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Abstract 
 
When describing a LiDAR dataset, many aspects are unambiguous such as the area of 
coverage or the acquisition date.   Additional characteristic values of accuracy and error 
typically accompany the data and well-defined guidelines exist for how these values 
should be derived and reported. Two supplementary characterizations are frequently 
used, namely Nominal Spacing and Density, for which there is no standardized method 
on how they should be derived and reported.  A statistical bias is easily introduced when 
providing spacing and density quantification.  A method of measurement is presented in 
which spacing and density statistics can be qualified and bias identified.  The law of 
large numbers certainly applies to datasets with millions or billions of points and means 
that the variance can be reduced, but not the bias.  While it may appear trivial, the 
principal contributors to LiDAR spacing and density bias are the absence of clear and 
concise definitions.  Bias can not be entirely eliminated but should be reduced wherever 
possible.   
 
Introduction 
 
LiDAR point spacing and point density is often referred to in the literature and other 
publicly available sources as a means of quantifying and qualifying this type of data 
(FEMA, 2002, Gueudet, 2004, NOAA).  Additional qualification results when the term 
“nominal” is applied to the spacing value, however by definition, nominal may have no 
real relation to the item being referred to (Wikipedia).  Descriptive terms for LiDAR 
points and their spatial properties are also referred to as “postings” or “post-spacing” or 
“spot spacing”.  Point Spacing is identified as being an important aspect in a national 
LiDAR survey (Stoker et al., 2007) and density is cited numerous times by different 
organizations in that report.  According to the Encyclopedia Britannica, “One of the chief 
problems with statistics is the ability to make them say what one desires through the 
manipulation of numbers or graphics.”  Any effort of the scale and magnitude like a 
national LiDAR survey will have to contend with the problem of statistical manipulation 
or bias that is either intentional or unintentional.     
 
Spatial data resolution is a concern when LiDAR data is processed to DEM’s for use in 
hydrologic modeling for floodplain delineation (Omer et al., 2003), water fluxes and 
balances (Bormann, 2006), or other geographic applications (Cowen et al., 2000). There 
are well-established specifications for determination of accuracy (FEMA, 2003, Flood, 
2004) and other industry standard guidelines for Digital Elevation Data (Maune, 2001).  
To date, there is very little guidance as to how representative values of point spacing and 
density from LiDAR data should be determined and reported.  It is difficult to 
characterize a LiDAR dataset because of the numerous variables such as localized terrain 



undulations (Kelley, 2006).  LiDAR point density is not as intuitively understood as 
DEM or image resolution and most systems do not give a symmetrical point pattern 
(Rost, 2008). 
 
King County, Washington has elaborated on their method of point density determination, 
using a 100 square meter polygon and point counts of ground classified points within it.  
Kobler and Ogrinic (2007) provide several density values based on LiDAR pulse returns 
and combinations of returns.   Publishing the actual density appears to be the exception 
and not the rule.   
 
Point Distribution Patterns 
 
There are numerous factors affecting the actual distribution of LiDAR pulse returns.  
These include instrument characteristics with associated parameters, terrain, and 
environmental conditions.  Point spacing and density can be theoretically determined 
when only instrument and idealized platform characteristics are considered because the 
spacing is a function of the laser pulse frequency, the scan frequency and the flight height 
(Baltsavias, 1999).  Differences in LiDAR system design result in different scan patterns 
including sinusoidal, zig-zag, parallel, and elliptical (Flood, 2001). 
 
Actual or real-world data points show variable spacing with values that are smaller or 
larger than a nominal spacing specified in a LiDAR project (Giglierano, 2007).  
Cumulative conditions result in deviation of point distribution over a surface and may 
approach uniform theoretical conditions for certain terrain types such as flat, open fields 
at or near nadir, whereas pattern irregularity from “grid-like” distribution is typically 
observed in areas of substantial terrain relief and dense vegetation.  Pattern irregularity 
tends to increase with incident angle or scan angle toward the edge of the field of view 
and in the case of LiDAR systems that produce sinusoidal scan patters, is a function of 
mirror velocity.  An unbiased measurement technique must be equally applicable to these 
conditions as it is to a theoretical condition.   
 
