Islamic State of Afghanistan

Clifford J. Mugnier, C.P., C.M.S.

In early times Afghanistan formed part of the empires of Persia and of Alexander the Great. The Turkoman dynasty was set up at Ghazni in the 10th century, and was conquered by the Turkic ruler Timur in the 15th century. A steady series of wars and conquering invaders have passed through the country ever since. At the present time, a democratically elected government appears to be on the horizon along with a new constitution.

Afghanistan is comprised mostly of rugged mountains with plains in the north and southwest. Slightly smaller in area than Texas, it borders China (76 km) (PE&RS, May 2000), Iran (936 km), Pakistan (2,430 km), Tajikistan (1,206 km), Turkmenistan (744 km), and Uzbekistan (137 km) (PE&RS, December 1998). The lowest point is Amu Darya (258 m), and the highest point is Nowshah (7,485 m). The Hindu Kush Mountains run southeast to northeast and divide the northern provinces from the rest of the country. The highest peaks are in the northern Vakhan (Wakhan Corridor), and this finger of the country reaches between Tajikistan and Pakistan to connect with China. Thanks to the Library of Congress: ‘Mountains dominate the landscape, forming a terrigenous skeleton, traversing the center of the country, running generally in a northeast-southwest direction. More than 49 percent of the total land area lies above 2,000 meters. Although geographers differ on the division of these mountains into systems, they agree that the Hindu Kush [sic] system, the most important, is the westernmost extension of the Pamir Mountains, the Karakorum Mountains, and the Himalayas. The origin of the term Hindu Kush [sic] (which translates as Hindu Killer) is also a point of contention. Three possibilities have been put forward: that the mountains memorialize the Indian slaves who perished in the mountains while being transported to Central Asian slave markets; that the name is merely a corruption of Hindu Koh, the pre-Islamic name of the mountains that divided Hindu southern Afghanistan from non-Hindu northern Afghanistan; or, that the name is a posed Avestan appellation meaning water mountains.’

The Office of the Geographer, U.S. Department of State in their International Boundary Study No. 26, Revised in 1983 says: ‘The Wakhan Corridor River boundary from Eshkashem to Lake Sari-Qul (Victoria) results from Anglo-Russian diplomatic agreements of 1869-73. From Lake Sar-i-Qu to the Afghan frontier was fixed trigonometrically by the British 1st Peshawar Mission; corrected for the latest value obtained by Colonel Wahab (Wauhope) with an 8" Transit, the value obtained being 37° 26’ 33”. Zalesky, of the Russian Commission, during the same work, obtained a longitude 73° 46’ 32” for the same point by a comparison of local time with that shown by six chronometers brought from Osh, the longitude of which place had been determined telegraphically from Pulkowa [sic] via Tashkent. He considered his probable error not greater than 5 seconds of arc – it is not known whether Struve’s longitude value of Pulkowa [sic] (30° 19’ 40.1”) or the Nautical Almanac value 30° 19’ 38.55” was adopted by the Russians. The interest in these figures lies in the fact that Boundary Pillar No. 1 was fixed trigonometrically by the British Commission; corrected for the latest value of Madras and adjusted to the Indian Triangulation on the Everest spheroid, these values are 37° 26’ 27.5” and 73° 46’ 30.1”.

The first geodetic work in the Afghan region was done for the Northern Trans-Indus Frontier Survey (1852 – 1869) by the Survey of India, and this was part of the work associated with the “Measure of the Great Arc.” In the late 19th century, British authorities in India feared the encroachment of Czarist Russia into Central Asia, Sinkiang, and Tibet. The British obtained a buffer region between Russia and India by extending the Afghan claim to the Wakhan Corridor. Subsequent boundary treaties between Great Britain and Russia were signed in 1873, 1885, and 1895. Treaties were signed between Afghanistan and Russia in 1921, 1932, 1946, 1958, and 1981. All of the surveys performed by the British Survey of India in Afghanistan were based on the Indian principal triangulation that referenced the Everest 1830 ellipsoid where \(\lambda_0 = 24^\circ 07' 11.26'' \text{ N} \) and \(\phi_0 = 77^\circ 39' 17.57'' \text{ E} \).

Taking “mapping” out of “NIMA” must not take the map out of the hands of infantryman!

