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ABSTRACT 
 
Using a linear unconstrained least squares (LSS) method and a non-linear artificial neural network (ANN) 
algorithm, we conducted a spectral mixture analysis to the Advanced Spaceborne Thermal Emission and Reflectance 
Radiometer (ASTER) image data in Yokohama city, Japan, for mapping the abundance of the urban surface 
components.  ASTER is a newly developed research facility instrument.  The spectral signatures of four 
endmembers (Vegetation, Soil, High/Low albedo impervious surface) were extracted from the ASTER VNIR (15-m 
resolution) and SWIR (30-m resolution) imagery by referring to high spatial resolution airborne imagery (The 
Airborne Imaging Spectrometer, AISA, with 2-m resolution) and land use / land cover map for training and testing 
the LSS and ANN algorithms.  Experimental results indicate that ASTER VNIR and SWIR image data are capable 
of mapping the abundances of urban surface components with a reasonable accuracy and that the ANN outperforms 
the unconstrained LSS in this spectral mixture analysis. 
 
 

INTRODUCTION 
 

Rapid urbanization and accelerated urban sprawl have significantly impacted on urban climate (Voogt and Oke, 
2003) and on conditions of urban biophysical processes and physical environment, thus finally influencing the 
quality of human lives.  Timely and accurate information on the status and trends of urban ecosystems and 
biophysical parameters is critical to developing strategies for sustainable development and to improving urban 
residential environment and living quality (Yang et al., 2003; Song, 2005).  Therefore, developing techniques and 
enhancing ability for monitoring urban land use and land cover (LULC) changes are important for city modeling and 
planning.  Ridd (1995) proposed a Vegetation-Impervious surface – Soil (V-I-S) model to parameterize urban 
biophysical composition and environment.  In the conceptual model, the most fundamental components of the urban 
ecosystems can be considered by combinations of green vegetation, impervious surface materials and exposed soil 
within the urban area.  Most unique urban surface cover types could be unmixed into some combinations of these 
three basic components in varying proportions.   

Despite the model’s limitation (e.g., it is difficult to figure out their proportion of the three basic components 
when they are in combination status), the vegetation, soil and impervious surface are fundamental components to 
construct an urban environment indeed.  Vegetation abundance and distribution are primary determinants of urban 
environment conditions. Urban vegetation can range from highly cultivated lawns, street trees and/or horticultural 
plantings to remnant patches of original or regenerated native vegetation (Gong and Howarth, 1992a, b; McKinney, 
2002). Urban soil component including exposed soil and/or dry vegetation (Hung and Ridd, 2002) has a distinct 
function from vegetation and impervious surface in an urban ecosystem, e.g., increasing aerosol concentration above 
urban area.  Anthropogenic impervious surfaces are defined as impermeable features such as rooftops, roads, and 
parking lots, and these have proved to be key indicators for identifying the spatial extent and intensity of 
urbanization and urban sprawl (Clapham, 2003; Xian and Crane, 2005, 2006).   

For monitoring the spatio-temporal dynamics of urban LULC in a timely and cost-effective manner, especially 
accurately and timely mapping abundance of aforementioned three components in their combination condition, data 
from various remote sensors are desirable.  Usually, urban areas are heterogeneous and most urban image pixels at 
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the resolution of Landsat and similar sensors are mixed with varying proportions of different components and/or 
materials.  In most situations, the three components in Ridd’s V-I-S model (Ridd, 1995) in urban environments are 
mixed together within individual pixels.  For example, pixels assigned as residential may represent between 20 – 
100% impervious surfaces while also representing between 0 – 60% tree canopy coverage (Clapham, 2003).  
Therefore, conventional classification techniques are often untenable with pixels of mixed land cover composition 
abundant in an image (Foody, 1996) because these techniques assume that all image pixels are pure.  Consequently, 
conventional ‘hard’ image classification techniques only provide a poor base for the estimation of the area extent of 
land-cover classes because any pixel is forced to belong to a single class.  Therefore, it is desirable to decompose 
pixels into their components when their sizes are smaller than the pixel size.  For this case, spectral mixture models 
and their inversion have been proposed and studied (Adams et al., 1986; Gong et al., 1994; McGwire et al., 2000; 
Wu and Murray, 2003; Lee and Lathrop, 2005; Lu and Weng, 2006). Among these, a linear spectral mixture model 
(LSM) was extensively applied to extract the abundance of various components within mixed pixels. 