Hereafter, it will be useful to have a real world example and for this a small portion of the 
much larger Red River Basin Mapping Initiative (RRBMI) was chosen.  This 
approximately 40,000 square mile project includes the entire US portion of the Red River 
Basin in North Dakota, Minnesota and South Dakota.  The LiDAR data will ultimately be 
available to the public on the US Geological Survey’s website and consist of an estimated 
56.2 billion points. 
 
Figure 1a shows the theoretical model of point distribution near nadir and Figure 1b 
shows the distribution at the edge of the swath where 10% side lap has been removed.  
The model and actual RRBMI data are oriented with a flight direction that is North – 
South.  This model is based on simple harmonic motion and a single oscillating mirror 
LiDAR system and in accordance with the mission flight plan for the RRBMI, a 45-
degree field of view, a flight height 8,000 feet above the mean terrain elevation, an 
airspeed of 165 knots, a pulse rate of 94,000 Hz and a mirror scan rate of 33.1 Hz. 
 



It becomes immediately apparent that even in a Z-shaped or sinusoidal theoretical 
distribution that the space or distance between each point near nadir and the space 
between each point at the edge of the swath are different (Baltsavias, 1999).  This is 
where the need for a nominal spacing or a single representative value arises. 
 

 
 

Figure 1a: Theoretical point distribution for RRBMI LiDAR data near nadir. 
 

 
 
Figure1b: Theoretical point distribution for RRBMI LiDAR data at the edge of the swath 

(side lap removed). 



 
Figures 2a and 2b show the point distribution patterns from actual RRBMI data and while 
similar to the theoretical patterns, the effect of other variables is apparent. 
 

 
 

Figure 2a: Actual point distribution for RRBMI LiDAR data near nadir. 
 

 
 

Figure 2b: Actual point distribution for RRBMI LiDAR data at the edge of the swath 
(side lap removed). 



Point Spacing 
 
Point spacing refers to 1-dimensional measurement or a point-to-point distance.  
Recognizing that point distributions are not regularly or evenly spaced it is quite 
uncommon to find a single point that has an equal distance to all of the points 
surrounding it so that a nominal spacing would be some generalized value that attempts 
to quantify this.  The scan patterns of several different types of instruments result in 
directionally dependent spacing or two distinct orientations associated with flight 
orientation (Baltsavias, 1999). The numerous statistical methods available indicate that 
nominal point spacing can be derived from almost anything from an average to an 
approximate average (Raber, 2007) to potentially more elaborate equations with multiple 
parameters.   
 
Nominal measurement was first applied to statistics by Stanley Smith Stevens (1946) 
where it was suggested that nominal is a level in a classification scheme and is at the 
lowest level of mathematical structure.  Stevens also suggested that nominal can define 
mode but within this type of measure median and mean do not exist.  Statistical 
dispersion can be measured with Stevens’s definition, but no notion of standard deviation 
exists.  This definition should not be applied to the distribution of LiDAR points on a 
surface since the most frequently encountered measurement (mode) is unlikely to have 
any meaning. 
 
The National Digital Elevation Program (NDEP) provides one definition of nominal post 
spacing as being “the smallest distance between two points that can be explicitly 
represented in a gridded elevation dataset” (NDEP, 2004).  Even though the term is 
frequently encountered, most often, the method by which the stated nominal spacing 
value was or is derived is never indicated. 
 
 
Point Density 
 
Point density is related to point spacing and it is therefore logical that the closer a group 
of points are to one another, the higher the point density.  Point density is often referred 
to in association with LiDAR data and not surprisingly, with few exceptions like King 
County, Washington (County, King 2003), the method and details by which the statistic 
was determined is absent.  In most cases, it is difficult to determine if the reported density 
value is theoretically derived (Baltsavias, 1999) or calculated from actual data.  If the 
King County method is representative of the method by which point density is 
determined, then it can be assumed that the value, unless additionally qualified, is derived 
from a “box counting” in which the area of a rectangle is associated with the total number 
of LiDAR points inside the rectangle. 
 
The problems related to this methodology are numerous but best illustrated by an 
“arbitrary box counting” example where the size or scale of the rectangle and its 
placement within a data set produce different density values.  This phenomenon has been 
recognized previously (Levin, 1992, Raber, 2007) in other studies where varying scales 



of geospatial problems are analyzed.  Figure 3 shows the location of nine tiles of LiDAR 
data that were selected from the RRBMI project.  Each tile is 2-kilometers by 2-
kilometers in size and are situated over the city of Grand Forks, North Dakota.   
 
