaté/ee attribute this oversight to reliance on éinapproaches to
image analysis and argue that iterative approaetta@ more complex, can produce more stable dlaatibns and
lead to improved accuracy. We provide examplemffour recent land-cover mapping projects thatxshow
context - the relative position of individual objet¢o neighbor objects - was used to improve featiigscrimination
in heterogeneous landscapes. We also show hovkélyidactor in pattern recognition was combinedhwdata
fusion techniques to maximize object discriminationl to exploit existing investments in remote-8endata (e.g.,
imagery, LiDAR, and vector GIS datasets). Althougblusion of contextual information in object-bdsenage
analysis presents both analytical and processiafjectyes, we found that the benefits of improvecueacy and
landscape representation far outweigh potentiabkcos
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INTRODUCTION

The way that human analysts extract informatiormfrremotely-sensed data was outlined more than five
decades ago by Olson (1960). These principles, cmwmonly known as the “elements of image integiren”
(Ell), include: shape, size, tone, shadow, pattegrture, size, association, and resolution. t@se Ell, three
(shadow, pattern, and association) can be considenetextual in nature; they provide clues to ttentification of
individual features by revealing the composition alistribution of neighboring features. The importe of Ell in
general and contextual elements in particular Haeen widely acknowledged; Ell have been includeanany
remote sensing manuals, guides, and operating guoee (e.g., Estes 1977; Nefedow et al. 1969; foili and
Baker 1997; Tiwari 1974; and Watson et al. 198Burthermore, numerous studies from the cognitivense and
computer vision fields have confirmed the uniquke thhat context plays in human vision (Bai and WHm1996;
Balkenius 2003; Biederman 1982; De Graef et al.0199etzger an Antes 1983; Hunderson 1992; Olivid an
Torralba 2007; Wolf and Bileschi 2006).

Given the practical reliance on contextual inforioratin traditional photointerpretation workflowst is
perplexing that little emphasis was placed on cdntdnen the remote-sensing community moved towatdraated
classification techniques in the 1970s. Notableepsions include Moller-Jensen (1990) and Wharf®82), both
of whom developed methods for incorporating contett Landsat-based land-use and land-cover mappitigile
these studies were cutting-edge for their timegmeavork from the field of computer vision has betdemonstrated
the benefit of direct recognition and analyticad wé context (e.g., Bruzzone and Carlin 2006; Diaet al. 2009;
Murphy et al. 2006; Tu 2008). However, incorpargticontextual information into automated workfloviisst
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identified by Barnsley (1997), remains a fundamiecitallenge to effective use of high-resolution odety-sensed
data.

The most obvious explanation for the limited useaftext (along with geometric and textural infotima) in
automated classification approaches has beenati#idnal reliance on pixel-based approaches, whiete largely
limited to analysis of an image’s spectral progerti Object-Based Image Analysis (OBIA) techniqimsopduced
more than a decade ago, have eliminated this nafiwous. In OBIA, segmentation algorithms groupetsxinto
functional units called image objects; in additionspectral information, these units have inheggdmetric and
textural attributes, with contextual attributes eddhrough iterative processing. The ability toorporate context is
one of the key strengths of OBIA (Hay and Casfil®6), and numerous studies have shown that OBptoaghes
are superior to pixel-based approaches for extrgétiformation from high-resolution imagery (sea®&lhke 2010).

Interestingly, many studies that employ OBIA tecjugis cite context as one of the key advantageseof t
approach but never actually use it to classify ienabjects (e.g., Cleve et al. 2008; Kamagata &0dl8; Mallinis et
al. 2008). Numerous other studies make use ofeggnbut in a limited way, through the use of imaggect
hierarchies in which the relative properties ofeu@nd sub-objects are specified in the classifingrocess (e.g.,
Bruzzone and Carlin 2006; Campos et al. 2010; Doirit al. 2008; Laliberte et al. 2007; Tullis et2003). Other
studies have concluded that context should playngortant role in future work (Campos et al. 20B8deson et al.
2003), but do not provide specific guidance on Isosh an approach would work.