In previous studies, most data used for spectral mixture analysis (SMA) for monitoring and mapping urban 
surface components are medium-resolution Landsat TM/ETM+ images (e.g., Flanagan and Civco, 2001; Hung and 
Ridd, 2002; Yang et al., 2003; Wu, 2004; Song, 2005; Xian and Crane, 2005; Small and Lu, 2006) due to the fact 
that such data are widely accessible.  With the continuing development of remote sensing technology, many new 
sensors come into being and data from these new sensors are available for assessment.  Among them, the Advanced 
Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a newly developed but widely accessible 
instrument with suitable spatial resolution (visible-near infrared, VNIR, 15 meters, short-wave infrared, SWIR, 30 
meters, and thermal infrared, TIR, 90 meters) (Yamaguchi et al., 1998).   So far, few research on SMA from ASTER 
data was reported, especially the SMA for mapping major urban surface materials (e.g., Lu and Weng, 2006).  
Therefore, in this study, we propose to assess the LSM model with an unconstrained least square solution (LSS) and 
artificial neural networks (ANN) for SMA to derive fractional information of vegetation, soil and impervious 
surface from ASTER VNIR and SWIR images acquired over Yokohama City, Japan. Because ASTER VNIR image 
has a relatively high spatial resolution, we also tested a ‘hard’ classification classifier called linear discriminant 
analysis (LDA) with minimum distance to identify the urban surface cover types in order to compare the unmixed 
results produced with the two ‘soft’ methods: LSS and ANN.  Therefore, more specific objectives for this study 
include (1) evaluating the ability of ASTER data for identifying urban surface components by using SMA, and (2) 
comparing the performance between LSS, ANN and LDA for mapping abundance of urban surface components 
from the ASTER data. 

 
 

STUDY AREA AND DATA SETS 
 
Study Area 

The Yokohama City, located in the central east coast of Japan, was chosen as the study area (Figure 1).  With a 
population of over 3.5 million and a city area of 434 km², Yokohama is one of the 13 major cities designed by the 
Japan government ordinance.  It possesses most representative urban land use / land cover (LULC) types from the 
central business district (CBD) to suburban to rural areas in Japan, typically found along the coast of the Pacific 
Ocean.  During the last half of a century, the city had experienced continuous growth in population and expansion in 
extent and is famous for the Yokohama port, the biggest one in Japan.  Right now the city is still growing.  Man-
made materials for buildings and roofs in the city are concrete, metal plate and brick tile.  Various impervious road 
surfaces are covered by asphalt, concrete and rail track.  Green vegetation areas are occupied by trees, shrubs, lawns 
in varying sizes, gulf course, and crops. 
 
Data Sets 

The ASTER sensor has 14 multi-spectral bands from visible to TIR (Table 1, Yamaguchi et al., 1998). The 
three VNIR bands are useful for assessing vegetation and iron-oxide minerals in surface soil and rocks.  The six 
SWIR bands were selected mainly for the purpose of surface soil and mineral mapping with 30-m pixel size. The 
ASTER TIR subsystem has five bands that record thermal and emissivity properties of rocks on the Earth’s surface.  
The ASTER sensors are onboard the Terra satellite and their data, used in this study, were acquired on April 25, 
2004 around 10:30 local time.   Towards the objectives of this study, we would only focus on the three VNIR bands 
and six SWIR bands (resampled to 15-m pixel size to preserve the spatial features provided in the VNIR bands) for 
spectral mixture analysis (Lu and Weng, 2006). ASTER level 1B data were collected. Further image radiometric 
correction was undertaken by subtracting the dark object (Chavez, 1988). In this study, we subtracted digital number 
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(DN) = 4 (a minimum value of band 9) for every VNIR and SWIR bands because the DN of band 9 (at 2.395 µm) is 
assumed zero over deep pure water bodies.  However, the imagery was not fully atmospherically corrected as only a 
single date/scene of imagery was used.   

