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ABSTRACT 
 
The Minimum Noise Fraction (MNF) data reduction transform and Mixture Tuned Matched Filtering (MTMF) 
partial unmixing classification algorithm are relatively new image processing techniques that have proven to be 
effective target detection tools. These techniques allow partial unmixing and subpixel target abundance estimation, 
products that cannot be simultaneously achieved using standard mixture modeling or spectral angle mapping 
algorithms. This paper presents a tangible description of the technical background of both algorithms, a resource that 
is currently unavailable in existing literature. A demonstration of the use of the MNF and MTMF techniques is 
presented in detail for application to leafy spurge infestations in the Swan Valley, Idaho. The use of these techniques 
on hyperspectral imagery generated a producer's accuracy of 63% for infestations with canopy cover averaging 40% 
for imagery with 3.5 m resolution. Ramifications of image noise estimation and classification endmember selection 
are discussed at length and should be used as a resource guide for application to other vegetation studies. 
 

 
INTRODUCTION 

 
Previous literature has identified the Minimum Noise Fraction (MNF; Green et al., 1988; Lee et al., 1990) data 

reduction transformation and the Mixture Tuned Matched Filtering (MTMF; Boardman, 1998) classification 
algorithm as a successful approach to partial unmixing and hyperspectral target identification. For example, Ben-
Dor et al. (2001) used MTMF classifications of endmembers derived from high spatial resolution Compact Airborne 
Spectrograph Imager (CASI) data to characterize urban features, generating accuracies of 76%.  Other studies have 
utilized MTMF to map geologic features with high success, finding subpixel mineral abundances as low as 5% 
(Boardman, 1998). Further, Kruse et al. (2003) determined enough confidence in MTMF classifications of geologic 
features to use the products as validation for other sensors. This study details descriptions of the MNF and MTMF 
algorithms and presents applied methods and discussion of MTMF detection of leafy spurge (Euphorbia esula L.), a 
target of significant remote sensing interest. 

Leafy spurge is an invasive plant that has been listed as a noxious weed in many parts of the United States 
(Prather et al., 2002; Galitz, 1980). Previous work by Parker-Williams and Hunt (2004) determined that MNF and 
MTMF processing methods were capable of detecting leafy spurge infestations with canopy cover as low as 10% 
with Producer’s accuracies between 75% and 95%. Other work by Dudek et al. (2004) used MTMF methods applied 
to moderate spatial resolution hyperspectral data (20 m pixels) over Theodore Roosevelt National Park to temporally 
monitor leafy spurge (Producer’s accuracies between 35% and 70%), and attribute lower accuracies in their study to 
the small spatial extent and highly fragmented nature of leafy spurge infestations in the study area. Glenn et al. 
(2005) documented repeatability in discrimination of leafy spurge, more accurately identifying small and 
fragmented leafy spurge infestations using MTMF applied to higher spatial resolution hyperspectral data (Producer’s 
accuracies between 61% and 88%).   
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The demonstration area for this study was located in the 
Swan Valley, Idaho, just west of the Idaho-Wyoming border 
(Figure 1). While most leafy spurge infestations in the study 
area were small (< 75 m2, averaging approximately 40% 
cover), a few larger infestations (multiple hectares at high 
percent cover) demonstrated the potential for leafy spurge to 
aggressively invade the region. On June 29, 2003, four 
HyMap scenes (HyVista, 2005) were collected over the 
study area approximately two hours prior to solar noon. The 
data consisted of 126 spectral bands between 450 and 2500 
nm, with bandwidths of approximately 15 nm and a spatial 
resolution of 3.5 m × 3.5 m. Each hyperspectral scene was 
approximately 1.8 km wide, and all scenes totaled nearly 60 
km in length.  

 
 

TECHNICAL BACKGROUND 
 

The following section describes the MNF and MTMF 
algorithms conceptually and presents a succinct 
mathematical context. However, this manuscript is not 
intended to provide foundational mathematical concepts 
(which are well presented in referred literature) or specific 
computational routines (which are protected intellectual 
property). While the descriptions and equations presented 
herein were derived based on the ENvironment for 
Visualizing Images (ENVI) software (ITT-VIS, Boulder, 
CO) processing routines and documentation (ITT-VIS 
Personal Communication, 2005; ITT-VIS, 2003), it must be 
noted that the context of this discussion is more applicable 
to general MNF and MTMF understanding than to the 
specific ramifications of the software implementation.  