We attribute the limited use of contextual inforioatin OBIA to reliance on linear approaches. ltingar
work flow, segmentation algorithms are used to teréamage objects, which are then classified acogrdo their
attributes. Linear approaches to OBIA are appgalparticularly because they permit applicationbafte-force
approaches to image-object classification such lass@lication And Regression Trees (CART). Howewube
contextual Ell, particularly association and patteran only be obtained through an iterative preéeswhich the
identity of some features is used to inform clasatfon of others. In their study of spatial aaxtt Bar and Uliman
(1996) supported this iterative approach by cornlydhat objects, for which the class assignmens Wi@own,
improved the ability to identify nearby objects fohich the classification was unknown. Indeed, ¢hse for an
iterative approach to incorporating context is metv in the OBIA community. The oft-cited work froenz et al.
(2004), which provided much of the applied founolatior the OBIA field, supported an iterative apgeb, as did a
subsequent paper from Baatz et al. (2008). Nofethefew OBIA studies have successfully incorpstatontext
into iterative work flows (e.g., Oostdjijk et al0@8), but they generally focus on small study areas

OBJECTIVES AND STUDY SITES

In presenting practical examples, our objectivetdsdemonstrate the value of incorporating contdxtua
information into OBIA work flows through an iteraéi approach. While the examples are selectivg,¢bme from
actual projects that collectively produced morenth@0 billion pixels worth of land-cover informatio All land-
cover products were subjected to detailed quaBueance/quality-control measures and are now hesad by our
collaborators to support a wide range of decisicaking tasks. We do not attempt to quantify the dntpof
incorporating context on the accuracy of resultiagd-cover data, nor do we feel that such an assgdsis
currently feasible. Rather, we accept the prentlis¢ context is vital to successful image intergtien and
demonstrate how it can be used to identify feattias would be difficult, if not impossible, to iste accurately
using a linear approach.

The four recent projects we cite here are fromNhg-Atlantic region of the United States: The Abtans
region in Pennsylvania, Jefferson County in Wesgiviia, Lancaster County in Pennsylvania, and NemkYCity.
The overall goal in each case was development bickss land-cover map as part of a tree canopsassnt
using the USDA Forest Services Tree Canopy Assassimtocols (http://nrs.fs.fed.us/urban/utc/). maluce
costs and maximize return on existing investmeaitgyrojects relied solely on readily-available geay, LIiDAR,
and vector GIS data; no new data were acquiredsuil, many of the datasets could be consideredhes ideal
for the task. For example, some imagery contalmeided or inconsistent spectral information depiegdon the
time of year it was acquired. Also, the imagerd &iDAR datasets were acquired on different dates$ éid not
always align correctly. Finally, the vector dataswere typically dated and incomplete. Table &spnts a
summary of study site characteristics, pertinemtately sensed data, and the size of resulting taover products.
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Table 1 Study sites, source data sets, and size oftiregldnd cover rasters.

Study Site

Imagery

Vector

Land Cover

Abingtons

Leaf-off,
0.16m

RGB

Leaf-off, 1m

Building footprints
road polygons

716,266,710 pixels

Jefferson County

Leaf-on, NRGB, 1

n Leaf-off, Im

[Birng
approximations,
road centerlines

1,326,091,408
pixels

Lancaster County

Leaf-on, NRGB, 1

m Leaf-off, 1.5m

uil@ing footprints,
road polygons

4,776,150,722
pixels

New York City

Mix of leaf-on/off,
NRGB, 0.15m

Leaf-off, 0.3m

Building footprints
road polygons

97,528,707,488
pixels

EXAMPLES OF CONTEXT-BASED CLASSIFICATION

The example projects were coordinated by threeyatgmlwho collectively have more than 13 years of
experience developing OBIA systems. In our apghpghe goal was to translate human perceptiomamddcape
complexity into a set of rules that segmented traglable datasets into functional image objects tedh classified
them into pre-determined land-cover categoriesis Tile-based expert system was developed using digaition
Network Language (CNL), which is available in trenamercial OBIA software package eCognition ® (foripe
Definiens). CNL was selected because it: 1) ptesiaccess to a broad range of segmentation,fidasen, image
processing, and morphological algorithms; 2) retiesa graphical user interface that allows non-maogners to
construct rule-based expert systems; 3) permiteldpment of customized features that describe ggnéad 4)
facilitates efficient processing of massive dats sising eCognition Server, which supports pargitetessing and
grid computing.

