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ABSTRACT  

Automated synthetic scene generation is now becoming feasible with calibrated camera remote sensing. This paper 
implements computer vision techniques that have recently become popular to extract ”structure from motion” (SfM) 
of a calibrated camera with respect to a target. This process is similar to Microsoft’s popular ”PhotoSynth” 
technique  (Microsoft, 2009), but, blends photogrammetric with computer vision techniques and applies it to 
geographic scenes imaged from an airborne platform.  Additionally, it will be augmented with new features to 
increase the fidelity of the 3D structure for realistic scene modeling. This includes the generation of both sparse and 
dense point clouds useful for synthetic macro/micro-scene reconstruction.   

Although, the quest for computer vision has been an active area of research for decades, it has recently 
experienced a renaissance due to a few significant breakthroughs. This paper will review the developments in 
mathematical formalism, robust automated point extraction, and efficient sparse matrix algorithm implementation 
that have fomented the capability to retrieve 3D structure from multiple aerial images of the same target and apply it 
to geographical scene modeling.   

Scenes are reconstructed on both a macro and a micro scale.  The macro scene reconstruction implements the 
scale invariant feature transform to establish initial correspondences, then extracts a scene coordinate estimate using 
photogrammetric techniques. The estimates along with calibrated camera information are fed through a sparse 
bundle adjustment to extract refined scene coordinates.  The micro scale reconstruction uses a denser 
correspondence done on specific targets using the epipolar geometry derived in the macro method.   

The seeds of computer vision were actually planted by photogrammetrists over 40 years ago, through the 
development of “space resectioning” and “bundle adjustment” techniques. But it is only the parallel breakthroughs, 
in the previously mentioned areas that have finally allowed the dream of rudimentary computer vision to be fulfilled 
in an efficient and robust fashion. Both areas will benefit from the application of these advancements to 
geographical synthetic scene modeling. This paper explores the process the authors refer to as Airborne Synthetic 
Scene Generation (AeroSynth).  
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AEROSYNTH INTRODUCTION  
 
Recovering 3D structure from 2D images requires only that the scene is imaged from two different viewing 

geometries and that the same features can be accurately identified.  Figure 1, depicts a site of interest imaged from 
multiple views using an airborne sensor; here the point of interest is the top of a smokestack that will be imaged with 
the effects of parallax displacing it with respect to other features within the scene.  This parallax displacement effect 
has been used for decades within the photogrammetry community to recover the 3D structure within a scene 
(DeWitt & Wolf, 2000).  Unfortunately, robust automated techniques to match similar features within a scene have 
been fairly elusive until very recent breakthroughs in the area of computer vision. 
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RECOVERING SPARSE STRUCTURE FROM IMAGES 
 
The key to automatically recovering 3D structure from an imaged scene is to identify reliable invariant features, 

match these features from images with diverse angular views of the target and then generate accurate mathematical 
relationships to relate the images.  This information can then be utilized in concert with the camera external and 
internal orientation parameters to derive scene structure that is defined within the World Coordinate System (WCS) 
of choice. 

 
Airborne Dataset 

For this study, the working imagery was obtained from the Rochester Institute of Technology, Center for 
Imaging Science’s (RIT/CIS), Wildfire Airborne Sensing Program (WASP) multimodal sensor suite (Rhody, Van 
Aardt, Faulring, & McKeown, 2008).  This sensor provides 4kx4k Visible Near-Infrared (VNIR) and 640x512 
Shortwave Infrared (SWIR), Midwave Infrared (MWIR), and Longwave Infrared (LWIR) images.  Google Earth 
(GE) was utilized as the GIS visualization tool, with a detailed model of the Frank E. VanLare Water Treatment 
Plant (Pictometry, 2008) embedded within the standard satellite imagery and 30 [m] terrain elevation maps (Figure 1 
& Figure 4).  Figure 1 shows the region of overlap (outlined in red) of 5 WASP images where the site of interest is 
contained in the central (base) image. 
 