 
Data Reduction 

Previous work has documented various approaches to data reduction and noise correction.  For example, Lee 
(1980) describes a noise filtering technique based on neighborhood mean and variance that does not require data 
transformation. Later work by Green et al. (1988) and Lee et al. (1990) developed the foundations of the MNF 
transform as described herein.  Green et al. (1988) developed the concept of the maximum noise fraction transform, 
or data reorganization based on signal to noise ratio, and demonstrated noise filtering via complex matrix inversion.  
Lee et al. (1990) more clearly defined the maximum noise fraction transform as a two-phase principal component 
analysis transform (PCA; Davis, 1986) and documented the applicability of this technique to noise reduction in high 
spectral resolution data.  Their study described data transformation such that the noise covariance matrix is reduced 
to an identity matrix, and subsequently applied principal components transform to noise projected data.  

The first phase of the MNF transform can be described in five discrete steps, each of which is discussed below.  
These steps are: 1) determination of image noise, 2) calculation of the image noise covariance matrix and 
subsequent eigen-decomposition, 3) image mean correction, 4) decorrelation of the noise in the image, and 5) 
normalization of the linear noise in the data (noise whitening). The product of these linear transformations is a 
mean-corrected and noise-whitened data set, which is subsequently rotated using a standard PCA transform in the 
second phase of the MNF transform.  

The MNF transform requires knowledge of the noise in the input data. Noise can either be determined directly 
using dark current measurements or through estimation (e.g., shift difference calculations). Dark current 
measurements are at-sensor measured errors that can be directly subtracted from data, but they are not always 
available.  When dark current data is not available or is not used, shift difference estimates may be utilized. Shift 
difference calculations are derived using a modified high frequency filter approach (Lillesand and Kiefer, 2000), as 
illustrated in Equation 1. Once the noise matrix is estimated, it is used to generate a noise covariance matrix using 

Figure 1. Location of the study area illustrating 
the hyperspectral scene and validation plot 

locations in the Swan Valley, Idaho. 
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the approach described in Equation 2.   In the following text, matrices are noted as upper case letters encased in 
square brackets (e.g.,[C]), while vectors are noted as lower case letters with an arrow overshadow (e.g., ev ). 
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where [N] is the resulting three-dimensional noise matrix, [D] is the input three-dimensional data matrix, i and j 
range from 2 to the number of samples and lines, respectively, and k ranges from 1 to the number of bands, b.  
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where [C] is the noise covariance matrix, α and β range from 1 to b, np is the number of pixels in each band, and m 
is the band mean (for band α or β, respectively).  

The resulting covariance matrix is subsequently decomposed into a b × b eigenvector matrix [En] and an 
eigenvalue vector ev . Noise eigenvalues characterize the dimensionality of the covariance matrix and represent the 
noise variance of each composite band, while noise eigenvectors distribute values into linearly independent 
composite bands (Davis, 1986; Nicholson, 1986).  Because noise estimates are treated as a number of pixels by 
number of bands matrix in the noise covariance matrix calculation (Equation 2), the total number of pixels used in 
the shift difference calculation must be equal to or greater than the total number of bands transformed. Shift 
difference estimates are typically calculated over a subset of the reflectance data where there is minimal spectral 
variability (e.g., deep, clear water or image calibration panels). If the shift difference technique is applied over an 
area that contains coherent signal variance, partial coherent signal may be misinterpreted as noise. Although it is 
assumed that this error would be small, the effect of signal degradation from noise misinterpretation in highly 
convex systems (Boardman, 1993) has not been quantified. 

Following noise covariance calculation, input data are mean corrected and noise whitened.  Mean correction is 
the subtraction of the mean (band) spectral reflectance from each pixel in its respective band (similar to low 
frequency filtering; Lillesand and Kiefer, 2000). Mean correction is useful because it defines the average image 
spectra as background, and spectrally unique features will depart from background values. It follows that if a target 
occurs in great abundance within the hyperspectral dataset, partial target signatures may be interpreted as 
background, confusing ensuing spectral classifications. As such, MNF and MTMF may not be optimal methods to 
map large scale features, such as land cover types.  

The mean-corrected image data is noise whitened in two steps.  First, it is projected onto the image noise 
eigenvectors, thereby decorrelating the noise in the data and redistributing the noise decorrelated data into linearly 
independent composite bands. Second, each band is normalized to the square root of its corresponding noise 
eigenvalue, rescaling the data into unit noise standard deviations. As a result of this normalization, each data value 
within the image is a statistical measure of its deviation from the zero mean.  Mean correction and noise whitening 
are mathematically summarized by Equation 3: 

 
[ ]W  = [ ]R  # [ ]nE  # [ ]( )Tbbnp mD −,         (3) 
 

where [W] is the resulting mean-corrected, noise-whitened three-dimensional dataset, [R] is a diagonal matrix with 
elements equal to the reciprocals of the square roots of ev , [Dnp,b] represents [D] as a two-dimensional matrix 
(number of pixels by number of bands), and mb is the mean of band b.  (In these equations, the “#” symbol 
represents the projection operator.) 