The Airborne Imaging Spectrometer (AISA) is an airborne hyperspectral system that enables imaging of 35 
bands, covering the visible and NIR ranges.  The AISA data, used in this analysis, were acquired on May 14, 2003 
in 2-meter resolution.  The AISA data set covering major part of the study area helps selecting pure pixels from 
ASTER VNIR image for training and testing LSM model and LDA classifier and validating spectral unmixed results.  
In addition, an LULC map, also covering a part of Yokohama city, was also collected for a general validation 
purpose. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The location map of Yokohama city, Japan (left) and the ASTER image, acquired on April 25, 2004, 
shows the study area (right). 
 

Table 1. The ASTER instrument characteristics 
Characteristics VNIR SWIR TIR
Spectral bands Band 1: 0.52 - 0.60 µm Band 4: 1.60 -1.70 µm Band 10: 8.125 - 8.475 µm

Band 2: 0.63 - 0.69 µm Band 5: 2.145 - 2.185 µm Band 11: 8.475 - 8.825 µm
Band 3N: 0.76 - 0.86 µm, Nadir looking Band 6: 2.185 - 2.225 µm Bnad 12: 8.925 - 9.275 µm
Band 3B: 0.76 - 0.86 µm, Backward looking Band 7: 2.235 - 2.285 µm Bnad 13: 10.25 - 10.95 µm

Bnad 8: 2.295 - 2.365 µm Bnad 14: 10.95 - 11.65 µm
Band 9: 2.360 - 2.430 µm

Spatial resolution (m) 15 30 90
Swath width (km) 60 60 60
Radiometric resolution (bits) 8 8 12  
 
 

METHODOLOGY 
 
Determination and Extraction of Endmembers 

The key to successful SMA is appropriate endmember selection (Gong et al., 1994; Tompkins et al., 1997).   
Determination of endmembers involves identifying the number of endmembers and extracting their corresponding 
spectral signatures.  According to feature space representation (Figure 2) of NIR – Red (B3N – B2) bands and 
referring to previous work (Wu and Murray, 2003; Wu, 2004; Pu et al., 2006) and Ridd’s V-I-S conceptual model 
(Ridd, 1995), four endmembers were selected.  They include Vegetation (Veg), Soil, High (Himp) and Low (Limp) 
albedo impervious surfaces.  From Figure 2, it is apparent that spectral signatures between Himp and Soil are 
significantly confused, which implies that some non-linear solution to spectral mixture model might be needed.   

Endmember spectra were extracted from the imagery with a common method in spectral unmixing (e.g., Adams 
et al., 1986; Smith et al, 1990). We first identified relatively homogeneous patches of 4-9 pixels on ASTER VNIR 
composite image, then referred to AISA high spatial composite image (using NIR, Red and Green bands of AISA 
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imagery to make a pseudo-color composite image) and LULC map to determine the pure pixel location, finally 
picked up one pixel DN from the 4-9 homogeneous pixels patches (usually picking up the central one).  The samples 
(pixels) extracted from the ASTER image were divided into a training set and a test set (Table 2) with each set 
containing the pixel spectra and the known individual endmembers. 
 

 
Figure 2. Feature space representation of Band 3 nadir looking – Band 2 to show the centers (dark filled triangles) 

of the four endmembers (Vegetation, Soil, High albedo impervious and Low albedo impervious). 
 
Table 2. Pixel samples extracted from ASTER imagery used in this spectral mixture analysis 
Endmember train samples test samples Sum
Veg 1726 3451 5177
Soil 1053 2107 3160
Himp 1552 3103 4655
Limp 1285 2571 3856
Sum 5616 11232 16848
Note: Veg--vegetaion; Himp/Limp--high/low albedo impervious areas  
 
Spectral Unmixing Methods 

In the SMA, a typical linear spectral mixing model at pixel (i, j) can be expressed in equation (1): 

ijijij εMFDN +=         (1) 

where, a K-dimension digital-number vector, ijDN ; an L-dimension fraction vector ijF ; a LK × endmember 

spectra matrix M; and ijε , a K-dimension error vector representing residual error.  The goal of spectral unmixing is 

to solve for ijF  with ijDN  and M known. When the number of endmembers in pixel (i, j) are appropriately 

accounted for, ijF  should satisfy the following conditions: ,1
1

=∑
=

L

l
lF  and 0≥lF .     