The Office of the Geographer, U.S. Department of State in their International Boundary Study No. 26, Revised in 1983 says: ‘The Wakhan Corridor River boundary from Eschashem to Lake Sari-Qul (Victoria) results from Anglo-Russian diplomatic agreements of 1869-73. From Lake Sari-Qul to the Afghan frontier was fixed trigonometrically by the British 1st Peshawar Mission; corrected for the latest value obtained by Colonel Wahab (Wauhope) with an 8" transit theodolite, the value obtained being 37° 26’ 33”. Zalesky, of the Russian Commission, during the same work, obtained a longitude 73° 46’ 32” for the same point by a comparison of local time with that shown by six chronometers brought from Osh, the longitude of which place had been determined telegraphically from Pulkowa [sic] via Tashkent. He considered his probable error not greater than 5 seconds of arc – it is not known whether Struve’s longitude value of Pulkowa [sic] (30° 19’ 40.1”) or the Nautical Almanac value 30° 19’ 38.55” was adopted by the Russians. The interest in these figures lies in the fact that Boundary Pillar No. 1 was fixed trigonometrically by the British Commission; corrected for the latest value of Madras and adjusted to the Indian Triangulation on the Everest spheroid, these values are 37° 26’ 27.5” and 73° 46’ 30.1”.

Examination of the listed coordinates of the 12 pillars indicate four different versions of the same points for the Pamir Boundary Commission 1895 (PBC95), the Indian 1916 Datum, the WGS72 Datum, and the System 1942 Datum (with an origin at Pulkovo). For instance, “Pillar 1” coordinates for the (PBC95 datum) are \(\phi = 37^\circ 26' 32.2'' \text{ N} \) and \(\lambda = 73^\circ 49' 00.6'' \text{ E} \) and, for “Pillar 12,” are \(\phi = 37^\circ 21' 25'' \text{ N} \) and \(\lambda = 74^\circ 50' 22'' \text{ E} \). Continued on page 64.
Grids & Datums

continued from page 63

The “other” datum coordinates (for “Pillar 1”) show a difference for the Indian Datum 1916 of $\Delta \varphi = -4.7'$ and $\Delta \lambda = -2' 30.3'$, for the WGS72 Datum of $\Delta \varphi = -8.1'$ and $\Delta \lambda = -2' 32.8'$, and for the System 42 Datum of $\Delta \varphi = -8.4'$ and $\Delta \lambda = -2' 30.3'$. For “Pillar 12,” the “other” datum coordinates show a difference for the Indian Datum 1916 of $\Delta \varphi = -4.7'$ and $\Delta \lambda = -2' 30.3'$, for the WGS72 Datum of $\Delta \varphi = -8.0'$ and $\Delta \lambda = -2' 33.5'$, and for the System 42 Datum of $\Delta \varphi = -8.3'$ and $\Delta \lambda = -2' 31.1'$. Although the differences between the PBC05 and the WGS72 datums seem plausible at first glance, when we look at how Indian 1916 and System 42 compare with the same points, my conclusion is that the veracity of this “analysis” is somewhere between a “high geodetic crime” and “pulp fiction!” The only thing that is believable is the Pamir Boundary Commission of 1895 coordinates – the remarkably close correspondence of the other three listed datum coordinates have no semblance with reality. Incidentally, the difference between Indian 1916 Datum and WGS72 is about a kilometer, which is more than 10 times that as reported in International Boundary Study No. 26. I have been reading these Office of the Geographer International Boundary Studies for over 30 years, and I must admit that this is the first and only one with which that I have had a problem.

International Boundary Study No. 89 reports the treaty between Afghanistan and China on 22 November 1963. There are no attempts at geodesy in this report, but an interesting part of the summary observes: “The problem also exists that the geodetic coordinates given in the treaty for the initial point of the boundary – 37º 03' North, 74º 36' East – do not conform with the same point in the China-Pakistan agreement. The problem obviously is related directly to the poor quality of mapping in the frontier.”

International Boundary Study No. 6 reports on the treaties between Afghanistan and Iran. The first arbitration, under the supervision of Sir Frederick Goldsmid, occurred in 1872 between Persia and Afghanistan. Between 1888 and 1891, a compromise boundary was laid down as the Hari Rud system and 39 pillars to the south marked the arbitration award from the Russian tripoint latitude 34º 20' North. In 1896 the Helmand River changed course and the boundary again became a point of conflict. Trig surveys were carried from India and, by 1905, the McMahon Commission placed 90 markers along the boundary from the tripoint on the Kuk-I-Malik Shah to the Kuh Shah. “The 550-mile boundary is demarcated by 172 pillars, or approximately one pillar for every three miles of boundary.”

Thanks to John W. Hager, now retired from the Defense Mapping Agency (no longer DMA nor NIMA, but the National Geospatial-Intelligence Agency – NGA), there are a number of datums that have been established in Afghanistan. “Bogra Datum – I have no data but note that there is a Bogra Dam on the Helmand at approximately latitude 31º 56' N, longitude 64º 44' E. A guess is that is was a local system used for the construction of the dam.”

