Although the region has been inhabited since early times by nomadic peoples, the Mongol tribe made its entrance into history during the 13th century under the leadership of Genghis Khan. The Mongol Empire, with its original capital at Karakorum and later at Beijing, stretched from the Danube River in Eastern Europe to China. In the 14th century, the former empire was broken up and absorbed into China under the Yuan dynasty, originally established in 1279 by Kublai Khan, grandson of Genghis. By 1368, the Ming dynasty supplanted the Yuan, shattering the Mongol unity. The former Outer Mongolia eventually gained its independence from China on 11 July 1921 as the Mongolian People's Republic. The date of the country’s present constitution is 12 February 1992, when it was renamed Mongolia. The current capital is Ulaanbaatar, the area of the country is slightly smaller than Alaska, and its borders are with China (4,677 km) and Russia (3,485 km). Mongolia has a continental desert climate with large daily and seasonal temperature ranges; its terrain is comprised of a vast semi-desert and desert plains, grassy steppe, mountains in the west and southwest, and the Gobi Desert in the south central. The lowest point is Hoh Nuur at 518 m, and the highest point is Nayramadlin Orgil (Huyen Orgil) at 4,374 m.

In 1918, the Chinese General Staff compiled a monochrome map series at scales of 1:100,000 and 1:300,000 covering the Mongolia-China border areas. The map series were based on Chinese surveys. Relief is shown by contours and roads classified by vehicular limitations. In the 1940s, the Survey Department, Ministry of National Defense, compiled a 1:500,000- and 1:1,000,000-scale series covering all of Mongolia. The Kwantung Army Headquarters produced map sheets for military use in 1942-43 for two areas in eastern Mongolia from sheets originally produced by the Japanese in 1935 and 1942, from Russian maps dated 1906 and 1933, and from a rough survey made by the Japanese in 1912. Relief is shown by contours of form-line accuracy and hill shading. No grid system was used.

Virtually all of the maps produced by the Japanese for Mongolia cover the eastern part. Most were produced by the Japanese General Staff. A 1:100,000-scale monochrome map series published in 1913-14 covers part of Mongolia east of 106º; in the late 1930s a 1:200,000-scale map series was compiled from Russian maps to cover northeastern Mongolia. During the period from 1923 to 1943, a 1:500,000-scale map series was compiled for eastern Mongolia. From this series and from Russian maps, a 1:200,000-scale map series was produced by the Kwantung Army Headquarters mentioned previously. No grid system was used.

Mapping of Mongolia by the Russians was originally conducted during the 1930s. The Upravleniye Topografov (Military Topographic Administration) was formed in 1932 and compiled a 1:200,000-scale map series of small scattered areas and 1:500,000- and 1:100,000-scale map series for more extensive areas in eastern Mongolia. Relief is shown by form-lines and contours. Geodetic surveys of Mongolia were conducted from 1939 to 1946, and the primary triangulation of the country is comprised of eight north-south arc chains and three east-west arc chains. I count 27 baselines and 54 Laplace stations on a diagram published by the government in 1999. Thanks to a letter that year from B. Munkhzul, geodetic engineer for the State Administration of Geodesy and Cartography, the basic classical geodetic network of Mongolia is comprised of second-order accuracy, with third- and fourth-order points used to densify the network. Including the benchmarks based on the Kronstadt Datum (Kronsh畅通 Data) (sic), there are 27,500 geodetic monuments in Mongolia. The Russian “System 42” Datum is referenced to the Krassovsky 1940 ellipsoid where a = 6,378,245 meters and 1/f = 298.3. The origin is at Pulkovo Observatory: $\Phi = 59^\circ 46' 18.55''$ North, $\Lambda = 30^\circ 19' 42.09''$ East of Greenwich, and the defining azimuth at the point of origin to Signal A is $\alpha = 317^\circ 02' 50.62''$. The grid system used in Mongolia for mapping from classical triangulation is the standard Russian Belts such that the False Eastings are equal to 500 km at the central meridians, and the scale factor at the central meridians are equal to unity. The Gauss-Kruger Transverse Mercator uses 6° belts with zones identical to the UTM.

In 1954-55, the U.S. Army Map Service (AMS) compiled sheets for a 1:250,000-scale polychrome map series on the Universal Transverse Mercator Grid. The series covers scattered areas of Mongolia along the Russian and Chinese borders. In 1942-44, AMS copied a few sheets of a Russian 1:1,000,000-scale map series, and from 1949 to 1958 compiled a 1:1,000,000-scale polychrome map series for the remaining three-fourths of the country.

