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ABSTRACT

Full waveform recording is becoming increasinglfoefable and, consequently, available in todaytestf-the-art
LiDAR systems. Therefore, there is no practicaltition to the complexity of pulse detection andestmethods that
can be applied in post-processing mode. AnalyZiregentire return signal, the full waveform can levadditional

geometrical and physical information about theeetthg surfaces. Currently, most LIDAR applicati@ame based on
utilizing only the geometry of the point cloud, wldoth the precision and density of these poirnitsarily depend on
the peak detection method used in real-time dwlatg acquisition. Analyzing the properties of thk Wwaveform in

post-processing, additional information can beiobththat can provide a better geometrical desonif the surface
(point cloud) and object classification informatidmat can be used, for example, for land covesiflaation. Since the
storage requirements for waveform are quite sicguifi for modern LIDAR systems because of the higlkeprate,

compression is an obvious choice to reduce staadalata transmission requirements. Though théafigraveform

can be fully reconstructed from the compressed dbramd used for waveform analysis in post-procgssinde, an
interesting question is whether the compresseddboan be directly exploited for classification &mgeak detection.
The objective of this paper is to investigate teasfbility of using the compressed domain wavefdata for land
cover classification and peak detection.
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INTRODUCTION

Airborne LIDAR (ALS) has become the primary soufoesurface data at the local scale and is widsldun
many applications, including digital elevation mbdeneration, city modeling, forest parametersnastion, etc.
(Shan and Toth, 2009). The first LIDAR systems wemnéy capable to detect one backscattered echempédted
pulse (first return). Later the first and last eehdecame available, followed by multi-echo or pldt pulse
LIDAR systems that are able to measure up to siggsuwith intensity characterization of the returfise newest
generation of LIDAR systems, the full-waveform &yss, are able to digitize and record the entirekdx=attered
signal of the emitted pulses, the waveform (Madled Bretar, 2009).

For a long while, waveform processing has beentdichito a few applications, such as earth scienoes
forestry mapping, mainly due to cost consideratids. waveform is becoming not only widely availalilat
increasingly affordable, it is expected that wavefoprocessing will be an integral component of tmaphic
mapping in the near future. Waveform processingthagotential to provide users with better infotiora content,
including (1) improved peak detection, which coudgult in better point cloud quality, (2) better ar@micro
surface characterization, such as surface orientaéind (3) enhanced surface material signaturdifibation that
can be used for object classification.

Waveform processing can be implemented both intreed (onboard) or post-processing modes. Sinceetise
no need for real-time data processing in most LiDéylications and the computer power is somewhatdd on
data acquisition platforms, waveform processingnainly developing as a batch processing tool. Desipid
advancement in storage technologies, waveform refitesents a formidable amount of data, whicheisegally
highly redundant due to uniform (equidistant) sangplIn addition, the processing of this large antoof data is
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also more time consuming due to data transfer ancegsing requirements. Therefore, waveform corsjress an
important component of waveform processing as it ®arve two purposes: (1) to limit data storage taadsfer
requirements, and (2) to support feature extradtidhe reduced representation domain.

The main goal of this paper is to investigate teasibility of using the compressed domain for wakmsf
processing. First the waveform compression alterestare considered, and then land cover clasgditand peak
detection based on the compressed domain représeritastudied, including experimental results.

WAVEFORM COMPRESSION

Data compression methods, in general, can be divit® two main groups: lossless and lossy comprass
Lossless compression algorithms, like run lengitodimg (RLE), Huffman coding or arithmetic codimpgpvide an
exact reconstruction of the compressed data, widomewhat limited compression rate (that dependghen
information content of the data). In contrast, yosempression schemes, like transform coding tegles, provide
the user the opportunity to choose between bettmnstruction quality and better compression rhgelay’s most
widely known compression techniques (e.g., JPEG3MiPe based on lossy compression methods utilzmgier
or Fourier-related transformation techniques. Régemethods utilizing the discrete wavelet tramefchave been
developed (e.g., JPEG2000). Compressive SensinguiBd, 2007) or Compressed Sampling (Candés arkinVa
2008) is a new promising compression technique phatides good compression rates if certain sigoalditions
are met.

The performance of most compression techniquesndispe lot on data characteristics, as the methaasake
advantage of the statistical properties of the daiag compressed. Data complexity has the prirmapact on the
achieved compression rate in general. But knowneguently occurring patterns in the data can alfowthe
customization of many compression methods thatreault in further improvement in performance. Frarmple,
compressing high-resolution airborne imagery isaargeneric task compared to LIDAR waveform comgices
as the image scene can vary almost limitlesslyHerairborne images, while a waveform shows muss téversity
in appearance.

To assess the potential of waveform compressioripws compression techniques were tested using two
LIDAR data sets, including 440 waveforms acquiredroScarborough (Toronto), Canada, by Optech irb2a@d
1022 waveforms, acquired over Beaver Creek (Daytojo, by Woolpert in 2010. Both areas represeixeth
urban and rural environments, including residertialdings, roads and vegetated areas. The Beawak@rea has
more vegetation and therefore shows more varietyameform. Both publicly/commercially available sefre and
in-house developed compression implementations ussd in the testing.

