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ABSTRACT 
 
Object-based approaches to image analysis have achieved considerable prominence in the last decade and are now 
widely considered superior to pixel-based approaches, particularly when extracting features from high-resolution 
remotely sensed data.  The oft-cited advantage of the object-based approach is the ability to simultaneously 
incorporate spectral, geometric, textural, and contextual information into the classification process.  However, 
context has been ignored in many applications of object-based techniques, despite its importance to human cognition 
and the current technical capacity to accommodate it.  We attribute this oversight to reliance on linear approaches to 
image analysis and argue that iterative approaches, while more complex, can produce more stable classifications and 
lead to improved accuracy.   We provide examples from four recent land-cover mapping projects that show how 
context - the relative position of individual objects to neighbor objects - was used to improve feature discrimination 
in heterogeneous landscapes.  We also show how this key factor in pattern recognition was combined with data 
fusion techniques to maximize object discrimination and to exploit existing investments in remote-sensing data (e.g., 
imagery, LiDAR, and vector GIS datasets).  Although inclusion of contextual information in object-based image 
analysis presents both analytical and processing challenges, we found that the benefits of improved accuracy and 
landscape representation far outweigh potential costs. 
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INTRODUCTION 
 

The way that human analysts extract information from remotely-sensed data was outlined more than five 
decades ago by Olson (1960).  These principles, now commonly known as the “elements of image interpretation” 
(EII), include:  shape, size, tone, shadow, pattern, texture, size, association, and resolution.  Of these EII, three 
(shadow, pattern, and association) can be considered contextual in nature; they provide clues to the identification of 
individual features by revealing the composition and distribution of neighboring features.  The importance of EII in 
general and contextual elements in particular have been widely acknowledged; EII have been included in many 
remote sensing manuals, guides, and operating procedures (e.g., Estes 1977; Nefedow et al. 1969; Philipson and 
Baker 1997; Tiwari 1974; and Watson et al. 1980).  Furthermore, numerous studies from the cognitive science and 
computer vision fields have confirmed the unique role that context plays in human vision (Bai and Ullman 1996; 
Balkenius 2003; Biederman 1982; De Graef et al. 1990; Metzger an Antes 1983; Hunderson 1992; Olivia and 
Torralba 2007; Wolf and Bileschi 2006). 

Given the practical reliance on contextual information in traditional photointerpretation workflows, it is 
perplexing that little emphasis was placed on context when the remote-sensing community moved toward automated 
classification techniques in the 1970s.  Notable exceptions include Moller-Jensen (1990) and Wharton (1982), both 
of whom developed methods for incorporating context into Landsat-based land-use and land-cover mapping.  While 
these studies were cutting-edge for their time, recent work from the field of computer vision has better demonstrated 
the benefit of direct recognition and analytical use of context (e.g., Bruzzone and Carlin 2006; Divvala et al. 2009; 
Murphy et al. 2006; Tu 2008).  However, incorporating contextual information into automated workflows, first 
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identified by Barnsley (1997), remains a fundamental challenge to effective use of high-resolution remotely-sensed 
data. 

The most obvious explanation for the limited use of context (along with geometric and textural information) in 
automated classification approaches has been the traditional reliance on pixel-based approaches, which were largely 
limited to analysis of an image’s spectral properties.  Object-Based Image Analysis (OBIA) techniques, introduced 
more than a decade ago, have eliminated this narrow focus.  In OBIA, segmentation algorithms group pixels into 
functional units called image objects; in addition to spectral information, these units have inherent geometric and 
textural attributes, with contextual attributes added through iterative processing.  The ability to incorporate context is 
one of the key strengths of OBIA (Hay and Castilla 2006), and numerous studies have shown that OBIA approaches 
are superior to pixel-based approaches for extracting information from high-resolution imagery (see Blaschke 2010).   

Interestingly, many studies that employ OBIA techniques cite context as one of the key advantages of the 
approach but never actually use it to classify image objects (e.g., Cleve et al. 2008; Kamagata et al. 2008; Mallinis et 
al. 2008).  Numerous other studies make use of context, but in a limited way, through the use of image object 
hierarchies in which the relative properties of super- and sub-objects are specified in the classification process (e.g., 
Bruzzone and Carlin 2006; Campos et al. 2010; Durieux et al. 2008; Laliberte et al. 2007; Tullis et al. 2003).  Other 
studies have concluded that context should play an important role in future work (Campos et al. 2008; Hodeson et al. 
2003), but do not provide specific guidance on how such an approach would work. 

