New Zealand

by Clifford J. Mugnier, C.P., C.M.S.

New Zealand is the southernmost extent of colonization by Polynesians. It is believed that the colonization took place in at least two major waves, the first of which is thought to have occurred around 950 AD and the second around 1200 to 1400 AD. The first group consisted of hunters who depended for survival on the flightless “Moa” bird that is now extinct. The second Polynesian group was more agrarian, and archeological evidence indicates that the two cultural groups overlapped. Abel Janssoen Tasman, a captain for the Dutch East Indies Company, was the first European to discover the Maori of New Zealand. He sighted a “large land, uplifted high” near the modern day town of Hokitika on the West Coast of South Island on 13 December 1642. He sailed northwards to a bay which he subsequently named Murderer’s Bay (now renamed Golden Bay), after four of his men were attacked and killed by Maori warriors. The entire region was once thought by Tasman to be part of Tierra del Fuego, so he named it Staten Landt. Soon after Tasman’s voyage it was discovered that it was not Staten Landt, and it was renamed Nieuw Zeeland.

In the late 1800s, modern surveying had begun. Captain James Cook, son of a Scottish migrant farmhand, was apprenticed to a Quaker ship owner and he learned his trade in the difficult waters of the North Sea. He studied mathematics at night during off seasons, and later in Nova Scotia he mastered surveying with the plane table and alidade. He was chosen to command a scientific voyage to the Pacific Ocean. He was commissioned Lieutenant prior to his first survey and he was promoted to the rank of Captain before his third and last survey voyage. On the first voyage (1768-1771), his charter was to first go to Nova Scotia he mastered surveying with the plane table and alidade. He was chosen to command a scientific voyage to the Pacific Ocean. He was commissioned Lieutenant prior to his first survey and he was promoted to the rank of Captain before his third and last survey voyage. On the first voyage (1768-1771), his charter was to first go to Tahiti and observe the transit of Venus. These observations were to be later combined with other simultaneous observations (by others) in different locations in order to establish the magnitude of one astronomical unit (AU), which is defined as the mean distance of the Earth from the Sun. (See “The Republic of Mauritius,” PE&RS, February 1999).

After making these observations, Cook was to sail south and discover or not the supposed Antipodes or great Southern Continent. The East Coast of North Island was sighted 07 October 1769. Cook circumnavigated North and South Island while taking almost continual observations. It took six months to produce an “astonishing” chart of New Zealand that mapped 2400 miles of coastline. On this first voyage, Cook did not sail with John Harrison’s chronometer but instead used Dr. Maskelyne’s Lunar Almanac, published in 1767, which he used to fix his longitudes. However, Cook did use Harrison’s chronometer on his two subsequent voyages (1772-1775, 1776-1780); he verified his longitudes to within 30 minutes. Cook’s chart was used for the next 100 years as the settlement of New Zealand began. Thanks to Peggy Haeger for the above research done in the late 1990s for a graduate-level course on coordinate systems that I used to teach at the University of New Orleans.

According to L.P Lee in First-order Geodetic Triangulation of New Zealand 1909-49 and 1973-74, “In New Zealand, as indeed in many a similar young country, … the settlement survey proceeded well in advance of the triangulation, which should have controlled it. Even the triangulations were done in reverse order, the smaller networks being observed first, the larger and more accurate networks later. Thus the procedure has been one of successive approximations, and each stage has led to a revision or recalculation of the work done earlier.”

The first use of triangulation to control local surveys was by Felton Mathew, the first Surveyor-General in 1840-41; the limited area covered was near Auckland. In 1849 another small triangulation was begun near Christchurch. Both of these were superseded by more accurate surveys. In 1852, six Provincial Governments were formed to administer New Zealand, and later this increased to nine provinces; each of which had its own survey department. (A special department of the General Government conducted Surveys of native Maori lands). Henry Jackson based his land surveys on triangulation in Wellington Province beginning in 1865. The principal sections were in Wellington, Wairarapa, and Rangitikei covering the three districts where settlements were located, and each section was erected upon its own baseline, with several check bases included for verification.