 

 
 
Figure 3: Location of nine 2-kilometer square tiles (magenta color) covering a portion of 

Grand Forks, North Dakota. 
 
Figure 4 shows the density for each tile using the box counting method and the range of 
density values from 0.408 points per square meter to 0.453 points per square meter.  The 
values are determined by simply dividing the area of the tile by the number of points 
within it.  If a representative density value for all nine tiles were desired an average could 
be calculated to yield 0.433 points / m2 or alternatively, another box counting could be 
done using a 6-kilometer square and the total number of LiDAR points from each of the 
nine tiles which would yield 0.432 points / m2.  Although the two values are similar, the 
fact remains that two different values result.  The box counting method produces much 
greater disparity when boxes get smaller in their spatial dimension. 
 
 
 



 
 

Figure 4: Density values in points per square meter for the 9 tiles in Figure 3.  This 
method uses boxed area divided by point count. 

 
The upper-left tile of the 9-tile set was divided into 4 quarters and two additional flat, un-
vegetated areas were identified in which two same-sized rectangles were placed (Figure 
5).  The box counting method in the flat open areas results in two very different density 
values (0.398 and 0.543 points per square meter), both of which are different from the 2-
kilometer box value of 0.453 points / m2.  The large disparity in the two small rectangles 
arises from their respective position in the swath of the flight line( Table 1).  Area 5 is 
near nadir and Area 6 is near the edge of the field of view. The terrain type will also have 
an impact on density measurements when it is recognized that there are no LiDAR pulse 
returns over water and several pulse returns may exist in vegetated areas. 



 
 
Figure 5: Smaller boxes within the upper-left tile of Figure 4. Their associated densities 
appear in Table 1 using the boxed area divided by point count method.  The differences 
in densities are functions of position with respect to nadir and local variability of the 

terrain.  Areas with vegetation and multiple returns increase density or bias the statistic.  
The nadir position is shown as a green line passing through area 5. 

 
 Density 

Entire Tile 0.453 
Area 1 0.438 
Area 2 0.477 
Area 3 0.442 
Area 4 0.454 
Area 5 0.398 
Area 6 0.543 

 
Table 1: Point densities for various sized boxed areas divided by point count. 



 
 
Unbiased Measurement 
 
There are numerous opportunities to introduce statistical bias into reported LiDAR point 
spacing and point density values.  The bias does not necessarily have to be intentional 
and it is practically impossible to identify a perfectly random sample given the number of 
variables.  Additionally, bias should not be associated with negative connotation.  A 
reported point density for the entirety of a large LiDAR project is not representative of a 
subset of the data as illustrated by the box counting method at various scales.  The 
LiDAR data would be underutilized if the area of interest was positioned accordingly 
with favorable terrain and ground cover conditions and the statistic for analysis was 
based on an entire project value that underestimated the density of the subset area. 
 
A well-defined measurement method is required so that terminology and quantification 
remains consistent within the industry and can be clearly communicated among data 
producers and end users.  Shih and Huang (2006) recognized that there are different ways 
to present point density and proposed a TIN based solution.  Building on this concept and 
utilizing Delaunay Triangulation and Voronoi Diagrams in the quantification process, 
several problematic issues related to spacing and density values can be addressed.  This 
includes homogeneity between theoretical acquisition statistics and the actuality of point 
distributions as they are affected by environmental variables like terrain, ground cover 
and instrument characteristics.  The duality between Delaunay Triangulation and the 
Voronoi Diagram has an additional benefit of providing a compatible inter-relationship 
between spacing and density and facilitates additional data analysis from LiDAR datasets 
based on repeatable statistics. 
 
Delaunay Triangulation provides a method by which each LiDAR point can have a 
unique spacing and density value.  The arrangement of the points is inconsequential to 
the triangulation so that theoretical and actual data are measured in the same way.  As it 
applies to LiDAR data, the notion of disparate distance from point to point with respect to 
along-track and across-track directions is eliminated.  Recent advances in the 
computation of Delaunay Triangulations (Isenburg, 2006) facilitate triangulation of huge 
datasets and while it is not necessary to calculate the spacing and density at this scale, it 
could be used to provide a “pre-calculated” underlying geometry.  Measurement of point 
spacing and point density can be accomplished in 3 steps for spacing and in 3 steps for 
density.  The measurement method then becomes part of the definition of LiDAR point 
spacing and point density. 
 