Invariant Feature Detection and Matching 

The Scale Invariant Feature Transform (SIFT) operator, proposed by David Lowe in 1999 (Lowe, 2004), has 
become a “gold standard” in 2D image registration due to its ability to robustly identify large quantities of semi-
invariant features within images.  The SIFT technique can consistently isolate thousands of potential invariant 
features within an arbitrary image as seen in Figure 2.  This is extremely useful when attempting to create sparse 
structure from matched point correspondences, since any matching features can then be processed to obtain the 3D 
structure of the imaged scene.  In addition, more recent independent testing has confirmed that the SIFT feature 
detector, and its variants, perform better under varying image conditions than other current feature extraction 
techniques (Moreels & Perona, 2006) & (Mikolajczyk & Schmid, 2005).  

The SIFT algorithm utilizes a Difference of Gaussian edge detector of varying widths to isolate features and 
define a gradient mapping around them.  These gradient maps are then compared for similarity in another image and 
matches result from the most likely invariant feature pairs.  Once potential matches are found, outliers can be culled 
based on the requisite epipolar relationships that must exist between two images of the same scene.  This has always 

Figure 1.  Example showing the angular diversity required to recover 3D Terrain from Airborne Imagery. 
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been challenging in the past due to the effects of parallax, but, can now be robustly addressed using techniques 
highlighted in the next section. 

 
 
Outlier Removal 

In order to successfully remove erroneous matches derived using the SIFT algorithm, the potential match set 
will be processed using the RANdom Sample Consensus (RANSAC) technique (Fischler & Bolles, 1981) in 
conjunction with the fundamental matrix relationship between images of the same scene (Figure 3).  RANSAC has 
proven to be a robust technique for outlier removal, even in the presence of large numbers of incorrect matches 
(Hartley & Zisserman, 2004).  Since it is not necessary to test all the sets of points for a solution, it can be efficiently 
utilized with techniques like SIFT that provide large numbers of automated matches. 

Figure 2. Thousands of invariant keypoints generated and matched using the SIFT algorithm. 
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In the diagram above (Figure 3), the Fundamental Matrix F dictates that for a given 3D scene point X, a ray 

must pass from the camera center C (a focal length behind the image plane) through the image location x and this 
ray will be imaged by the camera C’ as an epipolar line l’, passing from the image of the same model point x’ to that 
cameras epipole e’ (Hartley & Zisserman, 2004).  The epipole is the image of the other camera center (which may 
be off the image entirely).   

Anyone that has worked for any length of time with automatic image registration can attest to the challenging 
issues parallax can cause when relating features.  The limitation of utilizing a 2D Projective Homography to relate 
imagery with large elevation difference between acquisition stations, can be addressed through the use of the 
Fundamental Matrix relationship.  This relationship constrains the matches to an epipolar line even under extreme 
parallax situations and can be formalized in a mathematical manner as shown below (Hartley & Zisserman, 2004). 

Fundamental 
Matrix  

 

(1) 
 

 
So,  x’TF must be in the left null-space of x and Fx must be in the right null-space of x’T. 
 
 

Fundamental 
Null Space  (2) 

 

 
Simply stated, for a given point x, the preliminary match point must lie along the epipolar line l’ in order for it to be 
a valid match.  So, the proposed feature matches that do not fit this epipolar constraint are considered bad matches. 

Once the initial matched point set has been obtained using the automated SIFT technique, it is usually necessary 
to test for these bad matches or “outliers”.  The RANSAC algorithm can be utilized to iteratively take a random 
sample of the matches to create a Fundamental Matrix relationship between the images.  Once this is done, the 
veracity of that relationship can be tested by comparing the number of resulting inliers against a statistically relevant 
number of additional tests.  The Fundamental Matrix that produces the most match point inliers is then accepted as 
the best mathematical model and any outliers to this model are then removed. 

Figure 3. Depiction of the Fundamental Matrix constraint between images which is used for outlier removal.