Our approach to building rule sets focused on grymreplicate human cognition to the fullest exjgossible.
In a rule-based expert system, this involves temiive application of segmentation and classificaalgorithms
until the desired end state (i.e., accurate langkcobjects) is achieved. With iterative procegsiie amount of
contextual information increases with each suceesstiep in the rule set, progressively quantifyimg relationship
between an individual image object and its neigimgppbjects. As more objects are classified, marelscape
context is available to classify other, less eaddfined objects. Early in processing, we usetivaly simple rules
to classify the objects in order to divide the semto broad categories, often based on threslfelds spectral
thresholds for imagery and height thresholds f@AR-derived digital surface models). These initisles create a
series of temporary classifications that presage,do not necessarily match, the final seven lamgkc classes,
including “bright” vs. “dark” or “short” vs. “tall. Later, rules generally become complicated, oftembining
multiple contextual variables from multiple prelmary classes. Although the final rule set permaisomated
feature extraction, its development is entirely maneach algorithm is added to the processing esexpu if it
approximates a human’s ability to discern pattemmomag heterogeneous objects. Accordingly, a rukeise
conceptually similar to a photointerpretation kegch moves sequentially through a series of decisants that
assign features to specific land-cover categories.

Like photointerpretation keys, rule sets can bevaitably complex. To derive enough contextual infation
for effective land-cover classification, our rulets included 362 to 512 separate algorithms ancdifegu 36 to 78
temporary classes. Although the rule sets weremgdlyg similar in flow and composition, each wasque to the
data sets for which it was designed, and eachdhe tteratively tested and refined on small repmésttive subsets.
When each rule set was ultimately applied to tHeextent of its corresponding study area, 3-6atiens were
required to incorporate additional refinements.
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Abingtons

The chief challenge in the Abingtons project wasating tree canopy from remotely sensed dataweae
less than ideal for the task. Both the imagery thiedLiDAR were acquired in the same year, buepbsate times
and under leaf-off conditions. Furthermore, thagery, which consisted of 8-bit, natural color tigporthophotos,
contained relatively little spectral informatiohlevertheless, we found that experienced image atsalyere able to
manually delineate tree canopy using a combinatiotihe orthophotos and the LIiDAR with at a levelaafcuracy
that exceeded the project specifications.

In assessing the visual cues used in the manuatphetation process we determined that LIDAR was
particularly useful in extracting tree canopy, ahdt contextual information played a key role istitiguishing
patches of deciduous tree canopy. Coniferous eperid isolated deciduous trees tended to be yeadidgnizable
in the LIDAR due to branching patterns and, in thse of the coniferous species, the presence dfageé-igure
2b). Tree canopy from these classes could beljabgeextracted using object attributes obtainedatiy from the
LiDAR such as Z deviation, slope, and height abgraind In contrast, deciduous forested patchesbatistinct
object attributes. The leaf-off and point dengibaracteristics of the LIDAR created a situatinnnhich dense,
closed canopy deciduous forest patches appeartek ihiDAR as a sparse collection of trees. We wadke to
successfully extract these patches though aniiterptocess.

Figure 1 shows a portion of the CNL rule set thaswleveloped to initially classify these decidutarested
patches (further refinement of the patches occuated in the rule set, which is not depicted igufe 1). Although
an in-depth explanation of the rule set is not fdesswithin the confines of this paper, there arerfgeneral phases
that warrant mention. In the first phase, imaggedis are created through the application of a ineslblution
segmentation algorithm. In the second phase theatuarea” was incorporated. The “urban area” gexserated
early on in the rule set through an iterative psscthat examined proximity of objects to buildireysd roads
obtained from the vector layers. This type of mgpicontextual information was particularly valdalas deciduous
tree canopy patches tended to exist outside ofatteia. However, some deciduous tree patchesatidithin the
urban area, but they always bordered tree patchesde of the urban area. The third phase incatpdr this
knowledge, first identifying tree patches outsideéhe urban area and then growing those tree capafphes into
neighboring image objects within the urban areagi$uzzy logic. In the final phase, image-objerarchies,
proximity analyses, and object comparisons to coatily refine the tree patch class. The final sifeation, shown
in Figure 2, demonstrates that a variety of tra@opa types were extracted despite the limited arhofispectral
information and widely varying characteristics log tLiDAR data.