Mongolia appears to be the most geodetically advanced country in central Asia. Their national mapping staff was educated in Moscow until 1981 when geodetic and photogrammetric education was offered at the Mongolian Technical University. With the assistance of Swedesurvey, Mongolia established a new national datum called “MONREF 97.” This new datum is based on the International Terrestrial Reference Frame (ITRF 2000) epoch 1997.8. Essentially, this is cartographically identical to the World Geodetic System (WGS 84). The GPS observations were carried out and financed by MONMAP Engineering Services Co., Ltd., Ulaanbaatar, in cooperation with the Ministry of Defense, Mongolia. The processing of the GPS observations, development of transformation formulae, and recommendations for a new grid system were performed by Swedesurvey and financed by the Swedish International Development Agency. The new MONREF97 system will replace the old Russian “System 42,” but the Baltic height system of elevations will not be replaced. MONREF 97 is comprised of 38 points at 34 different locations, and is similar in concept to the High Accuracy and High Precision Reference Networks of each state in the United States. MONREF 97 is based on two national GPS campaigns carried out in the autumn of 1997. Trimble 4000 SSI receivers were used for the observations and “Bermese 4.2” software was used for the adjustment. Because that software package produces results contrary to U.S. military and civilian convention and usage, the standard U.S. rotations will be given herein.

It is fascinating to see that, when Mongolia decided to change things, they even changed their grid system in a most surprising way. The Russian “System 42” Datum locally
termed “MSK42”) used projection parameters identical to those of the Universal Transverse Mercator (UTM) Grid, but with a different scale factor at origin. Mongolia has chosen to eschew that old system and has adopted the UTM for their new national grid! (It will be interesting to see if Russia changes to UTM if they are admitted into NATO.) It is gratifying to note that Mongolia recognizes that the UTM Grid may be convenient for national use; individual cities and smaller regions are encouraged to use systems with more sensible scale factors and to use projections better suited for their shapes. Mongolia is covered by UTM zones 46 through 50.

The published datum shift parameters are offered in a variety of different models that are intriguing. The most familiar model to the reader of PE&RS is the standard military three-parameter transformation where, for MSK42 to MONREF97 (WGS84), $\Delta a = -108$, $\Delta f = 0.00000480812$, $\Delta X = +13$ m, $\Delta Y = -139$ m, and $\Delta Z = -74$. Other transformation models include the seven-parameter Bursa-Wolfe where, for MSK42 to WGS84, $\Delta X = -78.042$ m, $\Delta Y = -204.519$ m, $\Delta Z = -77.450$ m, $R_x = -1.774^\circ$, $R_y = +3.320^\circ$, $R_z = -1.043^\circ$, and $\delta = -4.95105766$ ppm. Unfortunately, no test points were provided for these transformation parameters, but the three-parameter model will give a clue. Another datum shift method published by the Mongolian government is the two-dimensional Helmert transformation that works with the Russian Gauss-Krüger Transverse Mercator and the UTM. The parameters are X_o (translation in X), a (X coefficient), Y_o (translation in Y), b (Y coefficient), δ (scalar), and α (rotation). There is a separate set of parameters published for each UTM zone, and this technique is identical to that used by AMS for the computation of the European Datum 1950.

A fourth technique for performing datum shifts from MSK42 to MONREF97 is a series of Gauss-Krüger projection parameters to transform directly from MSK42 Latitude and Longitude to MONREF97 UTM coordinates. A fifth and final technique published by the Mongolian government is a table of differences in Latitude and differences in Longitude (all in meters) that serves as a system for implementing bi-linear interpolation akin to the NADCON technique published by the U.S. National Geodetic Survey. Because there is a paucity of gravity observations in Mongolia, the new datum is not a true three-dimensional system. There is great hope to someday have a reliable geoid model for the entire country that will enable GPS leveling techniques to be implemented.

Cliff Mugnier teaches Surveying, Geodesy, and Photogrammetry at Louisiana State University. He is the Chief of Geodesy at LSU’s Center for GeoInformatics (Dept. of Civil and Environmental Engineering), and his geodetic research is mainly in the subsidence of Louisiana and in Grids and Datums of the world. He is a Board-certified Photogrammetrist and Mapping Scientist (GIS/LIS), and he has extensive experience in the practice of Forensic Photogrammetry.

The contents of this column reflect the views of the author, who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the American Society for Photogrammetry and Remote Sensing and/or the Louisiana State University Center for GeoInformatics (CG).

Cliff Mugnier teaches Surveying, Geodesy, and Photogrammetry at Louisiana State University. He is the Chief of Geodesy at LSU’s Center for GeoInformatics (Dept. of Civil and Environmental Engineering), and his geodetic research is mainly in the subsidence of Louisiana and in Grids and Datums of the world. He is a Board-certified Photogrammetrist and Mapping Scientist (GIS/LIS), and he has extensive experience in the practice of Forensic Photogrammetry.