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ABSTRACT 
 
Classification of submerged aquatic vegetation (SAV) is difficult due to the attenuation of light in water.   The 
purpose of this study was to develop a site specific hyperspectral image classification technique to identify deep 
eelgrass beds using portions of the spectrum least affected by light attenuation.   Using multi-range spectral feature 
fitting, this study classified eelgrass by targeting spectral response in the blue-green portion of the spectrum through 
five distinct ranges between 476nm to 589nm.  Mapping via spectral feature fitting improved discrimination 
between eelgrass and non-eelgrass areas compared to a separate spectral angle mapping classification.  This 
technique allowed researchers to map eelgrass at a greater depth than other classification methods.  Total accuracy 
for presence/absence was 81%. 
 
 

INTRODUCTION 
 

Along the coast of California and the Pacific Northwest, submerged vegetation such as kelp, eelgrass and algae 
provides critical habitat for many aquatic species and is fundamental both for environmental and economic health.  
However, managing these vast vegetation beds requires knowledge of their location and health.  Water adds an 
unwanted complexity for mapping vegetation, and many of these aquatic resources, particularly in the turbid 
estuaries of the Pacific Northwest, remain unmapped.   

Water attenuates light.  Classification algorithms work based on the statistical separation of reflectance values 
between different targets.  In aquatic environments, this relationship becomes complex as light is attenuated and 
statistically, targets appear more similar.   This is also a function of water depth.   As a target is found deeper within 
the water column, more light is attenuated and the more difficult it is to distinguish it from its surroundings.  This 
relation is reflected in the below adaptation of Lambert-Beer’s Law: 

 
 

L(z, λ) = L(0,λ) - kz   (1) 
 
 

where z is depth,  k is an attenuation coefficient, λ is a wavelength and L is radiance.  In turbid waters, the 
attenuation coefficient is greater, resulting in less water leaving radiance and more difficulty in mapping submerged 
features.  However, water leaving radiance, as illustrated above, also differs depending on wavelength.  The red-
infrared range of the spectrum is more rapidly attenuated than blue and green range wavelengths (Bukata et al., 
1995). 

Hyperspectral sensors can best approach the cohesiveness of information of a field spectrometer.  Like 
traditional sensors, they passively collect reflectance data, but at much shorter wavelength intervals.  The result 
being that when the bands are viewed together, they create a quasi-continuous spectral curve for each pixel.   Past 
eelgrass mapping projects in Humboldt Bay have relied on delineation of aquatic beds using aerial photography.  
However, additional problems have been seen with this type of image classification.  Difficulties in mapping 
submerged species and inability to discriminate between algae and eelgrass have hindered the classification efforts. 

In October 2004, a hyperspectral sensor acquired imagery over Humboldt Bay during high tide, when all 
eelgrass was submerged.  The amount of water over the eelgrass beds was calculated to be 1.5-3.5m.  As tidal 
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cycling is different for the bays, lower water levels were seen in South Bay, while increased water depths were seen 
in North Bay.   Eelgrass was mapped with good success in South Bay by spatial subsetting the image and using a 
spectral angle mapping (SAM) classification.  However, when water depth was greater than 2.2m, distinguishing 
eelgrass from non-eelgrass areas became problematic (Judd, 2006).  The same technique applied to the North Bay 
was not successful, with many false negatives in deeper water.   

Throughout the classification of eelgrass in South Bay, we noticed certain characteristics of the submerged 
eelgrass spectral curve in South Bay.   Other researchers have used a spectral feature fitting (SFF) algorithm to 
enhance these characteristics of the spectral curve for aquatic vegetation (Williams et al., 2003).  The purpose of this 
study is to evaluate whether a spectral feature fitting algorithm would be able to classify deep submerged eelgrass in 
areas in areas where other classification schemes have failed. 

 
 

METHODS 
 

Study Area 
Humboldt Bay is located in northern California, sixty miles south of the Oregon border.  It is a shallow estuary 

with dredged channels for vessel passage.  It is considered to have of the most important eelgrass habitat areas in the 
Pacific Northwest (Phillips, 1984).  California Sea Grant along with other state, federal, and local agencies have 
carried out monitoring efforts for eelgrass in Humboldt Bay. The specific study area is located in North Bay, the 
largest of three bays which make up Humboldt Bay (Fig. 1).  The 
area covered two flight lines where water depth was an estimated 
2.2m-3.5m at the time of data acquisition.  
 