The oldest of the local Afghan datums is the Ishpshata Datum of 1940 where, as Hager states, “Point is Observatory Station at latitude (geodetic) = 35º 18' 53.5" N, $\xi = 10.80' \pm 0.9'$, longitude (geodetic) = 68º 05' 08.53" E, $\eta = 7.40' \pm 2.7'$. Everest. Reference is Triangulation in Afghanistan,” published by Survey of India in 1947.” I was curious as to where this location is in the country and I noticed that this is about 75 km northeast of the ruins of the Buddhhas of Bamian, destroyed by the Taliban regime. The Swiss Office of Topography has done terrestrial photogrammetric restitutions of the originals, and there are a number of fascinating papers in print on the topic of the statues. In 1951, the U.S. Army Map Service (AMS) performed a cartometric analysis of boundary points between Afghanistan and what is now the Republic of Turkmenistan that were based on the Ishpshta Datum of 1940. The geodetic station comparisons between the Afghan Ishpshata Datum minus the Indian Datum of 1916 show a trend of $\Delta \varphi = -6.1'$ and $\Delta \lambda = -32.0'$.

Hager mentioned something surprising, “Kalianpur Hill station … is the definition of Indian datum except for the ellipsoid. About 1954 AMS produced 1:250,000[scale] maps in northern Afghanistan on the International Ellipsoid. To differentiate from Indian datum (Everest), the datum name Kalianpur was used. The dividing line is longitude 61º 30' N, latitude 36º E, thence east to 72º, north to 38º N, thence to longitude 78º E. Note that the horizontal segments are multiples of 1º 30' and the vertical are 1º, the size of the standard 1:250,000[scale map]. When Zone 0 was eliminated, the northern limit of Zone I was redefined, I believe as above.”

For the now obsolete India Zone 0 (all of the India Zones were cast on the Lambert Conical Orthomorphic Projection), Everest ellipsoid where $a = 6,974,310.600$ Yards, $e^2 = 0.006637846630200$, Latitude of Origin, $\varphi_o = 39' 30' N$, Central Meridian, $\lambda_o = 68' E$ of Greenwich, Scale Factor at the Parallel of Origin $m_0 = 649/650 = 0.998461538$, False Northing, FN = 2,590,000 Yards, and False Easting, FE = 2,355,500 Yards. An example test point for India Zone 0 is: $\varphi = 42' 38' 51.627' N$, $\lambda = 61' 41' 57.291' E$, X = 1,790,983.28 Yards, and Y = 2,991,605.57 Yards. For India Zone I, Latitude of Origin, $\varphi_o = 32' 30' N$, Central Meridian, $\lambda_o = 68' E$ of Greenwich, Scale Factor at the Parallel of Origin $m_0 = 823/824 = 0.998786408$, False Northing, FN = 1,000,000 Yards, and False Easting, FE = 3,000,000 Yards. An example test point for India Zone I is $\varphi = 30' 33' 49.893' N$, $\lambda = 62' 12' 13.613' E$, X = 2,392,655.35 Yards, and Y = 782,000.02 Yards.

Thanks again to Hager, the Herat North Datum of 1959 origin is $\varphi_o = 34' 23' 09.08' N$ and $\lambda_o = 62' 10' 58.94' E$ East of Greenwich, $H_o = 1,111.7$ m and is referenced to the International ellipsoid where $a = 6,378,388$ m and $f = 1/297.2$. This is the datum that shift parameters are published for by NIMA (now NGA) from local (Herat North 59) to WGS84. To my amazement, Hager said, “This was established by the Soviets (Technoexport). There was a joint U.S.S.R. and U.S.A. mapping project at that time, we did the south half of the country and they did the north half. One part was done by a consortium (I can’t remember what they were called) made up of Aero Services Corp. out of Philadelphia and Fairchild Aero Services. They flew Shoran controlled photography at a scale of approximately 1:60,000 using B-17s, based on a Shoran measured dilatation net.”

Never short on surprises, Hager transmitted to me a facsimile of a paper translated by John M. Willis of the DMA Aerospace Center in 1990. The surprise paper was entitled, The Local Coordinate System of Kabul (Mestnaya Systema Koordinat Kabula), Geodeziya I Kartografiya, No. 12, 1988, pp. 21-33. As I have touted for years, the local use of a municipal or county coordinate system must take into account the elevation for the implementation of a simple system for the use of GIS technicians. The author of the Kabul System was Bahkavol Darvesh, and this individual ingeniously utilized the Australian Map Grid (AMG) (PE&RS, December 2003) with its concomitant ellip-
North 1959 Datum to WGS84:

for Afghanistan are those by NGA from Herat

able to complicated solutions – (Keep It

erery semester, the “K.I.S.S.” principle is pref-

my Louisiana State University students ev-

out mathematical manipulation. As I teach

measurements and “fit” to the local GIS with-

surveyors can submit their ground surface

heights above the ellipsoid such that land

ystems that are designed to compensate for

designed local city or county coordinate sys-

states of Minnesota, Wisconsin, etc., have

been done so far in Afghanistan.