We attribute the limited use of contextual information in OBIA to reliance on linear approaches.  In a linear 
work flow, segmentation algorithms are used to create image objects, which are then classified according to their 
attributes.  Linear approaches to OBIA are appealing, particularly because they permit application of brute-force 
approaches to image-object classification such as Classification And Regression Trees (CART).  However, the 
contextual EII, particularly association and pattern, can only be obtained through an iterative process in which the 
identity of some features is used to inform classification of others.   In their study of spatial context, Bar and Ullman 
(1996) supported this iterative approach by concluding that objects, for which the class assignment was known, 
improved the ability to identify nearby objects for which the classification was unknown.  Indeed, the case for an 
iterative approach to incorporating context is not new in the OBIA community.  The oft-cited work from Benz et al. 
(2004), which provided much of the applied foundation for the OBIA field, supported an iterative approach, as did a 
subsequent paper from Baatz et al. (2008).  Nonetheless, few OBIA studies have successfully incorporated context 
into iterative work flows (e.g., Oostdjijk et al. 2008), but they generally focus on small study areas. 

 
 

OBJECTIVES AND STUDY SITES 
 

In presenting practical examples, our objective is to demonstrate the value of incorporating contextual 
information into OBIA work flows through an iterative approach.  While the examples are selective, they come from 
actual projects that collectively produced more than 100 billion pixels worth of land-cover information.  All land-
cover products were subjected to detailed quality-assurance/quality-control measures and are now being used by our 
collaborators to support a wide range of decision making tasks.  We do not attempt to quantify the impact of 
incorporating context on the accuracy of resulting land-cover data, nor do we feel that such an assessment is 
currently feasible.  Rather, we accept the premise that context is vital to successful image interpretation and 
demonstrate how it can be used to identify features that would be difficult, if not impossible, to isolate accurately 
using a linear approach. 

The four recent projects we cite here are from the Mid-Atlantic region of the United States:  The Abingtons 
region in Pennsylvania, Jefferson County in West Virginia, Lancaster County in Pennsylvania, and New York City.  
The overall goal in each case was development of a 7-class land-cover map as part of a tree canopy assessment 
using the USDA Forest Services Tree Canopy Assessment Protocols (http://nrs.fs.fed.us/urban/utc/).  To reduce 
costs and maximize return on existing investments, all projects relied solely on readily-available imagery, LiDAR, 
and vector GIS data; no new data were acquired.  As such, many of the datasets could be considered less than ideal 
for the task.  For example, some imagery contained limited or inconsistent spectral information depending on the 
time of year it was acquired.  Also, the imagery and LiDAR datasets were acquired on different dates and did not 
always align correctly.  Finally, the vector datasets were typically dated and incomplete.  Table 1 presents a 
summary of study site characteristics, pertinent remotely sensed data, and the size of resulting land-cover products. 
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Table 1.  Study sites, source data sets, and size of resulting land cover rasters. 
 

Study Site Imagery LiDAR Vector Land Cover 

Abingtons Leaf-off, RGB, 
0.16m 

Leaf-off, 1m Building footprints, 
road polygons 

716,266,710 pixels 

Jefferson County Leaf-on, NRGB, 1m Leaf-off, 1m Building 
approximations, 
road centerlines 

1,326,091,408 
pixels 

Lancaster County Leaf-on, NRGB, 1m Leaf-off, 1.5m Building footprints, 
road polygons 

4,776,150,722  
pixels 

New York City Mix of leaf-on/off, 
NRGB, 0.15m 

Leaf-off, 0.3m Building footprints, 
road polygons 

97,528,707,488 
pixels 

 
 

EXAMPLES OF CONTEXT-BASED CLASSIFICATION 
 

The example projects were coordinated by three analysts who collectively have more than 13 years of 
experience developing OBIA systems.   In our approach, the goal was to translate human perception of landscape 
complexity into a set of rules that segmented the available datasets into functional image objects and then classified 
them into pre-determined land-cover categories.  This rule-based expert system was developed using the Cognition 
Network Language (CNL), which is available in the commercial OBIA software package eCognition ® (formerly 
Definiens).  CNL was selected because it:  1) provides access to a broad range of segmentation, classification, image 
processing, and morphological algorithms; 2) relies on a graphical user interface that allows non-programmers to 
construct rule-based expert systems; 3) permits development of customized features that describe context; and 4) 
facilitates efficient processing of massive data sets using eCognition Server, which supports parallel processing and 
grid computing. 