We used the unconstrained least squares solution (LSS) (Pu et al., 2003) to solve Eq. (1).  For those fraction 
estimates 0ˆ <lF  and 1ˆ >lF , we simply set 0ˆ =lF and 1ˆ =lF , respectively, and also normalized all 

),...,2,1(ˆ LlFl =  to make them sum to 1 after obtaining ijF̂  for every pixel in an ASTER image.  
A feed-forward artificial neural network (ANN) algorithm is the second method used for unmixing mixed 

pixels.  The network training mechanism is an error-propagation algorithm (Rumelhart et al., 1986;  Pao, 1989).  
Similar to some of our earlier studies (Gong et al., 1996; Gong, 1996), a neural network program developed by Pao 
(1989) has been adapted and used in this study.  In a layered structure, the input to each node is the sum of the 
weighted outputs of the nodes in the prior layer, except for the nodes in the input layer, which are connected to the 
feature values, i.e., DNs of ASTER VNIR and SWIR bands in this study.  The nodes in the last layer output a vector 
that corresponds to similarities to each class, or fractions of endmembers within a mixed pixel.  One layer between 
the input and output layers is usually sufficient for most learning purposes.  The learning procedure is controlled by 
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a learning rate and a momentum coefficient that need to be specified empirically based on the results of a limited 
number of tests.  The network training is done by repeatedly presenting training samples (pixels) with known 
fractions of endmembers.  Network training is terminated when the network output meets a minimum error criterion 
or optimal test accuracy is achieved.  The trained network can then be used to estimate the fraction of each 
endmember in a mixed pixel.   

For the LSS solution, once ijF̂  is obtained, the appropriateness of estimation of ijF  can be evaluated by the 
root-mean-squared error RMS for a pixel: 

∑ ∑
= =
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⎜
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The RMS error indicator was designed only for LSS solution. 
If test samples are available (with known lF ), we can calculate the residual error RE for a test sample: 

( )∑
=
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L
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1

2ˆ1
       (3) 

where lF  is actual fraction l in a test sample.  RE is a precision indicator for the unmixing results generated by both 
LSS and ANN.  Due to the lack of ground truth, few studies used it (e.g., Settle and Drake, 1993).   
  
Linear Discriminant Analysis 

A linear discriminant analysis (LDA) was used as a ‘hard’ classifier for identifying each pixel as one of the four 
surface components (100% abundance) to compare with the unmixed results by LSS and ANN.  The procedure 
DISCRIM in the SAS system (SAS Institute, 1991) was used. 
 
Validation 

The Yokohama LULC map, covering a part of the study area, was used to validate the spectral unmixed results 
of the three final endmembers (Veg, Soil and Imp (Himp + Limp)), obtained by LSS and ANN and to compare the 
identified result by the LDA.  For those relative homogeneous patches (> 4 pixels of 15-m resolution) with similar 
spectral properties between ASTER VNIR image and the LULC map (complemented with AISA airborne data), a 
limited number of samples (point to point) were located on and extracted from fraction images and the LULC map 
to be compared between them. Such a process could avoid registration error at a certain degree indeed although the 
registration error problem could not be completely solved (Pu et al., 2003). 
 
 

RESULTS AND ANALYSIS 
 

Table 2 lists samples extracted from ASTER VNIR/SWIR images. We used the ‘holdout partition’ strategy 
(Manel et al., 1999; Pu and Gong, 2004) to split each endmember samples into two subsets, training set and test set. 
Most spectral unmixing results below were calculated from the three test sets.  Figure 3 presents means (bar) and 
standard deviations (short line) of the first training set of the four endmembers (Veg, Soil, Himp and Limp).  The 
means of 9 bands in the figure may construct a spectral responding matrix for spectral mixture analysis with the LSS 
solution. 
 