The final step of the MNF transform is a standard PCA rotation, which projects the noise-whitened, mean-
corrected data onto its own covariance eigenvectors and reorders the data bands by decreasing band variance.  This 
step is done in the standard manner as described above, and is mathematically summarized by Equation 4: 

 
[ ]MNF  = [ ]T  # [ ]W          (4) 
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where [MNF] is the final MNF output in units of noise standard deviations and [T] is the b × b eigenvector matrix 
derived from [W]. 

Transformed MNF data have several unique and simple properties: they are band decorrelated, have a zero 
mean, and have unit noise variance. The covariance matrix of an MNF transformed dataset is a diagonal matrix with 
elements equal to the MNF eigenvalues. The MNF eigenvalues decrease sequentially by band and have a lower 
bound of one, due to unit noise variance. Because noise eigenvectors have been directly correlated to signal-to-noise 
ratios, MNF transforms are generally more effective at signal component organization than PCA rotations (Green et 
al., 1988).  

 
Image Classification 

Over the last 20 years, various approaches to image classification have been derived, many of which also 
estimate subpixel target components. Unlike traditional linear spectral unmixing methods (Lillesand and Kiefer, 
2000), several of these approaches seek to minimize interference and develop a relative measure of similarity 
between pixel spectra and target spectra.  Harsanyi and Chang (1994) documented an Orthogonal Subspace 
Projection (OSP) approach to the simultaneous data reduction and classification of hyperspectral data. In a two step 
process, they first project spectra onto the vector orthogonal to the undesirable targets, and subsequently project the 
residuals onto the target spectra, producing a component image representing the distribution of the target feature.  
From this, Tu et al. (1998) developed a Noise Subspace Projection (NSP) approach to image classification which 
does not require covariance matrix inversion, making it useful in the analysis of hyperspectral data.  Other work by 
Pinzón et al. (1998) documented a Hierarchal Foreground Background Analysis (HFBA) approach to linear 
unmixing of spectral data that minimized extraneous noise by developing a series of weighting vectors which 
extracted important discriminating features. Finally, Asner and Lobell (2000) document an automated approach to 
unmixing reflectance from soils and vegetation, and used a Monte Carlo approach to estimate errors in derived 
subpixel cover fractions. 

The Mixture Tuned Matched Filtering algorithm consists of two phases, a Matched Filter calculation for 
abundance estimation and a Mixture Tuning calculation for the identification and rejection of false positives. 
Matched Filtering was originally developed for use in electrical and signal processing (Henderson and Lewis, 1998).  
In an optical remote sensing context, Matched Filtering can be described as the process of filtering the input data for 
good matches to the target spectrum while suppressing the remaining background spectra. Matched filtering is 
mathematically equivalent to the Constrained Energy Minimization described by Harsayni (1993) (ITT-VIS, 
Personal Communication).  The segregating power in the MTMF algorithm is in the Mixture Tuning, which 
calculates a value of infeasibility (or a measure of goodness of match) for each MF classified pixel. The MTMF 
algorithm as described here implicitly requires zero mean, unit noise variance input data (such as MNF transformed 
data) for proper Mixture Tuning calculation. 

Matched Filter scores are calculated for each pixel by projecting the MNF transformed data onto a Matched 
Filter Vector. This vector is derived by transforming the target spectrum into MNF space (using the process 
described above), projecting it onto the inverse covariance of the MNF data, and normalizing it to the magnitude of 
the target spectrum. This ensures that the Matched Filter Vector has unit length and corresponds to target 
components ranging from 0% to 100%. The mathematical definition of the Matched Filter Vector is summarized in 
Equation 5: 
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where vv is the Matched Filter Vector, [CMNF]-1 is inverse of the MNF covariance matrix (a diagonal matrix of 
eigenvalue reciprocals) and MNFt

v
is the vector of the target spectra in MNF space.  Matched Filter values are 

subsequently calculated for each pixel (creating an i × j target abundance image) by projecting the MNF transformed 
data onto the Matched Filter Vector vv , as expressed in Equation 6: 

 
[ ]MF  = vv  # [ ]MNF          (6) 
 
Output MF scores are normally distributed and have a mean of zero, where the magnitude of the MF score 

represents the linear solution to the MF projection. MF values of zero and lower represent background (no target 
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component), and pixels with a MF score greater than zero are considered to contain a fractional target component 
equivalent to the MF score. Systems with low spectral contrast (Okin et al., 2001) may have increased potential for 
spectral confusion, which may introduce irregularity in output MF scores, possibly resulting in MF scores greater 
than one. These high MF scores may be an artifact of target variability, or may occur as unique mixtures of 
background materials that falsely represent the target spectra. 