Our approach to building rule sets focused on trying to replicate human cognition to the fullest extent possible.  
In a rule-based expert system, this involves the iterative application of segmentation and classification algorithms 
until the desired end state (i.e., accurate land-cover objects) is achieved.  With iterative processing, the amount of 
contextual information increases with each successive step in the rule set, progressively quantifying the relationship 
between an individual image object and its neighboring objects.  As more objects are classified, more landscape 
context is available to classify other, less easily defined objects.  Early in processing, we use relatively simple rules 
to classify the objects in order to divide the scenes into broad categories, often based on thresholds (e.g., spectral 
thresholds for imagery and height thresholds for LiDAR-derived digital surface models).  These initial rules create a 
series of temporary classifications that presage, but do not necessarily match, the final seven land-cover classes, 
including “bright” vs. “dark” or “short” vs. “tall.”  Later, rules generally become complicated, often combining 
multiple contextual variables from multiple preliminary classes.  Although the final rule set permits automated 
feature extraction, its development is entirely manual; each algorithm is added to the processing sequence if it 
approximates a human’s ability to discern pattern among heterogeneous objects.  Accordingly, a rule set is 
conceptually similar to a photointerpretation key; each moves sequentially through a series of decision points that 
assign features to specific land-cover categories. 

Like photointerpretation keys, rule sets can be unavoidably complex.  To derive enough contextual information 
for effective land-cover classification, our rule sets included 362 to 512 separate algorithms and specified 36 to 78 
temporary classes.  Although the rule sets were generally similar in flow and composition, each was unique to the 
data sets for which it was designed, and each had to be iteratively tested and refined on small representative subsets.  
When each rule set was ultimately applied to the full extent of its corresponding study area, 3-6 iterations were 
required to incorporate additional refinements.  
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Abingtons 
The chief challenge in the Abingtons project was extracting tree canopy from remotely sensed data that were 

less than ideal for the task.  Both the imagery and the LiDAR were acquired in the same year, but at separate times 
and under leaf-off conditions.  Furthermore, the imagery, which consisted of 8-bit, natural color digital orthophotos, 
contained relatively little spectral information.  Nevertheless, we found that experienced image analysts were able to 
manually delineate tree canopy using a combination of the orthophotos and the LiDAR with at a level of accuracy 
that exceeded the project specifications. 

In assessing the visual cues used in the manual interpretation process we determined that LiDAR was 
particularly useful in extracting tree canopy, and that contextual information played a key role in distinguishing 
patches of deciduous tree canopy.  Coniferous species and isolated deciduous trees tended to be readily recognizable 
in the LiDAR due to branching patterns and, in the case of the coniferous species, the presence of needles (Figure 
2b).  Tree canopy from these classes could be largely be extracted using object attributes obtained directly from the 
LiDAR such as Z deviation, slope, and height above ground  In contrast, deciduous forested patches had no distinct 
object attributes.   The leaf-off and point density characteristics of the LiDAR created a situation in which dense, 
closed canopy deciduous forest patches appeared in the LiDAR as a sparse collection of trees.  We were able to 
successfully extract these patches though an iterative process. 