For point spacing (Figures 6a, 6b) 

1) Construct a Delaunay triangulation 
2) Calculate the distance of every edge connecting one point to a neighbor point 
3) Calculate the average of the edge lengths and assign it to that point 

 
 



 
 
 

 
 
 
The density for each point (Figures 7a, 7b) can be determined by 
1) Constructing a Voronoi diagram 
2) Calculate the area of the Voronoi polygon 
3) Assign the inverse of area value, or density in terms of points per unit squared, to the 

point. 
 

Figure 6a: Delaunay triangulation for 
point spacing measurement in 
theoretical LiDAR point distributions – 
LiDAR points in black and 
triangulation edges shown in red. 
 

Figure 6b: Delaunay triangulation 
for point spacing measurement in 
actual LiDAR point distributions – 
triangulation edges shown in red. 
 



 
 
 

 
 

Figure 7a: Voronoi polygons shown 
in blue for theoretical LiDAR point 
distributions – the triangulation 
edges are shown in red. 
 

Figure 7b: Voronoi polygons 
shown in blue for actual LiDAR 
point distributions – the 
triangulation edges are shown 
in red. 



 
Defining Nominal Values 
 
Distribution statistics derived using the Delaunay / Voronoi measurement methods 
provide insight to the instrument and LiDAR acquisition project design.  If it were 
possible to build a LiDAR instrument that could produce a perfectly symmetrical “grid” 
pattern at a 1-point per square meter density, the standard deviation, variance, skewness 
and kurtosis of that distribution would all be zero.  In other words, every point in the 
population has the same value for spacing and for density.  It could be accurately stated 
that the nominal value is the average value.   
 
 In order to maintain consistency between theoretical and actual values and the way in 
which they are measured, a virtual model of the points can be constructed over an interval 
of time.  The fundamental principals and equations for different system designs are 
detailed in Baltsavias (1999) and Wehr and Lohr (1999).  The model should consist of an 
adequate number of points to support a triangulation from which internal points, or those 
points that are not members or “neighbors” of the set of convex hull points (Brown, 
1979) are measured.  These points are likely to skew the statistics and in practical 
application are typically within the region of flight line swath sidelap, or end lap.   
 
Absolute uniformity even theoretically is of course impossible, especially with respect to 
an instrument design where the resulting pattern is sinusoidal or zigzag.  The instruments 
used for the RRBMI project produce sinusoidal point distributions and with the 
previously mentioned parameters show a non-normal distribution with significant 
positive skew for density and negative skew for spacing. Therefore providing an average 
value statistic for density and implying that it is representative is overestimating or 
biasing since the majority has lower density than the average.  Considering that closer 
spacing is favorable over larger spacing, the negative skew for spacing says that an 
average spacing value is overestimating since more points are further from each other 
than the average value conveys. 
 
Once every point in the theoretical model has an associated, unique spacing and density 
value associated with it, the problem becomes one associated with scale, position and the 
number of points in a statistical quantification.  Defining nominal values for a theoretical 
model could simply be a matter of extracting the points within the swath, accounting for 
side lap and using this point set for derived statistics.  In this way the characteristics of 
the instrument and parameters of the project design dictate the nominal spacing and 
density.  
 
By sorting the lists of spacing and density values, useful values can be extracted from the 
model.  Maximum values might be used as a threshold to identify voids in actual data in a 
quality control process or to perform an alternative check for normal distribution.  
Extracting the measured values from the sorted lists at 68%, 95% and 99.7% (empirical 
rule) and comparing them to the mean with the standard deviation can be another 
indication as to whether spacing and density are normally distributed.   
 



The ASPRS recommends 95% percentile testing for vertical accuracy assessment (Flood, 
2004).  In keeping with the 95% confidence, as an example, a point set consisting of 
10,000 points and sorted by spacing value from small to large, a nominal point spacing 
value can be qualified at 95% by extracting the value at the array index of 9,500.    In the 
case of the RRBMI flight plan and resulting model, it can be stated that 95% of the points 
will have a spacing value of 2.091 meters or less or “the nominal spacing is 2.091 meters 
(95%)”.  Nominal density can also be determined by this method resulting in 0.349 points 
per square meter (95%), or stated differently, 95% of the points are in areas where 
density is higher than 0.349 points /m2.   
 