The Mixture Tuning portion of the MTMF algorithm assesses the probability of an MF estimation error for each 
pixel, based on the concept of mixing feasibility. The calculation of infeasibility value of each pixel takes place over 
three distinct steps: 1) determination of the target vector component of the pixel, 2) interpolation of variance 
eigenvalues respective to the target vector component, and 3) calculation of the standardized separation between a 
pixel and its ideal target vector component.  The target vector component of a pixel is the scalar product of its MF 
score and the target vector, as illustrated in Equation 7: 

 

MNFii tMFc
vv ×=           (7) 

 
where icv  is the target vector component for pixel i and MFi is the Matched Filter value of the pixel.  An ideal pixel, 
containing some fraction of the target, will lie directly on the target vector (Figure 2; Pixel X). Actual pixels, 
however, will likely contain some degree of noise variance and background mixing, resulting in a pixel that does not 
lie directly on the target vector (Figure 2; Pixels Y and Z). The proximity of each pixel to its idealized location on 
the target vector is a conceptual measure of infeasibility.  

As described above, the units of MNF-space are defined in terms of noise standard deviations.  Thus the 
proximity of a pixel’s actual location to its ideal projected location (on the target vector) is a statistical measure of 
its spectral variance from the target. Pixels with high percent target component are expected to have a low degree of 
mixing freedom (low variance) because their spectral characteristics should be dominated by the target. 
Alternatively, pixels with low percent target component are expected to have a higher degree of mixing freedom 
(high variance) because they mix with combinations of background components to form varied spectral signatures. 
Because pixels with small target vector components have higher degrees of mixing freedom than do pixels with 
large target vector components, it is necessary to establish variance thresholds to consistently assess acceptable 
degrees of data variance based on mixing freedom. For example, an MNF value of four may be considered 
unreasonably high for a pixel with a MF score of 0.9 but acceptable for a pixel with a MF score of 0.1.  For this 
reason, measures of data variance are standardized based on estimates of mixing feasibility. The mathematical 
derivation of infeasibility requires eigenvalue interpolation and is determined following Equation 8. 

 

( )( )2nMNFiMNFi eeMFee vvvv −×−=        (8) 
 

where iev  is the interpolated vector of eigenvalues for pixel i, MNFev is the vector of MNF eigenvalues, and nev  is the 
vector of MNF noise eigenvalues (a vector of ones). 

These standardizations (variance thresholds) are determined by the linear interpolation of eigenvalues between 
the 100% target distribution (eigenvalues are all equal to one, having no mixing freedom and therefore only unit 
noise variance) and the 100% background distribution (eigenvalues generally much greater than one, representative 
of high degrees of mixing freedom) (Figure 2). The infeasibility value of a pixel is calculated as the geometric 
distance from the pixel to the target vector, normalized to the variance threshold magnitude for the respective MF 
value. The mathematical derivation of infeasibility values is illustrated in Equation 9. 

 

i

ii
i e

cs
I v

vv −
=           (9) 

 
where Ii is the resulting infeasibility value for pixel i, and isv  is the MNF spectra for pixel i.   
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This mixture-tuning portion of MTMF generates a value that 
represents the statistical distance from the target-mixing vector 
for each pixel, and can be directly interpreted as a measure of 
mixing feasibility. An example is shown in Figure 2.  Though 
pixel Y has a larger noise variance than pixel Z, it also has a 
higher allowed mixing freedom. As a result, pixel Y falls within 
the feasibility cone, while pixel Z does not (i.e., pixel Y has lower 
infeasibility than pixel Z), and as such, is interpreted as 
background rather than as target.   

 
 

APPLIED METHODS 
 

MTMF processing methods generally estimate noise, extract 
spectral endmembers, and classify scenes independently of each 
other. In this study, however, only one of the four collected data 
scenes had a known leafy spurge infestation that was suitable for 
use as a training site (geographically large and with high percent 
leafy spurge cover). Consequently, each scene was MNF 
transformed utilizing the same noise statistics in order to optimize 
the utility of the training area. Using the same set of noise 
statistics for all scenes ensured that all data were projected into the 
same MNF space and a single training endmember was 
appropriate for all classifications.  Spectral bands 63, 64, and 126 
(at wavelengths of 1406 nm, 1420 nm, and 2493 nm, respectively) 
were not analyzed because of decreased data coherence due to 
atmospheric water absorption, and further processing was applied 
to the remaining 123 reflectance bands.  

 
Data Reduction 

This study calculated image noise estimates using the shift difference technique. The effect of image noise 
estimation techniques (i.e., size and location of the area used for noise estimation) was constrained using a 512 × 
640 pixel subset of the imagery containing agricultural fields, conifer trees, shrubs, grasslands, and a relatively large 
(~170 pixels, or ~2000 m2) leafy spurge infestation. Within the subset, three spatially independent areas were used 
for noise estimation (each larger than the 123 pixel minimum requirement). The first noise estimate was calculated 
over a 13 × 13 pixel area within a grass pasture, the second over a 60 × 40 pixel area within a wheat field, and the 
third was derived from the entire 512 × 640 pixel subset. Three independent MNF transformations were derived 
using the three different noise estimates, and were characterized by MNF eigenvalue maximums of 11,943, 2,297, 
and 82 for the grass pasture, wheat, and entire subset estimations, respectively.   