Figure 1 shows a portion of the CNL rule set that was developed to initially classify these deciduous forested 
patches (further refinement of the patches occurred later in the rule set, which is not depicted in Figure 1).  Although 
an in-depth explanation of the rule set is not possible within the confines of this paper, there are four general phases 
that warrant mention.  In the first phase, image objects are created through the application of a multiresolution 
segmentation algorithm.  In the second phase the “urban area” was incorporated.  The “urban area” was generated 
early on in the rule set through an iterative process that examined proximity of objects to buildings and roads 
obtained from the vector layers.  This type of a priori contextual information was particularly valuable as deciduous 
tree canopy patches tended to exist outside of this area.   However, some deciduous tree patches did fall within the 
urban area, but they always bordered tree patches outside of the urban area.  The third phase incorporated this 
knowledge, first identifying tree patches outside of the urban area and then growing those tree canopy patches into 
neighboring image objects within the urban area using fuzzy logic.  In the final phase, image-object hierarchies, 
proximity analyses, and object comparisons to continually refine the tree patch class.  The final classification, shown 
in Figure 2, demonstrates that a variety of tree canopy types were extracted despite the limited amount of spectral 
information and widely varying characteristics of the LiDAR data. 

 

 
 
Figure 1.  Portion of the rule set for the Abingtons region used to identify deciduous patches of tree canopy through 

the use of context-based rules. 
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Figure 2.  Source imagery (a), LIDAR (b), and resulting tree canopy classification (c) for the Abingtons region.  

Tree canopy was accurately classified for deciduous patches (1), coniferous trees (2), and isolated 
deciduous trees (3) using a combination of direct object attributes along with customized iterative context-
based processes. 

 
Jefferson County 

An iterative approach to OBIA allows contextual information to be used to improve the quality of image objects 
derived from segmentation algorithms.  For the Jefferson County project we developed a technique called 
“meaningful objects.”  The underlying rationale for the meaningful objects approach is that segmentation algorithms 
are inherently flawed, and that the resulting objects rarely resemble the polygons that an experienced imagery 
analyst would generate through heads-up digitizing.  We surmised that this is because humans are simultaneously 
classifying and segmenting in a single process.  By developing a workflow that iteratively combined multiple passes 
of segmentation and classification routines we were able to generate objects that closely resembled heads-up 
digitizing, thereby simplifying the subsequent classification of those objects. 

The driving challenge for this approach was the spectral similarities between exposed soil in agricultural fields 
and impervious surfaces.  Prior to incorporating the meaningful objects routine we had already been able to classify 
buildings and tree canopy using a combination of the LiDAR surface models, imagery, and existing vector layers.  
Thus, the starting point for the meaningful objects routine was all of objects that remained unclassified.  The rule set 
is depicted in Figure 3.  The process began with a standard multiresolution segmentation at a fine scale based on 
only the LiDAR intensity data.  Objects were then merged based on the similarity of their mean values in the LiDAR 
intensity layer and the three imagery bands using a spectral difference algorithm.  Next, an iterative routine, starting 
with the largest object in the scene, would consume neighboring objects based on their spectral and contextual 
properties.  The context-based fuzzy logic used to evaluate the objects for grouping is shown in Figure 4.  A 
comparison of the output from the meaningful objects approach to the output of both a “fine” and “coarse” scale 
standard multiresolution segmentation is shown in Figure 5. 
 

 
Figure 3.  Meaningful objects portion of the rule set form the Jefferson County project. 
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Figure 4.  Context-based fuzzy logic used to evaluate image object fusion as part of the “meaningful objects” 

routine in the Jefferson County rule set.  The geometric mean of the mean absolution difference of the 
brightness and NDVI derived from the imagery, along with the relative border to the active image object 
were computed.  Only those objects whose values met the cutoff threshold were consumed by the “active” 
image object. 
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Figure 5.  Comparison of objects generated through the application of the multiresolution algorithm available in 

eCognition to the iterative approach used in this project to generate “meaningful objects” through a 
combination of segmentation and classification routines.  A fine scale segmentation (a) results in the red 
(driveway) and green (agricultural field) objects having nearly identical spectral and geometric properties, 
making classification difficult.  A coarse scale segmentation (b) yields objects that contain multiple 
features.  The “meaningful objects” routine (c) yields objects that better represent the land cover features, 
making it easier to classify the objects based on their spectral and geometric properties. 