PO ¥ AT TN A i T A R,
= = Tree Patches Gt

- = Multiresolution segmentation
- = Incorporate urban area
I7 at Level 1: copy creating 'Level Sub’ below
ML all at Level Sub: unclassified
e unclassified at Level Sub: merge region
§ on UrbanArea _Urban Area at Level L: synchronize map ‘main’
Tree Patch Candidates
M, unclassified with Rel. area of sub objects _Urban Area (1) < 0.25 at Level 1: _Tree Patches
~= Tree Patches at Level 1: <- unclassified Classification value of _Tree Patches = 1
= = Context-based Refinement
IT at Level 1: copy creating 'Level Super' above
M, _Tree Patches at Level Super _Active
ML _Active - similarto, _Bright, _Building Candidates, Building edges 2, Building edges, Building ed
e _Active at Level Supen merge region
s _Target at Level Super: merge region
$7 6 _Active at Level Super: coat with _Temp 1 into _Target
iij Gx: _Target at Level Super: coat with_Temp 2 into _Temp 1

=]

~ loop: _Active at Level Super: <- _Temp1

o loop: _Target at Level Super: <- _Temp 2

ML _Target with Area < 600 and Rel. borderto _Active =1 at Level Super: _Tree Canopy openings
;_'_; 20x: _Target at Level Super: coat with_Temp 1 into _Active

v loop: Target at Level Super: <- _Templ

ww _Active at Level Super: merge region

~ loop: _Target at Level Super: <- _Active Area < 5000

ML _Tree Patches with Existence of super objects _Active (1) = 0 at Level1: Templ

M. Temp1at Level1: unclassified

3¢ at Level Super: delete

Figure 1. Portion of the rule set for the Abingtons regioedi$o identify deciduous patches of tree canopguitin
the use of context-based rules.
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Figure 2. Source imagery (a), LIDAR (b), and resultingetreanopy classification (c) for the Abingtons regio
Tree canopy was accurately classified for decidupatches (1), coniferous trees (2), and isolated
deciduous trees (3) using a combination of dirégéat attributes along with customized iterativetext-
based processes.

Jefferson County

An iterative approach to OBIA allows contextualdrmation to be used to improve the quality of imabgcts
derived from segmentation algorithms. For the elsfin County project we developed a technique dalle
“meaningful objects.” The underlying rationale fbe meaningful objects approach is that segmentatigorithms
are inherently flawed, and that the resulting otsjearely resemble the polygons that an experiencedery
analyst would generate through heads-up digitizilige surmised that this is because humans are tsineausly
classifying and segmenting in a single process.d®xeloping a workflow that iteratively combined Itiple passes
of segmentation and classification routines we walpée to generate objects that closely resembledidiap
digitizing, thereby simplifying the subsequent siisation of those objects.

The driving challenge for this approach was thecspésimilarities between exposed soil in agricrdt fields
and impervious surfaces. Prior to incorporatirg ireaningful objects routine we had already bedm talclassify
buildings and tree canopy using a combination eflthDAR surface models, imagery, and existing vetayers.
Thus, the starting point for the meaningful objecistine was all of objects that remained unclasgif The rule set
is depicted in Figure 3. The process began wistimadard multiresolution segmentation at a findesbased on
only the LIDAR intensity data. Objects were thearged based on the similarity of their mean vaindbe LIDAR
intensity layer and the three imagery bands usisgetral difference algorithm. Next, an iteratigatine, starting
with the largest object in the scene, would consumighboring objects based on their spectral andestual
properties. The context-based fuzzy logic usee@\valuate the objects for grouping is shown in Fegdr A
comparison of the output from the meaningful olgempproach to the output of both a “fine” and “ceérscale
standard multiresolution segmentation is showniguie 5.