The specifications for surveying the New Zealand public lands with steel tapes originated with experiments on the Thames goldfields in 1869. The specifications were finally written to require steel tapes only (no chains) by James McKernow in 1886, which preceded both the Swedish Jaderin steel wire apparatus in 1887, and the U.S. Coast & Geodetic Survey steel tapes in 1891!

“In the Province of Otago a control net of triangulation was not used, but a uniform system to govern the orientation of surveys was introduced by J.T. Thomson in 1856. The Province was divided into large districts called ‘meridional circuits.’ Within each circuit an initial station was selected and true meridian was determined by astronomical observation. Bearings, but not distances, were carried outwards by traverse from the initial station to the boundaries of the circuit, following the chief valleys suitable for settlement. Points on these traverses were called ‘geodesic stations,’ and were usually from 15 to 25 km apart, providing a series of reference points by which any survey within the meridional circuit could be oriented in terms of the meridian of the initial station. Any further control was merely local, being based upon a small triangulation net extending only over the region where it was immediately required, so that a large number of independent triangulations came to be distributed throughout the settled area of the Province. Each such triangulation was regarded as the control for an area around it called a ‘survey district,’ and each meridional circuit was eventually divided into many such districts, often irregular in shape: although the later additions tended to be bounded by lines parallel to and perpendicular to the meridian of the initial station. Local surveys could be coordinated with reference to the geodetic stations within a survey district.”

The original datum for New Zealand was the Mt. Cook Datum of 1883, located in the city of Wellington.

Thompson eventually adopted the meridional circuit system for all of New Zealand in 1877 as modeled by his original system earlier used in Otago. A total of 28 Meridional Circuits were established: nine in the North Island and 19 in the South Island. Those Meridional
Circuits with their original initial origins are: Mt. Eden/Mt. Eden, Bay of Plenty/Maketu, Poverty Bay/Patutahi, Taranaki/Huirangi, Tuhiirangi/Tuhiirangi, Hawkes Bay/Hawkes Bay, Wanganui/Mt. Stewart, Wairarapa/Opak, Wellington/Mt. Cook, Collingwood/Parapara, Nelson/Botanical Hill, Karamea/Karamea, Marlborough/Goulter Hill, Buller/Buller Initial, Grey/Grey Initial, Amuri/Isolated Hill, Hokitika/Hokitika Initial, Okarito/Abut Head, Mt. Pleasant/Mt. Pleasant, Gawler/Gawler Downs, Jacksons Bay/Mt. Eleanor, Timaru/Mt. Horrible, Lindis Peak/Lindis Peak Initial, Mt. Nicholas/Mt. Nicholas, Mt. York/Mt. York, Observation Point/Observation Point, North Tairer/North Taireri, and Bluff/Observation Spot. Computations on these meridional circuits were performed on the plane with the point of origin being the initial point. With the geodetic coordinates known for each initial point, the survey computations were equivalent to using the Polyhedral projection, which is the same as the Local Space Rectangular, commonly used in computational photogrammetry.

In 1901 a new secondary triangulation was started in order to bring all the different nets of triangles into harmony in the Wellington and Taranaki districts. The North Island geodetic triangulation of 1921-1938 started actual field observations in 1923 and continued until being suspended during the Great Depression of the early 1930s. It resumed in 1936. The South Island geodetic triangulation of 1938-1942 started with the observations across Cook Strait in a quadrilateral with one line measuring 120 km from Papatahi to Attempt Hill. Final fieldwork was observed from 1947-1949 including baseline observations from the first adjustment were component at 39 azimuth stations from the first adjustment were observed with time signals transmitted from Dominion Observatory especially for this purpose. When the computations were completed, the “New Zealand Geodetic Datum 1949” (NZGD49) was established where the initial station of origin was: Papatahi Trig Station \(\phi_o = 41^\circ 19'08.9000' S, \lambda_o = 175^\circ 02'51.0000' E \) of Greenwich, azimuth to Kapiti No. 2 \(m_o = 347^\circ 55'02.5000' \), and the ellipsoid of reference is the International 1924 where \(a = 6,378,388 \) m and \(1/f = 297 \). Papatahi is a centrally situated station of the main net and one of the corner stations of the subsidiary net containing Kelburn. The values of deflection of the vertical for the north-south component at 65 latitude stations and deflection of the vertical for the east-west component at 39 azimuth stations from the first adjustment were known, and the latitude and azimuth at Papatahi were chosen so as to make the means of these differences equal to zero. The longitude adopted for Papatahi was that derived from Kelburn. The stations were coordinated on the National Grids, each island being on an independent Transverse Mercator projection, which had been selected by the Geodetic Survey of New Zealand. The stations were observed with theodolites and Geodimeter Model 8 electronic distance meters.