 
Lancaster County 

Bare soils and agricultural fields can be easily misclassified as impervious surfaces because they often share 
spectral similarities with driveways, sidewalks, concrete bunkers, and other developed features.  To avoid this 
problem in Lancaster County, PA, we used the relative location of buildings and roads as a contextual filter for 
discriminating bare soils and fields from actual impervious surfaces.  Detailed planimetric layers representing 
buildings and roads were first used to classify these features, then for creating a layer representing the Euclidian 
distance from buildings and roads to all other features.  Initial classification was based on spectral criteria; non-
vegetated features were identified using a normalized difference vegetation index (NDVI) threshold (NDVI < 0) and 
a fuzzy range of imagery brightness (mean of the visible bands ranging from 100 to 185).  Subsequent classification 
was contextual; non-vegetated features that are unlikely to be impervious surfaces (e.g., bare soil or sparsely-
vegetated fields) were reclassified to the vegetated class.  Specifically, non-vegetated features bordering buildings 
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were retained in the original class (Figure 6b) while non-vegetated features distant from roads (>18.3 m) and 
buildings (>22.9m) and with a building density >5 were re-assigned to the vegetated class (Figure 6c). This 
contextual logic is not foolproof; some impervious features may be located far from buildings and roads.  However, 
it is a reasonable assumption for an agricultural area like Lancaster County where a proportion of farm fields will 
have exposed soil or thin cover. 

 

 
Figure 6. Classification of impervious features from digital orthophotography (a) using spectra resulted in 

misclassification of agricultural fields as impervious features (b).  Contextual information based on the 
distance of impervious features from buildings and roads, density of buildings, and impervious features 
neighboring buildings and/or roads reduced misclassification of agricultural fields and bare soils as 
impervious features (c).  

 
New York City 

Landscape context can also be used to identify and eliminate erroneous tree-canopy objects in dense urban 
settings.  For New York City, we used a 0.30-m LiDAR-derived surface model to map canopy vegetation to the 
scale of individual trees.  Like many cities, however, New York contains various above-ground features that can be 
confused with trees, including lampposts, doorway awnings, and the margins of elevated roadways.  If multi-spectral 
imagery is available, it can be used to develop vegetation indices (e.g., NDVI) that help discriminate these 
impervious-surface objects from actual tree canopy, but the color-infrared orthophotography (0.15 m) available for 
New York City was acquired during a series of spring dates that encompassed both leaf-off and leaf-on canopy 
conditions.  Consequently, NDVI could not serve as a reliable city-wide indicator of tree canopy vegetation. 

We addressed this problem by examining the location of small tree-canopy objects relative to buildings, roads, 
and other impervious surfaces.  For example, initial classification steps incorrectly identified potential tree canopy 
adjacent to or above elevated roadways (Figure 7a).  A good thematic layer exists for roads in New York City, but 
elevated roads are not coded separately.  Also, we could not simply eliminate all tree canopy objects occurring 
within the thematic roads layer because we intended to map actual tree canopy when it overhangs roads and other 
structures.  Alternatively, we first isolated roadway surfaces higher than 9.1 m (30 ft) aboveground by comparing 
roads to a normalized digital surface model (nDSM) derived from LiDAR.  We next identified all tree-canopy 
objects that partly overhang these elevated roads and divided them by the thematic road boundary (Figure 7b).  
Using size and adjacency criteria, we then eliminated all small canopy objects that directly border the selected roads.   
Subsequent cleanup steps also eliminated any remaining tree-canopy “islands” occurring on the elevated roads.  The 
final tree-canopy map effectively discriminates actual trees from false objects that are unavoidable artifacts of 
LiDAR-based feature extraction in complex urban environments (Figure 7c). 
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Figure 7.  Initial classification of tree canopy on and adjacent to an elevated roadway, New York City (a).  

Erroneous tree-canopy objects along the road margin must be selected and eliminated while preserving 
nearby objects that are correctly classified as trees.  False tree-canopy objects (orange and magenta) along 
the margin of an elevated roadway, New York City (b).  These objects were identified by size and 
adjacency criteria.  Final tree-canopy classification along the margin of an elevated roadway, New York 
City (c).  All false objects have been removed while preserving nearby objects that correctly represent 
trees. 

 
 

CONCLUSIONS 
 

Functionally, context-based processing in OBIA is not altogether dissimilar from traditional statistical 
classifiers; objects are classified by rules that maximize the probability of correctly distinguishing certain features 
from surrounding ones.  Aside from the focus on objects rather than pixels, the vital distinction is that multiple 
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incremental gains in knowledge derived from earlier processing steps are used to inform subsequent evaluation 
criteria.  Context is thus an emergent property; it is not present in the original source data and must instead be 
developed from sequential analysis of feature content and relative landscape position. 

