

Texture Region Extraction from Multispectral and Hyperspectral Images by Classifying Local Spectral Histograms

Jiangye Yuan¹, DeLiang Wang², Jung-kuan Liu¹, Lin Yan¹, Ron Li¹

¹ Dept. of Civil & Env. Engineering & Geodetic Science, The Ohio State University

² Dept. of Computer Science Engineering, The Ohio State University

Presented by: Jiangye Yuan

ASPRS 2011 Annual Conference May 1-5, 2011 Milwaukee, WI

OSU Mapping and GIS Lab

Outline

- Introduction
- Local spectral histogram
- Texture region extraction
- Experimental results
- Conclusions

Introduction

- Multispectral and hyperspectral imagery provide rich information for the characterization, identification, and classification of land covers
- Spatial structure (texture) information is important for analyzing remote sensing images
- Spectral histograms, which consist of marginal distributions of filter responses, can effectively capture spatial patterns
- We use local spectral histograms as features to extract the regions with a spatial pattern similar to the given seeds from multi-/hyper-spectral images

Local spectral histogram

OSU Mapping and GIS Lab

• Given an image window W and a bank of filters $F^{(\alpha)}$, $\alpha = 1$, ..., K, a spectral histogram consists of histograms of filter responses

$$H_{\mathbf{W}} = \frac{1}{|\mathbf{W}|} \left(H_{\mathbf{W}}^{(1)}, H_{\mathbf{W}}^{(2)}, \dots, H_{\mathbf{W}}^{(K)} \right)$$

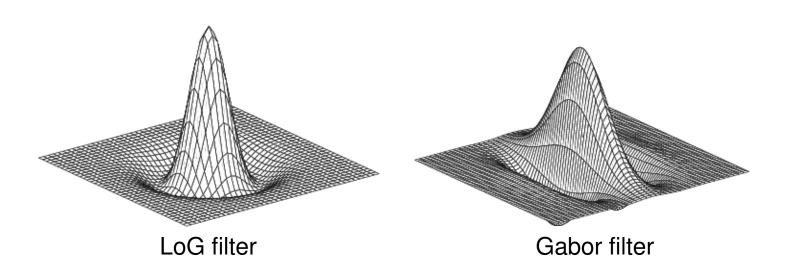
- ullet $H_{\mathbf{W}}^{(lpha)}$ is the histogram of a filter response
- The local spectral histogram is computed from a window centered at a pixel. The size of the window is called integration scale
- When the filters are selected properly, the spectral histogram is sufficient to capture texture appearance

Local spectral histogram - continued

OSU Mapping and GIS Lab

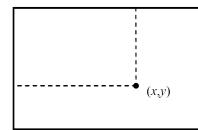
Choice of filters

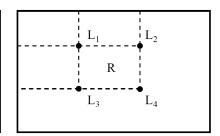
- Laplacian of Gaussian (LoG) filters: a combination of a Laplacian and Gaussian functions
- Gabor filters: a Gaussian kernel function modulated by a sinusoidal plane wave



Fast implementation

- Local windows should be relatively large in order to characterize textures; therefore fast implementation is needed
- Integral histogram image





- The histogram of region R can be computed using four references:
 L₄ + L₁ L₂ L₃
- Integral histogram images can be computed in one pass over the image. Only three vector arithmetic operations is needed to obtain any local spectral histogram regardless of window size

Extension to MS/HS imagery

- By applying filters to each band and concatenating all the local histograms, local spectral histograms can be extended to multispectral and hyperspectral imagery
- Dimensionality reduction is necessary
- Principle component analysis of filter responses
 - Apply a filter to each band of the multidimensional image stack
 - Compute the principal components. Select the first several components as the filter responses for computing local spectral histograms
 - All the chosen filters are applied to the images in the same manner. The local spectral histogram at each pixel location can be computed using the resulting filter responses

Texture region extraction

OSU Mapping and GIS Lab

• A seed window is placed within the target region. The pixels with similar spectral histograms to that of a seed are classified as targets. χ^2 -statistics is employed as the distance metric

$$\chi^{2}(H_{W_{1}}, H_{W_{2}}) = \frac{1}{|\mathbf{W}|} \sum_{\alpha=1}^{K} \sum_{z} \frac{\left(H_{w_{1}}^{(\alpha)}(z) - H_{w_{2}}^{(\alpha)}(z)\right)^{2}}{H_{w_{1}}^{(\alpha)}(z) + H_{w_{2}}^{(\alpha)}(z)}.$$

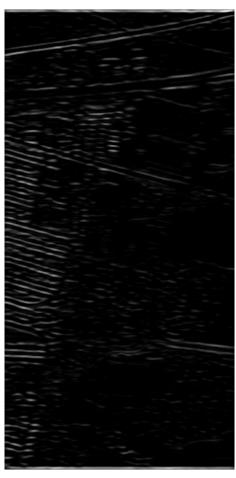
 A histogram is derived based on the distances between the feature vector of the seed and those at the other pixel locations. The first (smallest) local minimum position provides a natural separation, which can be used as a threshold

Experimental data

- Data tested consist of HYDICE hyperspectral imagery with 3 m spatial resolution taken at Copperas Cove, Texas.
- The original data contain 210 bands covering a 399nm-2499nm spectral range; 139 bands were manually selected by removing the noisy bands

false color image

PCA of filter responses



Gabor filter

Experimental result

Building (Accuracy 91.48%)

Vegetation (Accuracy 86.21%)

Conclusions

- The proposed method can effectively extract texture regions from multi-/hyper-spectral imagery
- The method is computationally efficient
- Although in the current version the filters and integration scales are assumed to be given, future work should include automatic selection of filters and integration scales
- Local spectral histograms computed near boundaries do not give an accurate feature, which tends to introduce errors on boundaries. Boundary refinement needs to be addressed