When the metrification of surveys was begun in 1973, a one-projection coordinate system was adopted for topographic maps (the New Zealand Map Grid), but for cadastral surveying it was decided to retain the meridional circuit systems but the Polyhedral coordinates were replaced by Transverse Mercator coordinates referred to the old origins.

In August 1998, “Land Information New Zealand” (LINZ) approved the adoption and implementation of a new geocentric datum, New Zealand Geodetic Datum 2000 (NZGD2000). The new coordinates of points changed by approximately 200 meters relative to the old datum, NZGD49. A one-projection coordinate system was adopted for 1:50,000 scale and 1:250,000 scale topographic maps (the New Zealand Transverse Mercator 2000) that replaces the NZMG. The NZTM2000 Latitude of Origin, \(\phi_o = 0^\circ \), Central Meridian, \(\lambda_o = 171^\circ E \), Scale Factor at Origin, \(m_o = 0.9996 \), False Northing = 10,000,000 meters, and False Easting = 1,600,000 meters. For cadastral surveys in terms of NZGD2000 the 28 new meridional circuits replace the existing circuits, which were in terms of NZGD49. The new circuits are referred to as "<cname> Circuit 2000," to distinguish them from the old circuits. The origins of latitude and longitude of the NZGD2000 circuit projections are almost the same as their NZGD49 equivalents being rounded down to the nearest arc second. The central meridian scale factors at origin of the NZGD2000 circuit projections are the same as those of their NZGD49 equivalents. The false origin coordinates of NZGD2000 circuit projections are 100 km greater then their NZGD49 equivalents, being 800 km N and 400 km E. This is to reduce the risk of confusion between the NZGD2000 and NZGD49 projections. The NZGD2000 circuit projections are based on the GRS80 ellipsoid of revolution where \(a = 6,378,137 \) m and \(1/f = 298.25722101 \). The SI standard for the meter has been adopted. The New Zealand 2000 circuit projections have a scale factor at origin of unity except for North Taireri 2000 (0.99996) and Mt. Eden 2000 (0.9999).