The inverse relationship between the number of pixels used to estimate noise and maximum MNF eigenvalue is 
interpreted to be due to lower signal variance within geographically smaller ecosystems. That is, noise estimates 
derived from smaller, more homogenous areas have lower total variance, and implicitly, lower noise estimates as 
compared to larger, more diverse areas. Smaller MNF eigenvalues are correlated to lower variance in output MNF 
bands. Because the full scene noise estimation produced the lowest eigenvalues, it is inferred that some coherent 
signal was interpreted as noise. It follows that there was likely some misinterpretation of signal when estimating 
noise from the smaller areas as well.  This misinterpretation may be at the scale of continuum removal when 
considering noise estimated from large areas, or at the micro-scale when considering noise estimated from smaller 
areas.  Because there is some uncertainty as to which noise estimation method may be more appropriate, preliminary 
leafy spurge MTMF classifications were evaluated using each of the three MNF transformed subsets for 
comparison. For consistency, each dataset was classified to map only high percent cover leafy spurge infestations (> 
50% cover).  A minimum MF value of 0.5 and a maximum infeasibility value of 20 were used to generate the 
desired classifications (detailed processing methods are presented in subsequent discussions).  

For this study, it was concluded that noise estimates using the entire subset had both lower values of 
infeasibility and less spectral confusion (spatial scatter) than classifications resulting from the other two subsets (see 
results section).  As such, full scene (approximately 2×106 pixels) noise estimations were used for subsequent data 
processing.  

Figure 2. Mixture Tuning cone of 
infeasibility illustrating increasing 

eigenvalue threshold with increasing 
mixing freedom for three eigenvalue-
constrained, orthogonal MNF axes. 

Modified from ITT-VIS (2003). 
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The appropriate number of MNF bands to use in further analyses was determined by evaluating the visible 
coherence in the MNF dataset as well as the behavior of bivariate plots of MNF eigenvalues, inverse eigenvalues, 
and cumulative MNF eigenvalues. Ultimately, the first 70 MNF bands (approximately 90% of the cumulative MNF 
variance) were used for further processing. This threshold provided high confidence that all coherent data were 
included in the classification, while eliminating 53 bands (43% of the dataset) as noise dominated.  

 
Endmember Selection 

Previous work documents methods for determining 
endmembers and endmember variance (Bateson and 
Curtiss, 1996; Bateson et al., 2000).  In this study, leafy 
spurge endmembers were determined using the spectral 
Pixel Purity Index (PPI) rotation and N-Dimensional 
Visualization (N-DV) algorithms applied to a 200 × 200 
pixel subset containing the leafy spurge training site. The 
PPI rotation can be conceptualized as a modified Low 
Probability Detection approach (Tu et al., 1998), with n-
dimensional datasets being iteratively collapsed onto 
random two-dimensional unit vectors, where pixels at the 
end of these vectors (extreme pixels) represent low 
probability targets. In this study, 30,000 iterations at a PPI 
threshold of 2.5 produced approximately 39,000 (of 40,000) 
pixels designated as extreme in at least one projection. Of 
these, approximately 34,000 were discarded because they 
composed the lower 90% of the cumulative PPI frequency 
distribution (PPI minimum threshold of 200).  

Leafy spurge formed a distinct endmember cluster in 
the ND-V (using the 5000 pixels resolved from the PPI), 
and 113 leafy spurge endmember pixels were isolated 
(Figure 3). The use of ND-V output is an interactive method 
to derive training pixels for classification; however, in this 
study it was difficult to justify which pixel(s) to choose as 
the ‘correct’ training endmember(s). Using multiple random 
ND-V projections, four distinct pixels were isolated that 
were all extreme representations of leafy spurge (one for 
each of four distinct projections; boxed pixels in Figure 3).  

This study investigated the effect of endmember 
selection by classifying the image using three distinct 
methods: 1) N-DV endmembers - 4 extreme pixels selected 
from four random N-DV projections, 2) mean endmember - 
average of all 113 extreme endmember pixels, and 3) user 
guided endmember - the average of 4 pixels selected using 
field data. The N-DV endmembers represented the 
variability within the leafy spurge community (similar to 
discussions presented by Batesman and Curtiss (1996)). The 
user-guided endmember represented methods commonly 
utilized in image processing, and was the same endmember 
utilized by Glenn et al. (2005). 