Use of LDA 

With the training samples in Table 2 and SAS DISCRIM procedure, a linear discriminant function was 
established.  Using the discriminant function derived from the first training set, Figure 4a presents its ‘hard’ 
classification result of ASTER VNIR/SWIR image data.  Figure 4b illustrates the distribution of the three surface 
components derived from the LULC map by merging neighbor LULC types similar in physical properties and 
referring to the normally accepted LULC classification scheme.  By visual examination to both maps, the 
distributions of the three components are generally consistent on both maps, but it is apparent that many ‘pepper and 
salt’ pixels distribute across the LDA resultant map.  It is very common to present such a phenomenon when a ‘hard’ 
classifier is executed to multispectral imagery.  Since Figure 4b was derived from an LULC thematic map that was 
usually produced by ground survey and large-scale aerial photo interpretation, it looks cleaner.  Table 3 lists 
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statistical results (percentage) for the three endmembers as derived with the LDA.  The accuracies (in either average 
accuracy, AA or overall average accuracy, OAA, %) of classifying the three endmembers with the 9 ASTER bands 
data are relatively high (around 92% averaged from the three test samples).  This is because the number of final 
classes has only three.  However, such classification result may not be reasonable, in theory, to those spectrally 
mixed pixels because it does not reflect abundance of individual endmembers in the mixed pixels. More detailed 
comparison between the ‘hard’ classification result and the LULC map is presented in section 4.4 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Means (bar) and standard deviations (short line) of the first training set of four endmembers (Vegetation, 

Soil, High albedo impervious and Low albedo impervious), extracted from study area. The means of 9 bands 
construct a spectral responding matrix for spectral mixture analysis with the unconstrained least squares (LSS) 
solution.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The ‘hard’ classification result with linear discriminant analysis (LDA) (a) and land use / land cover 
(LULC) map (b). 
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Table 3. Spectral unmixing (classified) results (%) produced with the three methods 
LSS ANN LDA

Vegetation 14.15 9.55 10.42
Soil 20.55 8.13 24.93
Impervious 65.30 82.32 64.65
RE-train (5616) 0.57568 0.05547 n/a
RE-test (11232) 0.57607 0.05537 n/a
RME 0.84 (DN) n/a n/a
AA/OAA (11232, %) n/a n/a 91.74/91.98
Note: The results of RE-train and RE-test were averaged from the three sets of 
training and test samples, respectively.  AA--average accuracy, OAA--overall average accuracy,
averaged from the three sets of test samples.  
 
Use of Unconstrained LSS 

The spectral responding matrix M in (1) can be derived from the training sets (Table 2).  Unmixing results of 
the ASTER VNIR/SWIR data were subsequently derived (Table 3, Figure 5).  Values of column LSS in Table 3 are 
fractions in percentage for Vegetation, Soil and Impervious surface, respectively.  From the table, the residual errors 
(RE) for both training and test samples are high (around 0.58).   

Endmember images (fraction images) and the RMS error image generated by LSS were illustrated in Figure 5a-
d. The Himp and Limp fraction images have been merged into the fraction image (Figure 5c) of the impervious 
surface (the same processing for ANN impervious fraction images). The range of fractions for the three endmembers 
has been rescaled from [0, 1] to [0, 100]. It can be seen from the Veg image for the area in the rectangle in Figure 5a 
that the spatial distribution of fraction of vegetation generally agrees with the Veg distribution in Figure 4b (LULC 
map), and the spatial distribution of the impervious area (Figure 5c) is also generally consistent with that on LULC 
map.  However, the spatial distribution of soil fraction (Figure 5b) seems much more than that on the LULC map.  
This might be also related to seasonal change of urban land surface types.  It looks that much impervious area has 
been unmixed into soil fraction due to spectral similarity between impervious and soil (Figure 2), especially much 
soil fraction distributing in right side of the LULC map. For the RMS error image (Figure 5d), the pixel values were 
first enlarged 10 times, then were subtracted from 255 so that the white areas in the RMS image indicate no error and 
the white to black areas in the image represent varied RMS error levels.  It can be seen from the error image that the 
error is relatively low. The average RMS errors are shown in Table 3.  An average of 0.84 DN (out of 255) for the 
entire study area was obtained for the LSS method. The low RMS error indicates that the model and the number of 
endmembers used are adequate.  Nevertheless, the RE levels, calculated separately from the training and test 
samples, are high (Table 3).  This may be caused by high confusion of Soil and Himp. 
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Figure 5. Spectral unmixing results with the LSS solution.  (a) Vegetation fraction image; (b) Soil fraction image; 

(c) Impervious fraction image; and (d) RMS error image. The box with a white or black semitransparent line is a 
location of LULC map.  