The Circuit Parameters are as follows: Mount Eden 2000 - \(\phi_o = 36^\circ 52'47'' S, \lambda_o = 174^\circ 45'51'' E, m_o = 0.99999 \); Bay of Plenty 2000 - \(\phi_o = 37^\circ 45'40'' S, \lambda_o = 176^\circ 27'58'' E, m_o = 1.0 \); Poverty Bay 2000 - \(\phi_o = 38^\circ 37'28'' S, \lambda_o = 177^\circ 53'08'' E, m_o = 1.0 \); Hawkes Bay 2000 - \(\phi_o = 39^\circ 39'03'' S, \lambda_o = 176^\circ 40'25'' E, m_o = 1.0 \); Taranaki 2000 - \(\phi_o = 39^\circ 30'44'' S, \lambda_o = 175^\circ 38'24'' E, m_o = 1.0 \); Wanganui 2000 - \(\phi_o = 40^\circ 14'31'' S, \lambda_o = 175^\circ 29'17'' E, m_o = 1.0 \); Waitara 2000 - \(\phi_o = 40^\circ 55'31'' S, \lambda_o = 175^\circ 38'50'' E, m_o = 1.0 \); Wellington 2000 - \(\phi_o = 41^\circ 18'04'' S, \lambda_o = 174^\circ 46'35'' E, m_o = 1.0 \); Collingwood 2000 - \(\phi_o = 40^\circ 42'53'' S, \lambda_o = 172^\circ 40'19'' E, m_o = 1.0 \); Nelson 2000 - \(\phi_o = 41^\circ 16'28'' S, \lambda_o = 173^\circ 17'57'' E, m_o = 1.0 \); Karama 2000 - \(\phi_o = 41^\circ 17'23'' S, \lambda_o = 172^\circ 06'32'' E, m_o = 1.0 \); Buller 2000 - \(\phi_o = 41^\circ 48'38'' S, \lambda_o = 171^\circ 34'52'' E, m_o = 1.0 \); Grey 2000 - \(\phi_o = 42^\circ 20'01'' S, \lambda_o = 171^\circ 32'59'' E, m_o = 1.0 \); Amuri 2000 - \(\phi_o = 42^\circ 41'20'' S, \lambda_o = 173^\circ 00'36'' E, m_o = 1.0 \); Marlborough 2000 - \(\phi_o = 41^\circ 32'40'' S, \lambda_o = 173^\circ 48'07'' E, m_o = 1.0 \); Hokitika 2000 - \(\phi_o = 42^\circ 53'10'' S, \lambda_o = 172^\circ 40'19'' E, m_o = 1.0 \); Jacksons Bay 2000 - \(\phi_o = 43^\circ 06'36'' S, \lambda_o = 170^\circ 58'47'' E, m_o = 1.0 \); Okarito 2000 - \(\phi_o = 43^\circ 58'40'' S, \lambda_o = 168^\circ 36'22'' E, m_o = 1.0 \); Mount Pleasant 2000 - \(\phi_o = 43^\circ 35'26'' S, \lambda_o = 172^\circ 43'37'' E, m_o = 1.0 \); Gawler 2000 - \(\phi_o = 43^\circ 44'55'' S, \lambda_o = 171^\circ 21'38'' E, m_o = 1.0 \); Timaru 2000 - \(\phi_o = 44^\circ 24'07'' S, \lambda_o = 171^\circ 03'26'' E, m_o = 1.0 \); Lindis Peak 2000 - \(\phi_o = 44^\circ 44'06'' S, \lambda_o = 169^\circ 08'32'' E, m_o = 1.0 \); Mount Nicholas 2000 - \(\phi_o = 45^\circ 07'58'' S, \lambda_o = 168^\circ 23'55'' E, m_o = 1.0 \); Mount York 2000 - \(\phi_o = 45^\circ 33'49'' S, \lambda_o = 167^\circ 44'19'' E, m_o = 1.0 \); Observation Point 2000 - \(\phi_o = 45^\circ 48'58'' S, \lambda_o = 170^\circ 37'42'' E, m_o = 1.0 \); North Taireri

continued on page 550

PHOTOMGRAMMETRIC ENGINEERING & REMOTE SENSING
May 2005 549
In Memorium

Jon Stanton Beazley
1915-2005

Jon Stanton Beazley, 89, a retired professional engineer and certified photogrammetrist, died Sunday, Jan. 23, 2005.

Born in Social Circle, Georgia to Abigail Stanton and Reuben Rogers Beazley, Jon Beazley was raised in Madison, Georgia. The Depression interrupted his college attendance after one year, but he continued his studies in civil engineering mainly through independent study. During World War II, he served in India as a warrant officer with the Army Corps of Engineers in the China-Burma-India Theater, where his unit made aerial photographic maps for the Army and the Allies. Through his leadership and tireless efforts to his profession, he produced exemplary accomplishments that have contributed greatly to the development and implementation of techniques in surveying, mapping and photogrammetry.

In 1946, Beazley began working for the Florida State Road Department, later known as the Department of Transportation, forming what would become the Photogrammetric Division of the department. During his 33 years as Florida state topographic engineer, he created one of the most efficient topographic/aerial survey units in the U.S. He also held a U.S. patent for a stereoscopic plotting instrument. He led and nurtured the state’s mapping, surveying and photogrammetric efforts, including working with NASA and others to pioneer Florida’s use of satellite imagery in these fields. In 1979, he retired from the Department of Transportation to devote his attention to his consulting engineering practice.