Analyzing Actual Data 
 
Returning to the upper-left most tile of Figures 4 and 5, the measurement method was 
first applied to the entire tile and then to 4 separate quarters of the tile (Figure 8).  The 
multiple return bias that was present in the initial arbitrary box counting method is 
eliminated by removing the first return of many and all intermediate returns.  Only single 
returns and final returns are used.  Each quarter can be generally characterized by terrain 
type where area 1 is mixed open area and light industrial, area 2 is moderately vegetated 
with data voids because of water, area 3 is similar to area 1 but with more open fields and 
area 4 is predominantly open fields.  Areas 5 and 6 are characterized by flat, open terrain 
but are located at different positions with respect to nadir.  
 



 
 
Figure 8: Hi-bred (mixed intensity / hill shade) image of a 2-kilometer square tile in the 

Grand Forks, North Dakota area of the RRBMI project.  Quartered sections are 
indicated in red and open field areas are shown in blue, nadir position shown in green. 



 
Table 2 summarizes the 95% nominal values and average values of spacing and density 
resulting from the TIN / Voronoi diagram method of measurement.  Unlike other 
methods for spacing and density determination, having unique values at each point 
facilitates considerably more detailed statistical analysis and qualifies a stated value.  It is 
notable that areas 4, 5 and 6 have average densities that are very similar to the box 
counting density in Table 1 which suggests that there is very little bias associated with 
vegetation.  This also indicates that a density statistic using box counting is essentially 
equivalent to the average density of unique point density values within the same box 
using the TIN / Voronoi method. 
 
 
 Average 

Spacing 
(meters) 

Spacing 
Standard 
Deviation 

Nominal 
Spacing 
(meters) 

Nominal 
Density 

 (pts / m2) 

Average 
Density 

(pts / m2) 
Entire Tile 1.705 0.172 1.886 0.368 0.437 
Area 1 1.732 0.138 1.910 0.359 0.426 
Area 2 1.701 0.248 1.896 0.363 0.431 
Area 3 1.713 0.127 1.880 0.373 0.439 
Area 4 1.675 0.143 1.844 0.383 0.453 
Area 5 1.819 0.051 1.914 0.365 0.398 
Area 6 1.517 0.069 1.625 0.476 0.546 
 
Table 2: Statistical values for areas shown in Figure 8 using the TIN / Voronoi diagram 
method at 95%. 
 
If the model predicted a nominal spacing of 2.091 meters (95%) for the RRBMI project, 
Table 2 shows that in each instance of measurement, the stated spacing was exceeded or 
in other words, point spacing is “better” or “closer”.  Figure 9 shows all the points where 
spacing is higher than the stated value.  These points are associated with features where 
this is expected like water bodies and edges of buildings or bridges and in total are less 
than 0.5% of the entire point population. 
 



 
 
Figure 9: Point locations (red) where spacing is higher than the stated nominal spacing 

of 2.091 meters using the TIN / Voronoi diagram method at 95%. 
 
The standard deviation of spacing in Table 2 is notable.  It can be inferred that the larger 
the area analyzed, the greater the variance or standard deviation from an average measure 
and the greater the terrain variability, the greater the standard deviation from an average 
measure.  This indicates that the problems of scale and spatial position still exist with 
respect to local variation in terrain or land cover category despite measurement 
consistency with the TIN / Voronoi measurement method. 
 



 
Reporting Point Spacing and Density 
 
The guidelines for reporting accuracy (Flood, 2004, NDEP, 2004) are well established 
and provide a comprehensive method for making accuracy assessments.  Topographic 
and ground cover variation are discussed as well as the selection and collection of 
checkpoints.  It seems logical that a point spacing and density report could supplement an 
accuracy report.  The TIN / Voronoi method of measurement provides unique values for 
each LiDAR point and is therefore scaled to the unique resolution of the data in the 
domain of each point.  Characterizing datasets means that groups of points in larger areas 
must be used.  Unbiased statistical quantification should minimize variability between 
samples and provide a simple and straightforward way to supply a characterization of the 
dataset regardless of its overall variability.  It should also be applicable to the various 
scales and areas of interest that might be extracted from larger datasets.  
 