Epipolar Relationship 
Between Images 

Matches Must Fall on Lines 
Defined by the Fundamental Matrix
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Initial Estimate of Sparse Structure 

The initial estimation technique that is utilized to derive the 3D scene structure utilizes a simple approach that is 
augmented for more general situations by compensating for the aircraft motion and image axes misalignment with 
the flight path.  This process can be visualized in Figure 4 and the following equations (DeWitt & Wolf, 2000) can 
be utilized to derive 3D structure once these corrections have been accomplished.  Here Cxi and Cyi are the longitude 
and latitude of the cameras and Cz1 is the flying height of the base sensor, B is the baseline distance between sensor 
locations, pi is the pixel distance between matching points, and the pixel locations are denoted (x1i, y1i) and (x2i, y2i).  
 

Baseline 
Distance  
(x-axis) 

 (3) 

Focal Plane 
Distance 
(x-axis) 

 (4) 

WCS Relative 
Longitude  

(5) 

WCS Relative 
Latitude  

(6) 

WCS Relative 
Altitude 

 

(7) 

 
Figure 5 depicts the corrections that are required for any deviation of the flight line from the coordinate axis of 

the images and the pitch, yaw, and role of the aircraft.  Unless the acquisition platform is capable of acquiring 
perfectly nadir imaging on a routine basis, it is necessary to rectify the image or image correspondences to enable 
proper linear 3D structure estimation.   

Figure 4. Graphic showing two collection stations of an airborne sensor utilized to recover 3D Structure. 
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The approach the authors have taken to accomplish this is to project the image correspondences onto a virtual 

focal plane that is located at the focal length (f), but, is situated parallel to the earth’s surface as depicted in Figure 
5A.  This can be accomplished by using the image projection versions of the collinearity equations below (DeWitt & 
Wolf, 2000), where m is the rotation matrix, (XL, YL, ZL) is the camera location, (x0, y0) is the principal point, (x, y) 
is the image location and (X, Y, Z) is the object location in the WCS. 

 
Collinearity Eq. 

x-component 
image projection 

 
(8) 

Collinearity Eq. 
y-component 

image projection 
 

(9) 

 
The flight line corrections can be implemented by generalizing Equations (3) and (4) to accommodate baselines 

that are offset from the image axes.  It is important to note that the height estimate (Zi) is dependent on the ratio of 
the baseline (B) to the pixel distance (pi) of the match points projected onto the virtual focal plane.   This ratio can 
be corrected to one that is aligned with the flight line by performing a coordinate system conversion to the aircraft 
flight line or by compensating for the relative Baseline distance with respect to the pixel correspondence distances 
(Equations (10)-(11)).  Finally, the corrected image plane distance can be calculated by utilizing Equation (11) with 
the previous modifications.  Here, the offset from the flight line is represented by K. 
 

Baseline 
Distance 

Correction  

 
(10) 

Image 
Distance 

Correction  
(11) 

Figure 5. Corrections required to compensate for aircraft pitch, yaw, and roll and flight line orientation.

A. Pitch, Roll, and Yaw Correction  B. Flight Line Correction 

C1 

C2 
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Interim results can be viewed with their respective camera stations in Figure 6, where nearly 20,000 individual 

point correspondences were automatically recovered from 5 matching images (4 image pairs) to produce a Sparse 
Point Cloud (SPC) representation of the scene.  Note that here the results are still in a relative (meter-based) 
coordinate system centered on the base camera location. 

 
Non-Linear Optimization of Sparse Structure 

Many of the problems presented in this research cannot be solved by linear methods alone.  In these cases, it is 
necessary to apply non-linear estimation techniques to provide accurate solutions.  Such real-world problems as the 
resectioning of images to models and the bundle adjustment (BA) of multiple images, to reconstruct 3D structure, 
both require nonlinear minimization solutions. In fact, for BA, these solutions often depend on calculating the 
interaction of several thousand variables simultaneously.  Due to its stability and speed of convergence, the 
Levenberg–Marquardt algorithm (LMA) is one of the most popular approaches routinely utilized to solve these 
challenging problems (Lourakis & Argyros, 2004). 

When implementing LMA, the computational challenge is to minimize a given cost function.  For applications 
such as resectioning and BA, this cost function is defined as the sum of the squared error between image points 
(actual data) and projected 3D model points (predicted values) dictated by the current set of parameter ( ).  The 
minimization function takes advantage of the relationship between the estimated 3D structure ( ) and its 2D 
projection onto the image plane ( ) as mathematically formalized below (Hartley & Zisserman, 2004). 
 