 
Image Classification 

For each of the endmembers, MTMF produced one MF 
image and one infeasibility image. These data were 
evaluated using scatterplots of MF score versus infeasibility 
value (Figure 4). For this study, MF scores of zero and less 
were interpreted as background, and scores greater than one 
were interpreted as high percent target reflectance (~100%). 
Using the scatterplot, pixels with MF scores greater than 

Figure 3. a) An N-Dimensional Visualization of 
leafy spurge endmember (green). Additionally, 
mixed pixels containing some leafy spurge and 
some background (red) and spectrally similar 
vegetation that is not leafy spurge (blue) are 

indicated. b) The geographic distribution of each 
of the colored groups in (a), with the leafy spurge 

training area dominated by 113 green pixels. 
Boxed pixels represent extreme endmembers used 

for classification. 
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zero and infeasibility values below 20 were considered to 
potentially contain leafy spurge. The maximum infeasibility 
threshold (20) was determined iteratively using values 
measured in known occurrences of leafy spurge over the 
training area and was later confirmed using other Global 
Position System (GPS) validated locations. Based on the 
scatterplots, it was determined that lower values of MF 
required lower values of infeasibility than did higher values 
of MF. For example, a pixel with a MF score of 0.9 and an 
infeasibility value of 10 most commonly represented leafy 
spurge, while a pixel with an MF score of 0.25 and an 
infeasibility value of 10 most commonly represented 
background (Figure 4). It can be inferred from Figure 4 that 
the convexity of leafy spurge mixing generally prohibits the 
differentiation of leafy spurge from background at MF 
scores less than 0.35; however, some pixels with low MF 
scores are differentiable, given that they have very low 
values of infeasibility. The scatterplots were evaluated 
iteratively and produced pixels classified as leafy spurge 
that were exported into a Geographic Information System 
(GIS) for accuracy assessment.  

 
Accuracy Assessment 

In this study, Trimble GeoXT GPS receivers (Trimble; Sunnyvale, CA) were used to collect 214 GPS polygon 
validation samples (differentially corrected to sub-meter accuracy) representing both leafy spurge presence 
(flowering and non-flowering shoots; 68 plots) and absence (146 plots in mixed ecology). One hundred and seventy-
seven samples were collected in the summer of 2003, and 37 additional samples collected in the summer of 2004. 
GPS-derived validation plots were buffered by 15 m to accommodate geometric error in the imagery. Accuracy 
assessment followed methods described by Congalton and Green (1999) and Foody (2004). Detailed descriptions of 
the field validation and accuracy assessment procedures used are presented by Glenn et al. (2005).  

The correlation of MF scores to field estimated leafy spurge cover was evaluated in addition to assessing 
classification at the presence/absence level. Correlations were only assessed with true positive validation polygons. 
Of the 68 positive validation polygons, 43 were classified as true positives using the most effective classification 
strategy as defined by accuracy assessments (discussion to follow). Twenty-six of these 43 polygons contained at 
least one classified pixel, while the remaining 17 were considered true positives because they were within 15 m of a 
predicted leafy spurge location. The 26 GPS-derived polygons that included classified points within their boundaries 
were commonly associated with larger infestations and higher percent cover than the remaining 17 polygons.  

 
 

RESULTS 
 
Data Reduction 

Classifications resulting from grass pasture, wheat, and entire subset noise estimates produced 86, 206, and 214 
pixels classified as leafy spurge present, respectively. In the case of the classification resulting from the grass 
pasture noise estimates, all 86 pixels corresponded to known infestations of leafy spurge, however many pixels 
known to contain leafy spurge in high abundance were not classified.  Further inspection demonstrated that most of 
the unclassified pixels containing leafy spurge had infeasibility values ranging between 40 and 100, which, after 
iterative processing, was determined to be higher than acceptable. For this reason, the classification produced using 
the noise from the grass pasture was not evaluated further. Values of infeasibility in the classification resulting from 
wheat and entire subset noise estimations were significantly lower (less than 20).  

Figure 4. Scatterplot of MF scores versus 
infeasibility values resulting from an MTMF 

classification. The pixels within the shaded area 
were classified to contain leafy spurge. 
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For the wheat subset, 206 pixels were mapped as 
leafy spurge present, while 214 pixels were mapped in 
the classification resulting from entire subset noise 
estimation.  In both subsets, 182 pixels classified as 
leafy spurge were interpreted as correctly classified 
(based on field knowledge of the area). All residual 
classified pixels not within a two pixel buffer (7 m) of 
a correctly classified pixel were considered false 
positives.  It is notable that this 7 m buffer is 
independent of the 15 m buffer used in classification 
accuracy assessment (described above), because the 
noise estimates test only relative accuracy and are not 
affected by geometric imprecision.  