 
Use of ANN 

To train and test the ANN for spectral unmixing, input DNs were first normalized to the range of [0, 1].  The 
nine nodes in the input layer correspond to DNs from three VNIR bands and six SWIR bands (the SWIR bands 
having been resampled to 15-m pixel size).  The output layer had 4 nodes corresponding to 4 endmembers: Veg, Soil, 
Himp and Limp.  They correspond to the fractions in the range of [0, 1]. To find a better ANN structure, we tested 
various combinations of learning rate (η ), momentum coefficient (α ) and number of nodes in a hidden layer.  
Finally, the ANN structure with a 10-node hidden layer and the learning rate η =0.5, and momentum 
coefficientα =0.7 were used for all networks with inputs of 9 ASTER VNIR/SWIR bands. 

With the same training data sets (three sets) as used to derive M in LSS, Figure 6 (a-c) present unmixing results 
using the ANN.  For the purpose of display, we used the same rescaling as in Figure 5.  The distribution of Veg 
fraction generated by ANN has a good agreement with that on the LULC map.  The other two fractions (Soil and 
Impervious surface merged from Himp and Limp fractions) are better than those derived by LSS when compared to 
the LULC map.  This situation is very different from Figure 5 because ANN can use subtle spectral difference 
between the two endmembers (Gong et al., 1997) and the ANN algorithm has a non-linear property that may be 
favorable to separate the two endmembers of Soil and Himp whose spectra are much overlapped (Figure 3).   

The values of RE-train and RE-test with ANN, averaged from the three sets of training and test samples, 
respectively, compared to the LSS REs, are considerably low (around 0.055 in Table 3).  This indicates that the 
ANN is more effective than the LSS in spectral unmixing in this specific case.  This conclusion is coincident with 
that by Pu et al. (2003). 
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Figure 6. Spectral unmixing results using ANN. (a) Vegetation fraction image; (b) Soil fraction image; and (c) 

Impervious fraction image.  Learning rate = 0.5, momentum coefficient = 0.7, with a 10-node hidden layer. The 
box with a white or black semitransparent line is a location of LULC map.  

    
Comparison and Validation 

To evaluate the performance of the two analysis methods: LSS and ANN, for spectral unmixing, on the one 
hand, we conducted a general comparison between unmixed results by LSS and ANN; on the other hand, we also 
took a close look at both sets of results.  To gain an insight into the unmixed results, the ‘hard’ classification results 
were used as a reference.  Table 4 presents general comparisons of unmixed (‘hard’) results between LSS, ANN, 
LDA and LULC map. In the table, the relative error for each endmember fraction was computed for each method 
using LULC map values as the reference (true values).  The table presents that the three fractions estimated by the 
ANN have the lowest relative error among the three methods: LSS, ANN and LDA.   

 
Table 4. Averaged fractions (%) of three endmembers, produced with three methods, and their relative errors (%) 

compared to land use/cover map 

Fraction Relative error Fraction Relative error Fraction Relative error
LULC 8.65 0.00 10.42 0.00 80.93 0.00 100.00
LSS 13.35 54.24 19.56 87.82 67.09 -17.10 100.00
ANN 8.32 -3.81 6.97 -33.13 84.71 4.67 100.00
LDA 9.05 4.56 22.91 119.95 68.04 -15.92 100.00

Method Sum of fractionVegetation Soil Impervious

 
   
Now let us take a look at the detailed unmixing results (Figure 7).  For comparison, LDA results were not used.  