Multiple returns from a single pulse introduce bias into the statistics and cannot be 
anticipated in theoretical models and should not be used.  Exceptions would apply to 
unique applications associated with vegetation such as those discussed in Renslow (2000) 
or Kobler (2007).  For multiple returns, either the first or the last return should be used 
where the last return is preferred since it is more likely to be at the ground surface.  
Statistical measurement should not use only “Bare Earth” or ground classified points.  
This also introduces bias in the form of void areas associated with vegetation and 
buildings.  Additional bias comes from varying perception and interpretation of ground 
points by automated classification algorithms and human editing (County, King, 2003). 
 
The ASPRS Vertical Accuracy guidelines for selection and placement of checkpoints 
could be followed for spacing and density characterization.  Acknowledging that stated 
values from theoretical model distributions are measured on a flat plane and do not 
account for terrain or vegetation, a number of supplemental checkpoints can be collected 
throughout the dataset in flat, open areas.  For the Grand Forks area, this was done within 
the nine tiles and is shown in Figure 10.  Recognizing that smaller areas show less 
variance or standard deviation given consistency in the terrain condition (Table 2), the 
dimension of the area surrounding the checkpoint should be communicated in the 
metadata and the area should be rectangular in order to maintain consistency with 
presumed existing quantification methods like box counting for density.   
 



 
 

Figure 10: Supplemental checkpoints within 9, 2-kilometer tiles covering the Grand 
Forks area of North Dakota.  Flight line nadir position is shown as green lines and check 

points as blue targets inside 40,000 square meter areas (red).  See Appendix A, TIN / 
Voronoi Analysis 95%. 

 
Three different sized areas for each of the 55 checkpoints were analyzed at 900 square 
meters, 3600 square meters and 40,000 square meters.  This analysis was performed 
using only final or single returns in order to evaluate the scale at which this data began to 
show variance that could be attributed to the scale function.  Three points (53-55, 
Appendix A) were intentionally placed in areas of high terrain and land cover variability.  
Figure 11 (Tables 1, 2, 3 in Appendix A) shows an area near nadir and as expected, there 
is no significant change in density or spacing variance at all 3 scales, and as would also 
be expected, skewness and kurtosis are affected and are indicating a characteristic of the 
instrument.  This is contrasted with a checkpoint in Figure 12, where at the largest scale a 



portion of the rectangle went into water or an area of no LiDAR point returns.  This is 
immediately apparent from the skewness and kurtosis statistics (Tables 1, 2, 3 in 
Appendix A).  Using this point and evaluating density or spacing at this scale would 
introduce bias. 
 

 
 

Figure 11: Checkpoint located in a flat open area with 3 different sized areas (900 in 
cyan, 3,600 in orange and 40,000 square meter shown in red) surrounding it.  See 

Appendix A, TIN / Voronoi Analysis 95%. 
 



 
 
It is critical to evaluate the checkpoint samples for selection and sample bias though it 
may be extremely difficult.  The standard deviation of spacing is the easiest statistical 
qualifier to comprehend because it is expressed in the same units as the data.  If it were 
determined that a bias threshold was 10-centimeters at 1-sigma, the 40,000 square meter 
area set has 20% of its samples biased (Appendix A).  Both the 3,600 square meter area 
set and 900 square meter set have only 2 samples (3.6%) that are biased and those 
correspond to checkpoints intentionally placed in heavy vegetation.  Other indicators of 
bias would be large deviations from zero in skewness with corresponding high kurtosis 
values.  This condition appears to exist predominantly in association with water features 
and occasionally with vegetation where the final return did not penetrate the canopy. 
 
Discarding the two biased samples from the 3,600 and 900 square meter sets and 
calculating the mean of average density and the mean of the average spacing produces 
essentially identical values of 0.413 pts/m2 for density and 1.770 meters for spacing and 
appears to indicate that either scale works for this dataset.  However, slightly lower 
standard deviations for all measurements (average density, nominal density, average 
spacing and nominal spacing) exist for the 3,600 square meter areas and considering the 
point population for each of the 53 samples is approximately 4-times larger than the 900 
square meter areas suggests that it is a better choice as representative of the dataset.   
 