Of the remaining entire subset noise classification 
pixels, 28 of 32 were located within 7 m of a correctly 
classified pixel, while only 5 of the 24 wheat noise 
classification pixels were within this buffer.  This 
indicates that the wheat noise estimation generated a 
classification with higher levels of confusion than did 
the entire subset noise estimation, even when 
considering only high percent cover infestations (MF 
> 0.5).  Statistical testing applied to the 182 correctly 
classified pixels demonstrated no significant 
difference in MF scores between the two 

classifications. Values of infeasibility from the 
classification derived using wheat noise estimates, 
however, were significantly higher than values of 
infeasibility derived from the classification using the 
entire subset for noise estimates (t-test, 95% 
confidence interval; Davis, 1986).  It is interesting to 
note that while higher MNF eigenvalues typically 
represent higher information content (Kruse et al., 
2003), in this study, higher MNF eigenvalues  
resulted in lower classification accuracy. 

 
Image Classification 

The user-guided leafy spurge endmember 
generated Producer’s, User, and overall accuracies of 
63%, 88%, and 86%, respectively, while the mean 
endmemeber resulted in Producer’s, User and overall 
accuracies of 54%, 86%, and 82% (Table 1). The 
four individual N-DV endmembers generated 

Producer’s accuracies between 41% and 53%, User accuracies between 76% and 90%, and overall accuracies 
between 78% and 83% (Table 1). Qualitative evaluation indicated that extreme endmember classifications were 
complimentary (e.g., leafy spurge infestations missed by one extreme endmember classification were identified by a 
different extreme endmember), which was not unexpected following work by Batesman et al. (2000). This 
hypothesis was supported in that a combined (merged) extreme endmember classification generated Producer’s, 
User, and overall accuracies of 60%, 71%, and 79%, respectively. 

Regression analysis of all MF scores produced by the most effective classification (user-guided) with the 
oblique field estimates of leafy spurge cover produced a weak relationship (r2 = 0.24; Figure 5). The 26 validation 
polygons containing classification points had an r2 value of 0.32, higher than that of the remaining 17 validation 
polygons classified as true positives due to buffering (r2 = 0.08). These correlation coefficients both independently 
failed to reject the null hypothesis that they were due to chance at 90% confidence (Davis, 1986). 

 

Table 1. Classification Accuracies 

Classification 
Strategy 

Producer’s 
Accuracy 

User 
Accuracy 

Overall 
Accuracy 

Extreme 1  41% 90% 80% 
Extreme 2 53% 90% 83% 
Extreme 3 41% 80% 78% 
Extreme 4 51% 76% 79% 
Mean Selected 63% 88% 86% 
Mean Calculated 54% 86% 82% 
Extreme Combined 60% 71% 79% 

 Number of Positives 68   
Number of Negatives 146  

Figure 5. Regression analysis between calculated MF 
score and field observed abundance (canopy cover). 

Boxes represent true positive infestations by inclusion, 
while triangles represent pixels classified as true 

positives by buffering. 



ASPRS 2007 Annual Conference 
Tampa, Florida ♦ May 7-11, 2007 

DISCUSSION 
 

The User accuracies for leafy spurge detection were consistently high in this study, but the Producer’s 
accuracies were lower than desired. Previous work by Glenn et al. (2005) and Mundt et al. (2005) demonstrate that 
this reduced accuracy is likely dependent on the small size and low percent cover of infestations in the study area.  
Although the Producer’s accuracies are low, the classification is useful for management needs as the User accuracy 
is high enough to provide a decision support tool for leafy spurge management. 

Endmember selection in hyperspectral processing is a critical analysis step that commonly is not adequately 
addressed in reports. MTMF calls for the most ‘pure’ spectral endmember to be used for classification training; 
however, a distinction must be made between what is ‘pure’, what is ‘extreme’, and what is appropriate. In this 
study, different classification endmembers generated over 20% variability in Producer’s accuracy. The most 
appropriate endmember for classification in this study was the average (mean) of a small group of pixels with high 
percent target cover, though these pixels were not the most obvious extreme pixels in n-dimensional space.  

While the N-DV extreme endmembers may be considered spectrally unique and are likely to contain a leafy 
spurge component, they may not represent pure leafy spurge (i.e., each endmember may be dominantly leafy spurge 
mixed with differing background components) (Bateson and Curtiss, 1996). It is interpreted that combining N-DV 
endmembers coalesced the endmember variability and effectively mapped the dominant leafy spurge signature. 
However, this process did increase classification noise, as illustrated by a slight decrease in User accuracy compared 
with other classifications. The accuracies generated from the combined extreme endmember classification are 
similar to the accuracies from the user-guided endmember classification. Visual comparison supported the 
hypothesis that the user-guided endmember classification outperformed the combined extreme endmember 
classification, as there was less spatial scatter.  

