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ABSTRACT 
 

In this paper, we propose a novel mathematical model to address segmentation from an aerial and satellite imagery. 
Segmentation is performed through the consistent recovery of the zero iso-surfaces of a level set function towards 
image’s foreground (desired object for extraction) and background discrimination. The level set method is 
embedded in a geodesic active contours variational formulation. Geodesic active contours technique is an 
advancement of the classical snakes and active contours that can handle the limitation to change their topology. The 
proposed mathematical model consists of a functional with two basic energies; one that forms a region-based 
energetic module for the evolving interface in the level set space and an another one that takes into account the a 
priori knowledge of the geometry of the desired for extraction objects. With such a functional shape information is 
embedded into the level set based segmentation scheme. Shape information can cope with missing or misleading 
information in the input images due to noise, clutter and occlusion. The shape priors were developed to segment 
objects of familiar shape in a given image. Promising results demonstrate the potentials of our approach, like in 
cases where the desired object for extraction were buildings. 

 
 

INTRODUCTION 
 

Variational image segmentation models are usually trying to generate segments by locally optimizing appropriate 
cost functionals defined on the space of contours (Paragios et al., 2005). The respective functionals are designed to 
maximize certain criteria regarding the low-level information such as edge consistency or (piecewise) homogeneity of 
intensity, color, texture, motion, or combinations thereof. After the introduction of active contours (snakes) by the 
pioneering work of Kass et al. (1987) semi-automatic methods on linear object extraction and road extraction were 
presented (Cohen, 1991; Gruen and Li, 1997). Later on Zafiropoulos and Schenk (1998) tackled the problem of 
embedding colour image information, coming from different channels in deformable models of contour type for the 
extraction and localization of road structures of small width and Jeon et al. (2000) used snakes to extract roads 
accurately. Other, recent, applications of the standard or more advanced deformable models can be found in (Laptev et 
al., 2000; Agouris et al., 2001; Ruther et al., 2002; Rochery et al., 2003; Bailloeul et al., 2005). The main limitation of 
deformable models, was their incapacity to change their topology (Paragios et al., 2005). The initial contour(s) can not 
split or merge. 

The geodesic active contours along with the use of the level set technique were employed in order to solve the 
fixed topology problem of the classical snakes. Recently, level set method has been applied to satellite imagery for 
image segmentation (Samson et al., 2001; Ball and Bruce, 2005; Cao et al., 2005; Besbes et al., 2006). Karantzalos and 
Argialas (2006) proposed, also, the extraction of buildings from aerial and satellite imagery based on a level set image 
segmentation energy functional.  

In all above cases, the variational energy functionals are aiming at maximizing certain criteria regarding the low-
level information, but in practice the imposed models only roughly approximate the true intensity, texture or motion of 
specific objects in the image. Intensity measurements may be modulated by varying and complex lighting conditions. 
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Moreover, the observed images may be noisy and objects may be partially occluded. In such cases, algorithms which 
are purely based on low-level properties will invariably fail to generate the desired segmentation. 

In recent years, it was suggested to enhance variational segmentation schemes by imposing (the desired for 
detection) object specific shape priors. Given one or more silhouettes of an object of interest, one can construct shape 
priors which favor objects that are in some sense familiar. Prior-based segmentation methods incorporate a 
representation of a reference shape within the energy functional. Thus, the recovered object boundary should resemble 
the expected contour, in addition to being constrained by length, smoothness and compatibility with the image gray 
levels and gradients. In order to introduce prior shape knowledge and a given group of transformations in the level-set 
formulation, a shape dissimilarity measure should be provided.  

In this paper, a region based level set formulation, which was proposed for the detection of buildings (Karantzalos 
and Argialas, 2006), was extended with a building shape prior. This knowledge about the appearance of buildings was 
directly combined with clues given by the image data in order to cope with typical difficulties, like noise and 
occlusions. 

 
 

REGION-BASED GEOMETRIC LEVEL SET SEGMENTATION 
 
With the advantage of being implicit, intrinsic and parameter-free, level sets track moving interfaces through 

either model-free (Paragios and Deriche, 2002) or either model-based (Cremers, 2003) methods. 
In this paper a model-free region-driven level set technique was implemented, similar to the energy functional 

proposed by (Paragios and Deriche, 2002; Karantzalos and Paragios, 2005; Karantzalos and Argialas, 2006), as 
their segmentation results was promising. The essence of this approach is to optimize the position and the geometric 
form of the curve by measuring information along that curve, and within the regions that compose the image 
partition. To this end, one can assume without loss of generality that objects and the background are uniform. 