(A BT T TS PTUCE A5 TOSOTTITR o ey g oA E T T,
b = Segmentation

ik Mutiresolution and spectral difference
L3 unclassified at Level 1: 10 [shape0.3 compct.0.5]

- = Loop to create homogenous objects
i 2% unclassified at Level 1: max Area in domain: _Active
s _Active at Level 1: <- unclassified Classification value of _Active - similarto >= 0.3
LML Activeat Levell:_Templ
== Revert
{L _Temp1 at Level 1: unclassified

Figure 3. Meaningful objects portion of the rule set fatme Jefferson County project.
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Minimum value
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SH ]
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Entire 1ange of values: [0..1]
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Class; _Active - similar to

_Ceesl |

Figure 4. Context-based fuzzy logic used to evaluate imalgject fusion as part of the “meaningful objects”
routine in the Jefferson County rule set. The getoim mean of the mean absolution difference of the
brightness and NDVI derived from the imagery, alavith the relative border to the active image objec

were computed. Only those objects whose valuesmetutoff threshold were consumed by the “active”
image object.
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Figure 5. Comparison of objects generated through theiegifn of the multiresolution algorithm availakite

eCognition to the iterative approach used in thisjgrt to generate “meaningful objects” through a

combination of segmentation and classificationirmg. A fine scale segmentation (a) results inrdte
(driveway) and green (agricultural field) objecesvimg nearly identical spectral and geometric progs

making classification difficult. A coarse scalegs®ntation (b) yields objects that contain multiple

features. The “meaningful objects” routine (c)lgseobjects that better represent the land cowaufes,
making it easier to classify the objects basedheir spectral and geometric properties.

Lancaster County

Bare soils and agricultural fields can be easilgdlaissified as impervious surfaces because they sthare
spectral similarities with driveways, sidewalks,nceete bunkers, and other developed features. vbal ahis
problem in Lancaster County, PA, we used the radalibcation of buildings and roads as a contexfilielr for
discriminating bare soils and fields from actualpervious surfaces. Detailed planimetric layersrasgnting
buildings and roads were first used to classifys¢héeatures, then for creating a layer represerttingeuclidian
distance from buildings and roads to all otheresgt. Initial classification was based on spedatrékria; non-
vegetated features were identified using a norredldifference vegetation index (NDVI) threshold (XIB< 0) and
a fuzzy range of imagery brightness (mean of tisélg bands ranging from 100 to 185). Subsequessification
was contextual; non-vegetated features that ar&kalylto be impervious surfaces (e.g., bare soilsparsely-
vegetated fields) were reclassified to the vegdtatass. Specifically, non-vegetated features émmgd buildings
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were retained in the original class (Figure 6b) levmon-vegetated features distant from roads (>18)3and
buildings (>22.9m) and with a building density >%mn& re-assigned to the vegetated class (Figure T8t}
contextual logic is not foolproof; some impervidesatures may be located far from buildings and soadowever,
it is a reasonable assumption for an agriculturehdike Lancaster County where a proportion oimfdields will
have exposed soil or thin cover.

Figure 6. Classification of impervious features from digitarthophotography (a) using spectra resulted in
misclassification of agricultural fields as impeyus features (b). Contextual information basedhen
distance of impervious features from buildings aodds, density of buildings, and impervious feature
neighboring buildings and/or roads reduced mistfiaa§on of agricultural fields and bare soils as
impervious features (c).

New York City

Landscape context can also be used to identify ediminate erroneous tree-canopy objects in denbarur
settings. For New York City, we used a 0.30-m LiR#erived surface model to map canopy vegetatiotihé¢o
scale of individual trees. Like many cities, hoeeWew York contains various above-ground feattinas can be
confused with trees, including lampposts, doorwagiags, and the margins of elevated roadways. ulfirspectral
imagery is available, it can be used to developetagpn indices (e.g., NDVI) that help discriminateese
impervious-surface objects from actual tree candyoy,the color-infrared orthophotography (0.15 maikable for
New York City was acquired during a series of spraates that encompassed both leaf-off and leafamopy
conditions. Consequently, NDVI could not servaasliable city-wide indicator of tree canopy vegimn.