Over the years, he worked with and was honored by local, state and national professional societies. In 1981, he was awarded Engineer of the Year by the Florida Section, American Society of Civil Engineers. In 1987, the ASCE awarded him honorary membership as one of 12 civil engineers across the U.S. who were recognized that year for outstanding life achievement. He was the first civil-engineer recipient of that award in the field of photogrammetry. Beazley served as the first National Director from the ASPRS Florida Region, followed by Charles Andregg. In 1990, the American Society of Photogrammetry and Remote Sensing chose him as an honorary member. He was a Paul Harris Fellow member of the Tallahassee Rotary Club. He served as president of the North Florida Chapter of the Georgia Tech Alumni Association and as commodore of the St. Marks Yacht Club.

Beazley is survived by his wife of 63 years, Hazel Beazley. Other survivors include three daughters, Hayley Gowan (and husband Dave) of Tallahassee, Teresa Widmer of Fort Lauderdale and Abigail Childon of Tampa; a son, Stanton Beazley (and wife Evie) of Tallahassee; and four grandchildren, Anne and Jessica Childon and Jack and Robert Beazley. He was preceded in death by his son-in-law, Jeff Childon.

Grids and Datums
continued from page 549

2000 - $\phi_o = 45^\circ 51' 41"$ S, $\lambda_o = 170^\circ 16' 57"$ E, $m_o = 0.99996$; and Bluff 2000 - $\phi_o = 46^\circ 36' 00"$ S, $\lambda_o = 168^\circ 20' 34"$ E, $m_o = 1.0$.

Thanks to Graeme Blick of LINZ for a copy of L.P. Lee’s monograph on the history of geodetic triangulation in New Zealand and to Mal Jones of Perth Australia for his continuing generous help.

Cliff Mugnier teaches Surveying, Geodesy, and Photogrammetry at Louisiana State University. He is the Chief of Geodesy at LSU’s Center for Geoinformatics (Dept. of Civil and Environmental Engineering), and his geodetic research is mainly in the subsidence of Louisiana and in Grids and Datums of the world. He is a Board-certified Photogrammetrist and Mapping Scientist (GIS/LIS), and he has extensive experience in the practice of Forensic Photogrammetry.

The contents of this column reflect the views of the author, who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the American Society for Photogrammetry and Remote Sensing and/or the Louisiana State University Center for Geoinformatics (C4G).

Direct Georeferencing
continued from page 545

Figure 3: OmniStar Network of Permanent Tracking GPS Stations (Courtesy of OmniStar).

Acknowledgment

OmniStar and NavCom are gratefully acknowledged for providing their hardware for our internal testing.

Author/Editor

Dr. Mohamed M.R. Mostafa, Chief Technical Authority – Airborne Systems, Applanix Corporation

Grids and Datums
continued from page 549

2000 - $\phi_o = 45^\circ 51' 41"$ S, $\lambda_o = 170^\circ 16' 57"$ E, $m_o = 0.99996$; and Bluff 2000 - $\phi_o = 46^\circ 36' 00"$ S, $\lambda_o = 168^\circ 20' 34"$ E, $m_o = 1.0$.

Thanks to Graeme Blick of LINZ for a copy of L.P. Lee’s monograph on the history of geodetic triangulation in New Zealand and to Mal Jones of Perth Australia for his continuing generous help.

Cliff Mugnier teaches Surveying, Geodesy, and Photogrammetry at Louisiana State University. He is the Chief of Geodesy at LSU’s Center for Geoinformatics (Dept. of Civil and Environmental Engineering), and his geodetic research is mainly in the subsidence of Louisiana and in Grids and Datums of the world. He is a Board-certified Photogrammetrist and Mapping Scientist (GIS/LIS), and he has extensive experience in the practice of Forensic Photogrammetry.

The contents of this column reflect the views of the author, who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the American Society for Photogrammetry and Remote Sensing and/or the Louisiana State University Center for Geoinformatics (C4G).