Data sources 

Navy Research Laboratory Portable Hyperspectral Imager for 
Low Light Spectroscopy II (PHILLS II) sensor (Davis et al., 2002) 
acquired imagery at high tide.  The image has 122 bands ranging 
from 421nm to 966nm, each approximately 4.5nm in width.  Florida 
Environmental Research Institute (FERI) carried out the flight and 
image preprocessing.   

A bathymetric data fusion product developed by CICORE-Moss 
Landing combined Topographic LIDAR (EarthData, 2002), 
multibeam sonar (CICORE, 2006), and single beam sonar (USACE, 
2005) into one GIS raster which was used to model water depth.   
 
Data Preparation  
       Imagery was subset by flight line, and for each image subset, an 
inverse minimum noise fraction algorithm was executed.  Using the 
CICORE bathymetric product, areas in which the elevation was too 
high (>.67m MLLW) or too low (<-1.5m MLLW) for eelgrass 
growth were masked out and excluded from the analysis. 

Determining water depth.   Using NOAA CCAP tidal stations, 
water depth was calculated at each station for the time of each flight 
line.  In ArcGIS 9.1 (ESRI, Redlands, CA 2006), tidal height was modeled over the entire bay using inverse distance 
weighting from the entrance to the extent of each bay.  Map algebra allowed the combination of this raster with the 
bathymetry fusion to calculate water depth for each 5m grid cell.   The image was spatially subset into two water 
depth classes 2-3m and 3-4m.   Four separate classifications were carried out, one for each of the two flight lines and 
one for each  of the two spatial depth subsets. 

Eelgrass spectral curve definition.  Within each image subset, a single region of interest (ROI) was created in 
ENVI where dense eelgrass was known to exist.  The mean value from this ROI was imported into ENVI’s 
endmember collection file to be used as a reference spectrum.   
 
Classification 

ENVI’s multi-range spectral feature fitting (MSFF) (Clark et al., 1991; Clark and Swayze, 1995) algorithm was 
used to select consecutive regions of the spectrum ranging from 476 nm to 589 nm.  The five ranges selected were 

   Figure 1.  Study area is located in  
   Humboldt Bay
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from 477nm to each consecutive peak (477, 500, 519, 533, 
565, and 589).   

In MSFF, each pixel is evaluated separately, and each 
represents a “test” spectrum.  A least squares algorithm is 
used to calculate the fit between the test and reference 
curves by comparing the difference in feature depth in the 
reference curve and the depth in the test curve.  Higher 
values correspond with test curves that are more like the 
reference curve for a certain spectral range.  These spectral 
ranges are evaluated separately and a cumulated rules image 
corresponding to goodness of fit to the reference spectrum is 
generated.  The calculated raster was imported into ArcGIS, 
where comparison with known areas of eelgrass presence 
and absence to determine cut-off points.  Our knowledge of 
eelgrass presence and absence came from previous field 
work surveys for eelgrass along with previous eelgrass 
classifications.  The cut-off points were not statistically 
derived, rather from visually assessing the image.  Statistical 
ranges were reclassified as eelgrass present or eelgrass 
absent.  
 
Accuracy Assessment    

Prior field eelgrass surveys were used for assessing the 
accuracy of the image.  Selected surveys were conducted 
within a year of image acquisition to minimize the 
difference in eelgrass distribution.  In Humboldt Bay, eelgrass is always present, though plant biomass may change 
throughout the seasons.  Therefore, presence/absence of species should be spatially consistent with the exception of 
plants that were uprooted during winter storms.  Surveys were evaluated against mapped distribution from MSFF 
classification.  In addition, they were compared with a separate spectral angle mapping classification attempt.  The 
spectral angle mapping (SAM) classification only was done in one of the two flight lines, so fewer ground truth 
points were available for the comparison. 
 
 

RESULTS AND DISCUSSION 
 

Classification Results 
A total of 1.9 km2 of eelgrass was classified in the study area (Fig. 2), with an estimated 81.25% accuracy to 

field surveys (Table 1).  Comparison with the spectral angle mapping (Fig. 3, 4) output shows an improvement of 
the classification product in deep water (Table 2).    