In our projects, we first classified the features that are easily identified by their own inherent characteristics:  
spectral value, height, shape, size, vector attribute, etc.  If the source datasets were high quality, these initial 
processing steps generally captured about 70% of individual scenes.  However, subsequent processing inevitably 
became more complex and context-based; objects in the remaining 30% could not be discriminated by their 
individual characteristics alone, and only through comparison to other objects could they be effectively isolated and 
classified.  This is the same sequence of iterative cognition that humans use in manual photointerpretation.  We first 
focus on features that are immediately familiar to us, such as water bodies, roads, and buildings; these objects 
anchor our understanding of landscape pattern.  For features that are not so readily identifiable, we compare and 
contrast them with neighboring features, looking for logical connections. 

We strongly believe that incorporating contextual information into our OBIA workflows is one of the reasons 
we have been able to accurately extract information from massive remotely sensed data sets across heterogeneous 
landscapes.  We find it surprising, that despite ample evidence in the peer reviewed literature, few published studies 
on automated classification approaches in the remote sensing community make use of context.  When pixel-based 
approaches were dominant, this avoidance was understandable as the technology simply was not there.  Given the 
recent advances in OBIA, we theorize that the problem is likely a cultural one, stemming from the slow erosion of 
imagery tradecraft in favor of linear, statistical approaches.  The effective application of OBIA technology will 
require a workforce that understands the fundamental cognitive processes that allow humans to so effectively extract 
information from remotely sensed data, not a workforce that simply sees imagery as a set of data points. 

 
 

ACKNOWLEDGMENTS 
 

This work has been supported by a variety of agencies including the Baltimore Ecosystem Study (NSF DEB-
0423476, the USDA Forest Service, the Pennsylvania Department of Conservation and Natural Resources, and the 
National Urban and Community Forestry Advisory Council. 

 
 

REFERENCES 
 
Baatz, M., C. Hoffmann, and G. Willhauck. 2008. Progressing from object-based to object-oriented image analysis. 

Object-Based Image Analysis: 29-42.   
Bar, M., and S. Ullman. 1996. Spatial context in recognition. Perception 25: 343-352. 
Balkenius, C. 2003. Cognitive processes in contextual cueing. Proceedings of EuroCogSci'03, the European 

Cognitive Science Conference 2003, Institute of Cognitive Science, Osnabrück, Germany, September 10-
13, 2003, 1:43. 

Benz, U. C., P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen. 2004. Multi-resolution, object-oriented 
fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and 
Remote Sensing 58(3): 239-258.  

Biederman, I. 1982. Human image understanding. Theory and Applications of Image Analysis: Selected Papers from 
the 7th Scandinavian Conference on Image Analysis, 3. 

Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote 
Sensing 65(1): 2-16. 

Bruzzone, L., and L. Carlin. 2006. A multilevel context-based system for classification of very high spatial 
resolution images. Geoscience and Remote Sensing, IEEE Transactions 44(9): 2587-2600. 

Campos, N., R. Lawrence, B. McGlynn, and K. Gardner. 2010. Effects of LiDAR-Quickbird fusion on object-
oriented classification of mountain resort development. Journal of Applied Remote Sensing 4(043556). 

Campos, N., R. L Lawrence, B. McGlynn, and K. Gardner. 2008. Comparing the Effects of Fused and Non-Fused 
Imagery on Object Oriented Classification. Proceedings of the 2008 ASPRS Annual Conference, Portland 
Oregon. 

Cleve, C., M. Kelly, F. R Kearns, and M. Moritz. 2008. Classification of the wildland-urban interface: A comparison 
of pixel-and object-based classifications using high-resolution aerial photography. Computers, Environment 
and Urban Systems 32(4): 317-326. 



 

ASPRS 2011 Annual Conference 
Milwaukee, Wisconsin ���� May 1-5, 2011 

 

De Graef, P., D. Christiaens, and G. d'Ydewalle. 1990. Perceptual effects of scene context on object identification. 
Psychological Research 52(4): 317-329. 