We addressed this problem by examining the locaifosmall tree-canopy objects relative to buildingsads,
and other impervious surfaces. For example, Indi@ssification steps incorrectly identified paiahtree canopy
adjacent to or above elevated roadways (Figure Aajood thematic layer exists for roads in New K Qity, but
elevated roads are not coded separately. Alsocouwdd not simply eliminate all tree canopy objecturring
within the thematic roads layer because we interidedap actual tree canopy when it overhangs raadsother
structures. Alternatively, we first isolated roadmsurfaces higher than 9.1 m (30 ft) abovegrouna@dmparing
roads to a normalized digital surface model (nDSMjived from LIDAR. We next identified all tree+uapy
objects that partly overhang these elevated roadsdivided them by the thematic road boundary (FEgtb).
Using size and adjacency criteria, we then elingidatll small canopy objects that directly border gkelected roads.
Subsequent cleanup steps also eliminated any ramganee-canopy “islands” occurring on the elevateads. The
final tree-canopy map effectively discriminatesuatttrees from false objects that are unavoidabiiéaets of
LiDAR-based feature extraction in complex urbaniemments (Figure 7c).

ASPRS 2011 Annual Conference
Milwaukee, Wisconsine® May 1-5, 2011



Figure 7. Initial classification of tree canopy on and au#jnt to an elevated roadway, New York City (a).
Erroneous tree-canopy objects along the road margist be selected and eliminated while preserving
nearby objects that are correctly classified asstreFalse tree-canopy objects (orange and magaote)
the margin of an elevated roadway, New York City. (bThese objects were identified by size and
adjacency criteria. Final tree-canopy classifmatalong the margin of an elevated roadway, NewkYor
City (c). All false objects have been removed whireserving nearby objects that correctly reptesen
trees.

CONCLUSIONS

Functionally, context-based processing in OBIA ist raltogether dissimilar from traditional statistic
classifiers; objects are classified by rules thakimize the probability of correctly distinguishirgrtain features
from surrounding ones. Aside from the focus oneoty rather than pixels, the vital distinction hsitt multiple
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incremental gains in knowledge derived from earpencessing steps are used to inform subsequeihiatioan
criteria. Context is thus an emergent propertys ihot present in the original source data andtrmsiead be
developed from sequential analysis of feature atdread relative landscape position.

In our projects, we first classified the featurbattare easily identified by their own inherent relcteristics:
spectral value, height, shape, size, vector ateibatc. If the source datasets were high qualitgse initial
processing steps generally captured about 70%difidtual scenes. However, subsequent processienjtably
became more complex and context-based; objecthi@nremaining 30% could not be discriminated by rthei
individual characteristics alone, and only throegimparison to other objects could they be effebtiisolated and
classified. This is the same sequence of iteratbgnition that humans use in manual photointegpicat. We first
focus on features that are immediately familiarugy such as water bodies, roads, and buildingsetlobjects
anchor our understanding of landscape pattern. féaiures that are not so readily identifiable, seenpare and
contrast them with neighboring features, lookinglémical connections.

We strongly believe that incorporating contextudgbirmation into our OBIA workflows is one of theasons
we have been able to accurately extract informafiiom massive remotely sensed data sets acrossopeteous
landscapes. We find it surprising, that despit@lamnevidence in the peer reviewed literature, fedlighed studies
on automated classification approaches in the rersehsing community make use of context. Whenl-{piased
approaches were dominant, this avoidance was unadeible as the technology simply was not therazerGthe
recent advances in OBIA, we theorize that the gnobis likely a cultural one, stemming from the slexsion of
imagery tradecraft in favor of linear, statistiG@proaches. The effective application of OBIA teadbgy will
require a workforce that understands the fundanentmitive processes that allow humans to so gifely extract
information from remotely sensed data, not a wadddthat simply sees imagery as a set of datagoint
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