In terms of the MTMF algorithm, the use of more than one N-DV endmembers conceptually generates 
overlapping infeasibility cones around multiple target vectors, each with a slightly different target spectrum.  This 
effectively results in a single, inflated infeasibility pseudo-cone that encompasses all individual cones, and certain 
pixels within the volume of overlap are classified by multiple endmembers.  This pseudo-cone increases spectral 
confusion by artificially lowering infeasibility scores for spectrally similar (non-leafy spurge containing) pixels, 
thereby erroneously classifying them as target present.  

       Infeasibility values generated by MTMF were useful in the reduction of false positives, thereby increasing 
accuracies over Matched Filtering alone. This result, also replicated in other studies (e.g., Dudek et al., 2004), 
demonstrates the advantage of the MTMF algorithm as compared to CEM or OSP. It is notable that pixels with high 
MF score were more clearly interpreted as leafy spurge present or absent than were pixels with a lower MF score. 
Vegetative systems have been documented to mix in a nonlinear fashion (Roberts et al., 1993; Borel and Gerstl, 
1994; Ray and Murray, 1998), thus implying that linear solutions incorporated by the MTMF algorithm are 
potentially restrictive. While leafy spurge in the Swan Valley is a relatively new and generally poorly established 
invader, many pixels in the scene have both MF scores greater than one and relatively low infeasibility values. It is 
possible that the effects of nonlinear mixing may be amplified at lower percent cover infestations, with Figure 4 
illustrating how the maximum acceptable infeasibility threshold may vary depending on MF score. This relationship 
is important for highly fragmented or small infestations because they become more difficult to effectively classify. 
Future work could address the relationship between the MF score and values of infeasibility to further automate the 
selection of true positive pixels and may necessitate the re-evaluation of the linear interpolation of mixing feasibility 
thresholds. Additionally, future work could focus on converting the measure of goodness from values of infeasibility 
to values of probability, which is a more widely understood and generally useful quantification.  

While previous work has demonstrated strong correlations between MF scores and percent target component 
(e.g., Parker Williams and Hunt, 2002), this study did not produce such relationships. We hypothesize that multiple 
data collection personnel and temporal variability in data collection contributed to reduced r2 values. Further, 
perimeters of infestations may be diffuse and coverage classes within an infestation are commonly variable. As a 
result, multiple field personnel may potentially interpret a field validation plot differently. Finally, previous work 
documents variance in classified subpixel estimates (in some cases, greater than 20%) and attributes this 
inconsistency to what has been presented herein as endmember variability (Asner and Lobell, 2000; Bateson et al., 
2000; Roberts et al., 1993). 

 Data reduction and noise estimation in hyperspectral data analysis have received significant attention in the last 
20 years, and in the future it is certain that new algorithms will continue to develop. In general, image noise can be 
described in three components: instrumental, atmospheric, and photonic. Noise estimates derived using dark current 
data will consider only instrument noise, but not any residual atmospheric or photonic noise. Alternatively, noise 
estimates derived using the shift difference technique will estimate the total image noise; however, this estimate is 
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restricted to a linear solution that may fail to accommodate nonlinear noise components (e.g., signal-dependent 
photonic noise or topography-dependent atmospheric noise). Additionally, because the number of pixels used to 
calculate the image noise must be equal to or greater than the number of bands in the transformed dataset (when 
using the shift difference technique), an unknown amount of natural variance will be included in the noise estimates, 
regardless of the subset size used. Ultimately, these factors introduce some uncertainty as to how appropriately the 
MNF transform is able to accommodate noise, and future studies may consider how to more accurately estimate and 
accommodate these various noise types. Using spectral calibration panels may reduce this error, though rarely are 
such targets placed over geographic areas large enough to provide the necessary number of pixels. The impact of 
partial noise removal will likely depend on project objectives; however, the authors stress that for application-based 
studies, MNF transformed data and MTMF classifications continue to perform adequately. While MTMF 
classifications are somewhat subjective (as are many image classification methods), it should be noted that, with 
experience, analysts are commonly able to develop a processing flow that enables the production of quality, 
repeatable results.  

 
 

CONCLUSIONS 
 

This study presented details of the Minimum Noise Fraction transform and the Mixture Tuned Matched 
Filtering classification algorithm.  These algorithms were used to locate spatially small occurrences of leafy spurge 
in a mixed grass environment to Producer’s accuracies between 41% and 63% and User accuracies between 71% 
and 90% (Table 1).  Noise estimates were evaluated using three different target areas, with the best estimate 
produced by using the larger, more ecologically diverse subset.  The use of individual and multiple target 
endmembers was also investigated, with the highest accuracies from a classification made using an endmember 
derived from the mean of several manually selected target pixels.   
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