Figure 12: Checkpoint located in a 
flat open area with 3 different sized 
areas (900 in cyan, 3,600 in orange 
and 40,000 square meter shown in 
red) surrounding it.  The largest area 
has its upper right corner over water 
or a void area with no LiDAR point 
returns.  A spacing skewness of 
26.754 and kurtosis of 844.674 show 
that the mass of the distribution has 
lower values than indicated by the 
mean and that this is due to 
infrequent extreme deviations.  See 
Appendix A, TIN / Voronoi Analysis 
95%. 
  



Summary and Conclusion 
 
Point density and nominal spacing are common descriptors of LiDAR data and are used 
with such frequency that their definitions and respective values are assumed to be 
common knowledge and are thus rarely, if ever qualified.  Stated representative values 
without qualification invite questions of bias that are either intentional or unintentional.  
As far as can be determined, there is no standardized way to request LiDAR data at a 
given nominal spacing and density and then verify whether the actual data meets those 
specifications.  First and foremost, there is no established definition of nominal as it 
applies to LiDAR point distributions.  As point density increases so does the significance 
of the problem (20 centimeter variance at a 3-meter spacing is less significant than 20 
centimeter variance at 1-meter spacing).  
 
It can be demonstrated that wide ranges of values can be produced when there is an 
underlying bias or combination of biases.  These include but are not limited to: 

• Area of coverage and size of the sample population 
• Instrument characteristics and associated point distribution patterns 
• Position of the sample with respect to airborne instrument position (e.g. nadir and 

edge of swath) 
• Terrain variation (primarily percentage of area covered by water) 
• Ground cover variation and multiple pulse returns 
• Theoretically derived values or calculated using an undocumented method 

 
A TIN / Voronoi Diagram based method provides a way in which theoretical and actual 
measurements can be similarly determined with an additional benefit of qualifying 
statistics that are standard techniques in the analysis of distributions.  This method can 
also be used to define “nominal” with a consistent meaning regardless of theoretical 
condition or actual condition and is equally applicable to a normal (Gaussian) distribution 
as it is to a non-normal distribution. 
 
In an effort to standardize these parameters in the mapping community, the following 
terms have been suggested to identify 95% nominal values of spacing and density 
resulting from the TIN / Voronoi diagram method: 
 

TIN / Voronoi - Average Spacing  
TIN / Voronoi - Spacing Standard Deviation 
TIN / Voronoi - Nominal Spacing (95%) 
TIN / Voronoi - Average Density 
TIN / Voronoi - Nominal Density (95%) 
 

In the same mode as guidelines for the reporting of accuracy in LiDAR data, the method 
was applied to a subset of the Red River Basin Mapping Initiative LiDAR data and 
analyzed for its practical application with an emphasis on how a verification and 
reporting process could be established.  If the LiDAR profession were to adopt this 
method of testing datasets, it would ensure that end customers get the product they are 
asking for and the data providers have an unbiased way of evaluating the data. 
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Appendix A: TIN / Voronoi Diagram Analysis at 95% Digital data 
 
Table 1: test_15m_tbl.txt, Statistics for 15-meter distance from each checkpoint resulting 
in a 900 square meter sample area 
 
Table 2: test_30m_tbl.txt, Statistics for 30-meter distance from each checkpoint resulting 
in a 3,600 square meter sample area 
 
Table 3: test_100m_tbl.txt, Statistics for 100-meter distance from each checkpoint 
resulting in a 40,000 square meter sample area 
 
All values are derived from the TIN / Voronoi Diagram measurement method.  An 
alternate format file (report) is also included. 
 
All three tables have the following field names:  
 
ID = Checkpoint Identifier 
NUMPOINTS = Number of LiDAR points within checkpoint sample area 
AVGDENSE = Average Density  
MEDDENSE = Median Density 
DENSTDEV = Standard deviation for density 
DENSEVAR = Density variance 
DENSSKEW = Density skewness 
DENSKURT = Density kurtosis 
NOMDENSE = Nominal Density (95%) 
AVGSPACE = Average Point Spacing 
MEDSPACE = Median Point Spacing 
SPCSTDEV = Standard deviation for spacing 
SPCVAR = Spacing variance 
SPCSKEW = Spacing skewness 
SPCKURT = Spacing kurtosis 
NOMSPACE = Nominal Point Spacing (95%) 
 
Additional data in support of these tables can be provided upon request (e.g. LAS files, 
HI-Bred image, checkpoints, etc.) 
 