Projection 
Function  (12) 

Projection 
Matrix  (13) 

 
The projection matrix (P) can then be utilized directly for minimization since it incorporates the cameras 

internal calibration parameters (K), and external orientation (R) and position (t).  This minimization equation then 
takes the following form (Equations (14) and (15)), where d is the Euclidean distance between the image coordinate 

 and the projected 3D point . 
 

Figure 6. The interim estimates of the four individual SPC’s can be seen compared to the camera locations.
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Projection 
Minimization 

Function  
(14) 

Expanded 
Minimization 

Function  
(15) 

 
The sparse bundle adjustment (SBA) algorithm of Lourakis and Argyros (Lourakis & Argyros, 2004) is 

optimized for speed and efficiency.  It can easily minimize against several camera variables and the structure of tens 
of thousands of 3D points simultaneously to produce a sparse image bundle that is mutually self-consistent.  
However, as with any engineering code, it requires specific formatting for the input variables and special care when 
preparing the camera’s internal and external orientation parameters.  The next section addresses this topic in order to 
ensure that accurate global coordinates can be obtained after utilizing this SBA minimization algorithm. 

 
Relating the Results to World Coordinate System  

Since the results of the SBA process minimize against a relative coordinate system anchored on the base camera 
position, it can be difficult to determine the absolute locations of the 3D points even though there is good self 
consistency between the camera locations and the SPC.  In order to recover the absolute location of the 3D points, 
the collinearity equations (Equations (16)-(17)) were utilized to re-project the 3D points back into the base image 
locations of the initial feature matches as seen in Figure 7B.   
 
Collinearity Eq 
X-component 
World Coord. 

 
(16) 

Collinearity Eq 
Y-component 
World Coord.  

(17) 

 
In this case, only the minimized depth parameter (Zi) retained its absolute coordinate value and so could be 

utilized with the camera locations (XL, YL, ZL) to determine the world coordinate latitude (Yi) and longitude (Xi) 
values. 
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RECOVERING DENSE STRUCTURE FROM IMAGES 

 
The key to recovering a Dense Point Cloud (DPC) from matching images lies in the ability to relate the images 

on a pixel-to-pixel level (Nilosek & Walli, 2009). This is the transition point between the macro and micro scene 
reconstructions.  Here the micro process requires certain information derived from the macro process in order to 
optimally utilize the derived mathematical relationships between the images and the SPC.  At this point in the scene 
reconstruction, each image is already related to a base image of the scene through a fundamental matrix and the SPC 
is related to each image using a projection matrix. The macro process has also derived the regions of overlap for 
each image with respect to the base image. Each fundamental matrix, projection matrix and region of overlap is 
passed off to the micro process with the SPC. Ideally the micro process would relate every pixel in every 
overlapping image to the base image; however, due to computing power restrictions, examples in this paper focus on 
specific targets inside the regions of overlap.  
 
Dense Correspondence - Relating Images at the Pixel Level 

The utility of the fundamental matrix for outlier match removal has already been shown, now this matrix will be 
used to help derive a dense set of matches between overlapping regions. Using this matrix and Equation (1) for 
every pixel in the base image, an epipolar line that contains the corresponding point can be found in each 
overlapping image. Figure 8 shows how epipolar lines are found in different overlapping regions from a single point 
in one image for three different images.  

A. Final SPC in global UTM. C. Results Projected back onto Base Image. 

E. SPC displayed in Google Earth. G. SPC converted into faceted mesh model. 

Figure 7. Example results of the Sparse Bundle Adjustment process on the Sparse Point Cloud.
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 This property of the fundamental matrix reduces the correspondence search to a one-dimensional search 
along epipolar lines. The images are rectified so that the epipolar lines run along the horizontal and then a 
normalized cross correlation is computed based on a small area selected around the target pixel in the base image. 
The maximum response from the normalized cross correlation is chosen as the match. This is done for every pixel 
over the entire area which results in a very dense correspondence between the multiple views. The estimate of the 
dense structure follows the same pipeline as estimating the sparse structure. First basic photogrammetry is used to 
extract an initial estimate of the structure. Then the camera parameters, initial estimate of the structure and 
correspondences are used in minimizing the reprojection error between all the images using the SBA method. The 
collinearity equations can also be used to place the dense structure in the world coordinate system. Additionally, the 
dense structure can be texture mapped with an image of the target as shown in Figure 8.  The initial estimate of the 
structure and the final product is shown in  Figure 9 after all the steps are completed.  
 