Figure 7 illustrates a close comparison between LSS, ANN and the LULC map.  The AISA imagery can serve as a 
detailed reference. In Figure 7, the four surface components were extracted from their typical locations.  Referring to 
ASTER VNIR image and the AISA airborne image, obviously, the Veg image (V) from the ANN is very similar to 
that from LULC map, thus better than that from LSS.  For Soil component (S), its distribution from ANN results is 
less than that from LULC map, but compared to the image (S) of AISA and ASTER VNIR, it seems more 
reasonable than that from LSS.  For the two impervious endmember images (Hi: high albedo impervious surface and 
Li: low albedo impervious surface) in contrast with the corresponding AISA image, ASTER image and LULC map, 
apparently, the ANN results are much better than those by LSS. 
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Figure 7. A close look at the spectral unmixed results and detailed comparison among the AISA airborne imagery, 
LULC map and ASTER spectral unmixed results.  Letters V, S, Hi and Li in the figure represent the 
ednmember names: Veg, Soil, Himp and Limp in the text. 

 
Figure 8 presents six scatter plots to show the agreement between fractions estimated by spectral unmixing 

methods and fractions interpreted from AISA image and those calculated from LULC map.  The fractions from 
AISA interpretation and LULC map are supposed to be actual values. Due to inevitable registration errors (subpixel 
of ASTER VNIR), a 4-9 pixel patch where a relatively homogeneous spectral signature was required was first 
located over the fraction images so that a pixel picked up from the center of the patch can guarantee to be free of 
sub-pixel registration error.  Following the procedure, a total of 85 pixel samples were extracted from both fraction 
images and the AISA image/LULC map.  The scatter plots (Figure 8) reflect the agreement between actual value and 
estimated value by spectral mixture modeling. The figure shows that the agreement between actual values and 
estimated by ANN (see Figure 8a, 8c and 8e) is higher than that by LSS (see Figure 8b, 8d and 8f), especially for 
Veg fraction.  
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Figure 8. Validation of three endmember fractions estimated from ASTER images with those interpreted/calculated 

from AISA-LULC data.  (a), (c) and (e) are for Vegetation, Soil and Impervious fractions estimated with the 
ANN, respectively, while (b), (d) and (f) are corresponding three fractions estimated with the LSS.   
 
The preliminary validation results demonstrate that the ASTER VNIR and SWIR image data can be used to 

efficiently identify abundance of urban surface components, especially those generated by the ANN method.  The 
comparison result of the two spectral mixture analysis methods: LSS and ANN, indicates that the ANN has 
produced higher accuracies (lower RE values) of endmember fractions and more reasonable spatial distribution of 
fractions than those by LSS. Such conclusions agree well with our previous work (Pu et al., 2003).   This is because 
the ANN is nonlinear and it can make use of subtle spectral differences in fraction estimation for those endmembers 
with similar spectral properties (e.g., between Soil and Himp).  This also proves that the non-linear ANN algorithm 
is more capable of solving the spectral mixture problem than the linear least square solution.  
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CONCLUSIONS 
 

As the remote sensing technology advances, more and more data from new sensors will be available for urban 
environmental studies. Among them, the Advanced Spaceborne Thermal Emission and Reflectance Radiometer 
(ASTER) is a newly developed instrument providing images suitable for urban structure studies.  

Based on our experimental results, we conclude that (1) ASTER VNIR and SWIR image data are capable of 
mapping the abundances of urban surface components with a reasonable accuracy and spatial agreement with the 
thematic map and interpretation of high resolution imagery, (2) the ANN has performed better than the 
unconstrained LSS when they are used to estimate abundances of the three urban surface components: Vegetation, 
Soil and Impervious surface at the study site, Yokohama city, Japan, from ASTER VNIR/SWIR imagery; (3) among 
the ANNs tested, a three-layer feed forward ANN structure with learning rateη =0.5, momentum coefficientα =0.7 
and a 10-node hidden layer performs the best.  To unmix those endmembers with a certain degree of spectral 
signature confusion, it may be necessary to first conduct image data transformation (e.g., MNF in Wu and Murray, 
2003) before conducting a spectral mixture analysis. 
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