Lossless compression techniques are clearly natipahfor LIDAR waveform compression. First, theéseno
need for 100% correct signal reconstruction, aswheeform signal is noisy. Second, lossless consprasis
generally very computation intensive and, in additiprovides modest compression rates. Neverthetessw
lossless methods were tested to have a basic fdka achievable performance.

There are a large number of lossy compression sefieimcluding transform-based and pattern-basetiadst
The usual steps of transform-based lossy compressihniques include:

» Preprocessing of the signal/image to be compreggsgd partitioning an image into smaller blocks)
« Transformation, typically using an orthogonal bdsig., FFT, discrete cosine transformation, DW¢.)e

* Quantization of the coefficients; dropping coefficis based on some criterion, such as the order of
magnitude or other properties, and then storingehgining coefficients in a more compact form

e Further lossless compression of the coefficients

From several transform-based compression methioesliscrete wavelet transformation (DWT) appeafseta
suitable choice for LIDAR waveform compression, this transformation exhibits good spatial and fesgy
domain localization. In an earlier study (Laky al, 2010a), the CDF (Cohen-Daubechies-Feauveau) efavel
family, with parameters 3 and 9, was chosen foref@m compression studies, as it produced the sstadverage
reconstruction error around the compression rét2086. Fig. 1 shows a waveform reconstructed abuarlevels;
note that at level 4, corresponding to the degaiktls O to 4, the waveform is restored to more ®@28% of the
original signal power. Level 4 requires, one-fourftthe wavelet coefficients, so this represer@$% compression
rate.
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Figure 1. DWT-based waveform reconstruction at various ley@tzarborough data set).

Pattern or shape-based compression methods wahle isignal domain and aim to reconstruct the sifoah
basic shapes. This technique is routinely usecetmihpose LIDAR waveforms into the sum of shape aomapts,
or echoes (pulses/peaks), to generate a densemarel accurate 3D point cloud (Mallet and BretarD20by
modeling the waveforms with Gaussian (Wageeral, 2006), Generalized Gaussian or lognormal funetion
(Chauveet al, 2007). Fig. 2 shows a Gaussian function-baseonsgruction of a rather complex waveform, where
seven shapes were required (equivalent to seveks pledected); the reconstruction error is also show

The shape-based decomposition of waveform cleadyiges a good performance for compression. In LRDA

mapping terms, for efficient multiple overlappinggk detection, the number of parameters dependkeoshape
type; for Gaussian function, three parameters aeglé@d, amplitude, mean, and variance. For thestasen in Fig.
2, there are 21 coefficients (3 x 7) instead ofdluse to 200 samples, representing about a 10%m@ssion rate.
The high performance, however, comes at a pricghesnethod is iterative and requires a significamount of
computations, though good initial approximationa sabstantially reduce the processing time. Ifdimétted pulse
is recorded and thus available, the shape-basdubthetn take advantage of it, and the problem esiotmulated
as a de-convolution.

A performance comparison of the various compressiethods tested in our study is provided in Tablddte
that the results shown are based on the 440+1028farans processed that may not be representativaddition,
as LiDAR systems continue to improve, the charésties of waveforms are also changing, such agbegsolution
and smaller noise level. Furthermore, the Gaudsiaction-based compression works only for wavefothag were
generated by a Gaussian pulse. Finally, the coripotdime varies over a large scale, and it isidift to
characterize it as not all the programs were ogthifor fast execution.

ASPRS 2011 Annual Conference
Milwaukee, Wisconsin ¢ May 1-5, 2011



60 - T T

330 \ /L\_\ _
A\
FA
20 !\ |
e G
10 = hIL**—‘—/ .
0 150 200 250
Residuals
3 T T
s |
= |
ok A —
A —
2 -
3 | | I I
0 50 100 150 200 250

Figure 2. Gaussian function-based waveform reconstructi@a{@r Creek data set).

Table 1. Compression performance of various methods

Compression Type =~ Compression M ethod Compression Rate

Maximum [%] Minimum [%]
Info-ZIP 39 47
Lossless GNU GZIP 39 47
BZIP2 24 26
Lossy DWT (CFD/3/9) 17 22
Gaussian function 1 10

FEATURE EXTRACTION

Initially LIDAR was considered a direct data acdfigs tool to obtain mass points from the surfat¢he earth
and objects at local scale. Back then the poinsitieon the ground was modest; the point cloud jolex a sparse
sampling of the object space that was good to demssemooth flat or slowly changing areas, suchodlisg terrain,
but detecting natural and man-made objects witldhaghanging surface orientations was just nositele. As
LIDAR systems continued to advance, the extractifnvarious features/objects became a possibilithe T
introduction of multi-return systems provided arcaient way to identify vegetated areas, which wgsowerful
capability, not available in airborne image-baskdtpgrammetry. Then, the increased point densibyeald for the
coarse delineation of surface boundaries, sucluidace intersections at roads and buildings. Nowsdauilding
extraction from the LIiDAR point cloud is a commask in LIDAR mapping (Bingcait al, 2011).