 
Once the dense structure of a specific target has been acquired, it is combined with the sparse structure. Figure 

10 shows the dense structure incorporated into the sparse structure and overlaid on a map. Also on this map are 
image derived, but, manually generated CAD models of similar structures in the scene (Pictometry, 2008).  The 
automatically generated dense structure can now be directly compared to the structure of the CAD model for 
verification.  One very clear issue still remains when working with only nadir imagery and that is the difficulty in 
reconstructing the sides of objects. Although oblique imagery can be used to view the vertical detail of the scene, the 
severe projective transforms that relate these images can provides additional correspondence challenges which are 
discussed below.  

Figure 9. Left: Initial estimate of the structure of the dense point cloud from three images. Right: Result after SBA, 
world coordinate mapping and projective image texturing. 

Figure 8. Left: Image with single point chosen.  Middle/Right: Corresponding epipolar lines in other images.
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Matching Oblique Images using ASIFT – Maximizing Angular Diversity 

Recently an algorithm has been developed that attempts to describe features as projectively invariant. This 
algorithm is called Affine Scale Invariant Feature Transform (Morel & Yu, 2009). This algorithm builds on the 
original SIFT algorithm by taking the initial images and simulating rotations along both the x and y axis. It 
essentially performs many SIFT operations over these simulated images in order to find the best matching rotation 
between the images in order to remove it. Once the initial matching is found using ASIFT, the same RANSAC 
process, using the fundamental matrix as the fitting model, can be used to eliminate the outliers. Figure 11 shows an 
example of matching points using ASIFT and then RANSAC.  

 
 

The next step is to utilize the SPC, resulting fundamental matrices and regions of overlap to extract a DPC of a 
target area within the scene. Since a projective transformation can greatly impair the normalized cross-correlation 
method of point matching, other approaches may be required for dealing with images that capture significant angular 
diversity of a target.   

Figure 11. Matching between a nadir and oblique images using ASIFT and then RANSAC with the Fundamental 
Matrix as the fitting model (Images courtesy Pictometry International Corp). 

Figure 10. Resulting 3D structure recovered from three overlapping images using Dense Point 
Correspondences (The model provided by Pictometry is embedded within Google Earth). 
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Growing a Depth Map from Sparse Correspondences 
Since an accurate sparse representation of the structure of the scene has already been derived, this structure can 

be utilized as a good starting point to ‘grow’ a dense match between images. (Goesele, Snavely, Curless, Hoppe, & 
Seitz, 2007). A dense matching is generated around each sparse match using an optimization method that minimizes 
the normalized pixel intensity difference between each overlapping image with respect to the base image.  Here each 
projected SPC location is utilized as an initial seed and the matched image locations are slowly grown from the 
pixels surrounding these points.  In this way a dense correspondence mapping can be obtained between images by 
constraining the epipolar line search space. 
 

 

AEROSYNTH SUMMARY 
 
Due to the fast growth in the computer vision arena, regarding SfM techniques, it is fruitful for the 

photogrammetry community to keep abreast and apply these techniques to the area of remote sensing.  The 
AeroSynth technique for recovering 3D structure from images is a blend of the both photogrammetric and computer 
vision approaches.  It utilizes the automatic feature isolation/matching, epipolar relationships and SBA of the 
computer vision community and combines it with the linear 3D point estimation and collinearity relationships of 
photogrammetry.  As a result, the image bundle, SPC, and DPC that is produced can be related to the WCS and 
directly injected into GIS applications for automatic analysis and comparison to existing archival data. 
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