To this end, based on a motion equation that dictates the propagation of a closed structure, one can construct a 
structure of a higher dimension and define a corresponding flow such that its zero level set yields always to the 
position of the input structure. A step further is to consider the definition of the problem and the objective function 
(Zhao et al., 1996) directly on the space of level set representations. For a given open region Ω  with smooth 
boundary, it is assumed the existence of a level set function ( , )x yφ  which is Lipschitz continuous. Towards this 
end, one can define the approximations of Dirac and Heaviside (Zhao et al., 1996) distributions: 
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Equation 1 

 
and use them to introduce an image partitioning objective function. 

Boundary attraction as well region-consistency terms can be defined based on an evolving function φ . The 
geodesic active contour (Caselles et al., 1997) can be used for example to perform boundary extraction. 

( )( ) ( )boundary a

boundary module

E b I dφ δ φ φ
Ω

= ∇ ∇ Ω∫∫14444244443
 Equation 2 
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where : [1,0]b + →�  is a monotonically decreasing function. The lowest potential of this functional 
corresponds to a minimal length geodesic curve attracted by the boundaries of the structure of interest. 

Regional/global information can improve performance of boundary-based flows (Paragios and Deriche, 2002) 
that suffer of being sensitive to the initial conditions. The central idea behind a region-driven functional is to use the 
evolving interface to define an image partition that is optimal with respect to some grouping criterion. Within the 
level set representation such partition is natural according to the sign of the embedding function. The Heaviside 
function can be considered to define such partition: 
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according to some region descriptor functions  : [1,0], : [1,0]in outr r+ +→ →� �  that are monotonically 
decreasing functions like: 
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Such descriptors measure the quality of matching between the observed image and the expected regional properties 
of the structure of interest and the background. 

Integration of the boundary and the region-driven term can be considered to perform segmentation (Paragios and 
Deriche, 2002), namely the geodesic active region model. In the absence of noise, occlusions and corrupted visual 
information, such method can deal with local deformations. On the other hand, it cannot account for prior shape 
knowledge, deal with noisy, corrupted and occluded data. 

 
 

EMBEDDING THE SHAPE PRIOR KNOWLEDGE INTO THE VARIATIONAL 
FORMULATION 

 
By extending segmentation functionals with a shape prior, knowledge about the appearance of objects can be 

directly combined with clues given by the image data in order to cope with typical difficulties of purely data-driven 
image processing caused by noise, occlusion, etc. The design of shape priors strongly depends on ongoing work on 
statistical shape models [6, 12, 18]. In particular, advanced models of shape spaces, shape distances, and corresponding 
shape transformations have been proposed recently [36, 15, 31, 3, 19, 29].  

Several works, for example (Cremers et al., 2006; Duci et al., 2002; Rousson and Paragios, 2002; Tsai et al., 2003), 
use the distance function as the level-set and the square difference between level-sets as the shape dissimilarity 
measure. A symmetric and unbiased modification of this shape distance (called pseudo distance) has been recently 
suggested by Cremers and Soatto (2003). However, these similarity measures only account for isometric 
transformations and scaling, since more general transformations (such as non-isotropic scaling or perspectivity) do not 
preserve the characteristics of distance functions. 
The statistical methodology (Chen et al., 2002; Cremers et al., 2003; Huang et al., 2004; Leventon et al., 2000a,b; 
Rousson and Paragios, 2002; Tsai et al., 2003) accounts for transformations beyond similarity and for small non-
rigid deformations by using a comprehensive training set. It characterizes the probability distribution of the shapes 
and then measures the similarity between the evolving object boundary (or level-set function) and representatives of 
the training data. It is important to note that there is no distinction in this method between transformation-based and 
deformation-based shape variation. The modes of variation have to account for both. Moreover, the performance 
depends on the size and coverage of the training set.  

None of the existing methods accounts for projective transformations between the prior shape and the shape of 
interest. The inability to deal with projective transformations is significant. In the presence of projectivity, neither 
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similarity nor (even) the affine model provide reasonable approximation for the transformation between the prior shape 
and the shape to segment. The apparent mismatch inhibits the segmentation process and prohibits accurate 
reconstruction of the missing parts.  