As waveform is becoming widely available for topagjic applications, the question is: What benedit ¢
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waveform processing offer? More precisely, wavefgracessing has the potential to provide users initier
information content to support improved peak dédectbetter macro/micro surface characterization enhanced
surface material signature identification that ¢enused for object classification, but what canrdsdized from
these promises? In our investigation, we pose thestipn in a slightly different way. Since LiDAR weform can
be well compressed, and the compressed form proddesar perfect representation of the waveforemgtiestion
is whether this compressed domain waveform databeantilized for feature extraction. From the thedt is

known that the compression is based on the signakppreservation. But signal power may not eqoalrmation

content. Therefore, experiments were carried ouesd object classification and point cloud gerierabased on
waveform data.

Classification Based on DWT Waveforms

The compression domain has some interpretatiogring of wavelet functions, but there is no diregtrection
to the object space. Therefore, an unsupervisegifization test using around 6000 waveforms wafopmed on a
smaller area selected from the Scarborough datans&iding four classes: residential buildingsveways, roads
and grassy areas. The advantage of unsupervisesifidation is that there is no need to have arpkisowledge of
the class types belonging to a training or tesa d&t. Kohonen's Self-Organizing Map (SOM), whichswfirst

described as an artificial neural network model Tguvo Kohonen (Kohonen, 1990) was selected for our

experiments. The input of the classifier was thectéfficients of DWT (CFD/3/9), and there was ainrule-
based additional processing step to refine the Sldsification results; more details are found Tioth et al.,
2010). Fig. 3 provides a visualization of the aaed the waveform classification. Table 2 showsr#seilts of the

classification, which used 700 randomly picked waxms that were manually classified. The sum of the

percentages in the diagonal is 88.9%, a ratherdsgive classification result for four classes. Woest case of the
misclassification is 6.1% of the points, which hdeen manually classified as tree, but classifedjass in the
SOM approach.

Figure 3. Classification based on DWT waveforms (Scarboradifa set).
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Table 2. Comparison of the manual and the SOM-based dieastiifn; rows: manual classification, columns: SOM-
based classification; numbers are the percentdgbs manually-classified points in the respectagegories

Grass Tree Roof Pavement
Grass 20.4% 0.3% 0.1% 1.9%
Tree 6.1% 7.0% 0.4% 0.0%
Roof 0.4% 0.0% 25.9% 0.0%
Pavement 0.6% 1.3% 0.0% 35.6%

Gaussian-function-based Classification

In other experiments, the shape-based compressedfama was the input data for classification. The
waveforms were processed to obtain the Gaussiartifumbased decomposition and then separated wmto t
classes: one-echo or multiple-echo waveforms. Thkipte-echo waveforms were classified as treeof and the
one-echo signals were treated as probability derfsihctions, to determine important statistical graeters,
according to their shape, such as the maximum wveluatensity (amplitude), standard deviation (pulsidth),
skewness (measure of the asymmetry of the waveftirimd central moment) and the kurtosis (measuréhef
peakedness, fourth central moment). These parasreterthen used as input parameters for the SOddifitation.
To improve the distinction between road and roakses, the local range differences were calcubatddused in a
second step. Additional details on the implemeotatian be found in (Zaletnyi al, 2010; Lakyet al, 2010b).

T -

Figure 4. Gaussian function-based waveform reconstructicart®rough data set).
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Fig. 4 provides a visualization of area and the eflanm classification. Table 3 shows the resultsthaf
classification; the rows show the original categsrithe columns show the categories after decosipresThe sum
of the percentages in the diagonal is 90.3%, dlighetter classification results compared to thevjous
experiments, though the comparison is approximatethere was a minor difference in the two arease Th
classification of 9.7% of the waveforms was affdcby the compression method. The impact of compmeds
significant in the case trees, as 8.8% of thewaeeforms wer recognized as grass.

Table 3. Effect of the compression on the classification.

Grass Tree Roof Pavement
Grass 21.6% 0.4% 0.0% 0.7%
Tree 8.8% 4.2% 0.4% 0.0%
Roof 0.3% 0.3% 25.6% 0.1%
Pavement 1.9% 2.2% 0.0% 33.5%
CONCLUSIONS

Waveform processing is expected to become an wtggrt of LIDAR mapping, as the indications aratttt
can potentially improve the point cloud accuracy @an provide support for land cover classificatiord object
identification. This initial study looked into thaspect using the compressed waveform domain faurkea
extraction, more specifically, classifying the atijepace into major categories, such as road, grags and trees.
Experiments with two data sets indicated that wawefcan be efficiently compressed and classificatio the
compressed domain, based on an unsupervised médaid), is feasible. The preliminary results shovggbd
performance for a typical residential area, whéaesification performance reached 90%.
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