Divvala, S. K., D. Hoiem, J. H. Hays, A. A. Efros, and M. Hebert. 2009. An empirical study of context in object 
detection. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. 1271-1278. 

Durieux, Laurent, Erwann Lagabrielle, and Andrew Nelson. 2008. A method for monitoring building construction in 
urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data. ISPRS Journal of 
Photogrammetry and Remote Sensing 63(4): 399-408. 

Estes, J. E. 1977. A perspective on the state of the art of photographic interpretation. 11th International Symposium 
on Remote Sensing of Environment, Ann Arbor, MI, 161-177. 

Hay, G. J., and G. Castilla. 2006. Object-based image analysis: strengths, weaknesses, opportunities and threats 
(SWOT). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36: 
4. 

Henderson, J. M. 1992. Object identification in context: The visual processing of natural scenes. Canadian Journal 
of Psychology 46: 319-319.   

Hese, S., and C. Schmullius. 2008. Object oriented oil spill contamination mapping in West Siberia with Quickbird 
data. Object-Based Image Analysis: 367-382.   

Kamagata, N., K. Hara, M. Mori, Y. Akamatsu, Y. Li, and Y. Hoshino. 2008. Object-based classification of 
IKONOS data for vegetation mapping in Central Japan. Object-Based Image Analysis: 459-475. 

Laliberte, A. S, E. L Fredrickson, and A. Rango. 2007. Combining decision trees with hierarchical object-oriented 
image analysis for mapping arid rangelands. Photogrammetric Engineering and Remote Sensing 73(2): 
197. 

Mallinis, G., N. Koutsias, M. Tsakiri-Strati, and M. Karteris. 2008. Object-based classification using Quickbird 
imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS Journal of 
Photogrammetry and Remote Sensing 63(2): 237-250. 

Metzger, R. L., and J. R. Antes. 1983. The nature of processing early in picture perception. Psychological Research 
45(3): 267-274. 

Moller-Jensen, L. 1990. Knowledge-based classification of an urban area using texture and context information in 
Landsat-TM imagery. Photogrammetric Engineering and Remote Sensing 56: 899-904. 

Murphy, K., A. Torralba, D. Eaton, and W. Freeman. 2006. Object detection and localization using local and global 
features. Toward Category-Level Object Recognition: 382-400. 

Nefedov, K.E., and T.A. Popova, 1969. Deciphering of groundwater from aerial photographs.  Application of aerial 
photography and photointerpretation to analyzing groundwater conditions under various types of 
landscape and morphological elements.  New Delhi (India) Amerind Publishing Co. Pvt. Ltd. 

Philipson, W. R, B. W Baker, and American Society for Photogrammetry and Remote Sensing. 1997. Manual of 
photographic interpretation. In . American Society of Photogrammetry and Remote Sensing. 

Oliva, A., and A. Torralba. 2007. The role of context in object recognition. Trends in Cognitive Sciences 11(12): 
520-527.   

Olson, C.E. 1960. Elements of photographic interpretation common to several sensors. Photogrammetric 
Engineering 26(4): 651-656. 

Tiwari, K. P. 1974. Forest type mapping and volume stratification of man-made forests with aerial photographs. 
Journal of the Indian Society of Remote Sensing 2(2): 65-73. 

Tu, Z. 2008. Auto-context and its application to high-level vision tasks.  Proceedings of Computer Vision and 
Pattern Recognition, CVPR 2008. 1-8.  

Tullis, J. A., and J. R. Jensen. 2003. Expert system house detection in high spatial resolution imagery using size, 
shape, and context. Geocarto International 18(1): 5-15. 

Watson, EK.., and A.L. Van Ryswyk. 1980. Colour- The critical photointerpretation element in the identification of 
rangeland plant communities on colour and colour-infrared aerial photography. In Canadian Symposium on 
Remote Sensing, 6 th, Halifax, Canada, 339-349. Ottawa, Canadian Aeronautics and Space Institute. 

Wharton, S. W. 1982. A contextual classification method for recognizing land use patterns in high resolution 
remotely sensed data. Pattern Recognition 15(4): 317-324. 

Wolf, L., and S. Bileschi. 2006. A critical view of context. International Journal of Computer Vision 69(2): 251-
261.   