Following the ideas of Raviv et al. (2005) a variational approach to prior based segmentation has been employed 
here, that explicitly accounts for planar projective transformation, using a single reference object. The segmentation 
process is carried out concurrently with the registration of the prior shape to the shape of interest. The outcomes of the 
algorithm include the detection of the object of interest and correct extraction of its boundaries. The planar projective 
transformation between the two object views is accurately recovered through a planar projective homography mapping. 
In such a homography mapping  the corresponding coordinates are deriving from Hxx =' , where the planar 
homography matrix takes the form 
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Equation 4 

The eight unknowns of H (the ratios of its nine entries) can be recovered by solving at least four pairs of equations 
of the form: 
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Equation 5 

The nine entries of H describe the translation (tx, ty, tz) and rotation (α, β, γ) between the image planes, and the 
scene structure (ξ, ψ, d) and are evaluated by the following equation: 

  
h11 = cosβ cosγ −

tx

d
sinξ , 

  
h12 = cosβ sinγ +

tx

d
sinψ cosξ  

  
h13 = −sinβ +

tx

d
cosψ cosξ , 

  
h21 = sinα sinβ cosγ − cosα sinγ −

ty

d
sinξ  

  
h22 = sinα sinβ sinγ + cosα cosγ +

ty

d
sinψ cosξ , 

  
h23 = sinα cosβ +

ty

d
cosψ cosξ , 

  
h31 = cosα sinβ cosγ + sinα sinγ −

tz

d
sinξ  

  
h32 = cosα sinβ sinγ − sinα sinγ +

tz

d
sinψ cosξ , h33 = cosα cosβ +

tz

d
cosψ cosξ  

 

Equation 

6 

 
 

PROPOSED IMAGE SEGMENTATION FUNCTIONAL WITH SHAPE PRIORS  
 
The proposed region-based segmentation functional includes an explicit expression of the projective homography 

between the prior shape and the shape to segment. Employing the parameterization-free shape description, enabled by 
the level-set formulation, we gain a significant advantage over landmark-based and template matching techniques that 
represent shapes by collections of points or features. The suggested distance function between the level-set 
representations of the matched shapes is well defined and is not depend on shapes sampling. Moreover, transformations 
applied on the domains of the level-set functions, transform the represented shapes correspondingly. This results in an 
elegant and powerful mathematical formulation to align the prior and the evolving shape, minimizing their dissimilarity 
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measure with respect to the transformation parameters. The graceful merge of the image data with that of the 
projectvely registered prior is the essence of the proposed contribution. 

Thus, the overall proposed functional for image segmentation is: 

shaperegion EEE ⋅+= µ
 

Equation 7 

where regionE  is a level set evolution model for the extraction of building from satellite imagery and shapeE  is 

calculated by the following equation. 
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Equation 8 

For the solution of the functional the energy of the shape prior shapeE ,one has to calculate the derivatives for all 

the 8 parameters of the planar homography transformation. 
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Equation 9 

The suggested algorithm is demonstrated on real and synthetic examples, in the presence of perspective distortion. 
The successful segmentation results and the reliable estimation of the transformation parameters suggest this method as 
a promising tool for various segmentation and registration applications. 

In figure 1, a number of shapes describing the boundaries of building are shown. Taking into account the shape of 
the prior Equation 7 can be solved. In figure 2, the initial IKONOS PAN one meter ground resolution is shown on the 
left. In the middle the result from the application of the proposed image segmentation geodesic active contours method, 
which couldn’t extracted accurately the boundaries of the building. By taking into account the shapeE  the result can be 

much better since it will overcome the limitations of imagetones variation, noise and occlusions 
The above described curve evolution level set functional was implemented and tested for the detection of building 

from an IKONOS PAN image. Before the application of the level set segmentation a pre-processing step for image 
enhancement and smoothing took place. The applied pre-processing algorithms were described in Karantzalos and 
Argialas (2006). The pre-processed image was the input to the curve evolution energy and the resulting segmented 
image was obtained. Finally, certain statistics were calculated for each of the detected segments implying possible 
buildings: area, perimeter, shape complexity, eccentricity, and orientation. Depending on the above, mainly geometric 
and shape characteristics, segments that are assumed not to be building were eliminated and thus the final detected 
buildings were extracted. 

The developed scheme has been applied to an IKONOS PAN one meter ground resolution image, from the Agios 
Stefanos area near Athens, Greece.  
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Figure 1. Different building shape priors. 

 
 
 

     
 

Figure 2. Level set image segmentation based on shape priors. 
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CONCLUSIONS AND FUTURE WORK 
 
In this paper a region-based segmentation functional includes an explicit expression of the projective homography 

between the prior shape and the shape to segment. Employing the parameterization-free shape description, enabled by 
the level-set formulation, a significant advantage over landmark-based and template matching techniques that represent 
shapes by collections of points or features. The suggested distance function between the level-set representations of the 
matched shapes is well defined and is not depend on shapes sampling. Moreover, transformations applied on the 
domains of the level-set functions, transform the represented shapes correspondingly. This results in an elegant and 
powerful mathematical formulation to align the prior and the evolving shape, minimizing their dissimilarity measure 
with respect to the transformation parameters. The graceful merge of the image data with that of the projectively 
registered prior is the essence of the proposed contribution. 
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