 
Discussion 

 Ability to map features at deeper water depths.  The most promising result is improved classification of SAV 
in optically deeper waters (whether they 
actually are deep in the water column or 
whether light attenuation is rapid), through 
targeting portions of the spectrum which 
are unique and are less rapidly attenuated.    
As far as the MSFF technique, there are 
two key differences with the SAM 
classification.  First, classification was 
limited to the blue and green ranges of the 
visible spectrum, and second, the SFF 
algorithm was used instead of the SAM 
algorithm. 

 
Table 1: MSFF Classification Accuracy 

Observed Eelgrass Distribution Classified Eelgrass 
Distribution 

Eelgrass 
Present 

Eelgrass 
Absent 

Producer’s 
Accuracy 

 

Eelgrass Present 14 2 87.5%  

Eelgrass Absent 4 12 75%  

User’s Accuracy 77.8% 85.7%   

  Total Accuracy 81.25% 

Figure 2.  Eelgrass classified as present in MSFF     
study area 
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      In most classification schemes, features are mapped by statistical distance.   In the marine environment, as 
optical depth increases, total variance within the image dataset decreases.  Different wavelengths have different 
extinction coefficients, and the total variance within the red/infra-red range will diminish quicker than in the blue 
green range.   If the entire spectral curve is considered in the classification scheme, as with the Spectral Angle  
Mapping attempt, poorer classification results will occur as depth increases.  Disparate targets will be statistically 
close to one another in that range of the spectrum, though they may not be so close in the slower attenuated 
blue/green range and will be classified in one group.  By focusing on ranges that are least effected by attenuation, an 
improved classification was attained. 

 Although classification accuracy 
improved in deep waters over the SAM 
classification (83% to 54% in select 
area), at shallower depths (>2m of 
water) the SAM classification had 
better accuracy (Judd, 2006).    By 
using only portions of the spectral 
curve, in the MSFF algorithm, it is 
likely that valuable information for 
classification was eliminated.  One 
example in this classification are the 
areas of line cultivation for oysters, 
seen in the lower right of the image as 
square barren boxes. In these oyster 
cultivation areas little eelgrass grows, 
but algae covers the oyster lines.  It is 
possible that the two false eelgrass present classifications seen in the MSFF algorithm mistakenly classified algae as 
eelgrass.   

 
Sources for potential error and improvement 

As bathymetric data was initially used with both subsets to limit the analysis to the short vertical range that 
eelgrass is found, some areas of the image that had been misclassified as eelgrass by other classification techniques 
was eliminated.  Two sample points were taken in areas which were estimated to be elevationally too high for 
eelgrass growth.  Of course, the field work in both cases found algae rather than eelgrass there.  We did include 
those two data points in our accuracy assessment, correctly predicting eelgrass absence when indeed absent.   It was 
our thinking that since the elevation modeling was part of this technique, the improvements that were seen from the 
bathymetric fusion product should also be included.  Excluding these points would yield an accuracy of 81% for 
MSFF and 50% for SAM. It is probable that more sample points in more spatially diverse areas would improve this 
accuracy estimate.  The sample points were taken in easily accessible areas for another eelgrass biomass survey.  
These areas also are where the interface between eelgrass and non-eelgrass occurs. 

 
 

CONCLUSION 
 

Multi range spectral feature fitting provides a promising classification technique for vegetation in deep or 
optically deeper water.  By focusing on ranges of the visible spectrum least affected by light attenuation, improved 
discrimination of bottom types was seen.  However, in shallower water depths, SAM classification was more 
accurate.   

In this study, the specific ranges for the SFF classification were chosen by noting visually which ranges 
appeared unique for eelgrass. However, these ranges were not chosen statistically.  It is possible even probable that 
by evaluating potential ranges for separability, improved classification could be reached.  In addition, the cut-off 
points for classifying the statistic SFF image as eelgrass/noneelgrass areas was also done by visually evaluating the 
results.  By using a formal statistical analysis to derive cut-off points, an improved classification accuracy may be 
seen. Future studies which investigate or incorporate an algorithm to select the best spectral ranges may increase 
accuracy. 

Table 2:  Comparative Classification Accuracy  
Observed Eelgrass 

Distribution Classification 
Type 

Classified 
Eelgrass 

Distribution 
Eelgrass Present 

(15 samples) 
Eelgrass 

Absent (9 
samples) 

Eelgrass Present 13 2 MSFF Eelgrass Absent 2 7 
  Total Accuracy 83.3% 
    

Eelgrass Present 5 1 SAM Eelgrass Absent 10 8 
 Total Accuracy 54.2% 
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