Although my youngest son is finished with

his term of enlistment in the Army, he’s got

a lot of buddies that are “rotating” to the

Sunni Triangle this month. They personally

write to me (from the Task Force rotating

out), and the highly computerized NGA

write to me (from the Task Force rotating

out), and the highly computerized NGA

Looking for the “bad guys.” Hopefully, Lieu-

tenant General Clapper of NGA will produce

out, and the highly computerized NGA

needs to better support the “grunt on the

ground.” There are still bad guys in Afghan-

istan, and I think that the 1:100,000-scale

paper maps are not good enough. Air Force

brass are obviously not the best judges of

what the grunt needs on the ground, in the

tunnels, and in the caves. Taking “mapping”

out of “NIMA” must not take the map out of

the hands of the infantryman!

Cliff Mugnier teaches Surveying, Geodesy,

and Photogrammetry at Louisiana State Uni-

versity. He is the Chief of Geodesy at LSU’s

Center for Geoinformatics (Dept. of Civil and

Environmental Engineering), and his geo-

detic research is mainly in the subsidence

of Louisiana and in Grids and Datums of the

world. He is a Board-certified Photogram-

metrist and Mapping Scientist (GIS/LIS), and

he has extensive experience in the practice of

Forensic Photogrammetry.

The contents of this column reflect the views of the

author, who is responsible for the facts and accuracy of

the data presented herein. The contents do not neces-

sarily reflect the official views or policies of the Ameri-

can Society for Photogrammetry and Remote Sensing

and/or the Louisiana State University Center for

Geoinformatics (CG).

The only published datum shift parameters

for Afghanistan are those by NGA from Herat

North 1959 Datum to WGS84: \(\Delta a = -251 \text{ m} \),

\(\Delta x = -333 \text{ m} \), \(\Delta y = -222 \text{ m} \), and \(\Delta z = +114 \text{ m} \).

The astute reader will notice that there is no accuracy

estimate offered, and there is no information

offered regarding the number of stations

used to compute the shift parameters.

This “guess,” published by NGA, is listed as

“Non-Satellite Derived Transformation Para-

meters.”

So what is an infantry soldier to do over

there? My youngest son, Philippe, was in

the 82nd Airborne Division, 504th Parachute

Infantry Regiment over there in 2002-2003.

He went on many patrols searching for the

“bad guys,” and he had the dubious distinc-

tion of being a short Louisiana Frenchman;

therefore, he had the job of the “Tunnel Rat”

for his Company. Apart from this awful but

necessary duty task, he tells me that his unit

was supplied with 1:100,000-scale topo-

graphic maps referenced to the WGS84 Da-

tum. Philippe tells me that the maps had the

towns and hamlets placed where they should

be, and the coordinates on the paper maps

appeared to match their personal GPS re-

ceivers. The U.S. military has not yet issued

personal GPS receivers to all of their combat

troops, except for the Squad Leaders. As a

measure for individual survival, my son tells

me that most of the Paratroopers over there

purchase their own personal consumer-grade

GPS receivers just to record their own treks

in order to retrace if separated. The GPS units

are thankfully in stock at the Post Exchanges

in Kandahar and elsewhere in-country, and

they offer a “comfort factor” to the combat

soldiers that walk the valleys of Afghanistan

looking for the “bad guys.” Hopefully, Lieu-

tenant General Clapper of NGA will produce

1:50,000-scale paper topographic maps to

support our troops in Iraq better than has

been done so far in Afghanistan.

The PFC is looking for a well-established scientist to serve as Director of the PFC. This is a full professor tenured position.

Requirements: An energetic leader with a proven record of research, administration, fund raising, and outreach. The Director will be responsible for leading the PFC as a world-class center and for guiding research into new technologies. Teaching will likely constitute less than 25% of the Director’s responsibilities. Must possess extensive background in the application of remote sensing and/or advanced technology systems. Extensive and applicable work experience in forestry or natural resource science may be substituted for a PhD in exceptional circumstances.

For more information on the position and the PFC, please visit our web site:

http://www.cfr.washington.edu/research.pfc/,

or contact Professor David Briggs, at (206) 543-1581.

dbriggs@u.washington.edu

Availability: July 1, 2004.

Application deadline: April 1, 2004 or until position is filled. The University of Washington is an affirmative action, equal opportunity employer.