The United Kingdom includes England, Scotland, Wales, and Northern Ireland. The latter was included in a previous column on the entire island of Ireland (P&ERS, March 1999). Evidence from pre-Roman times includes Neolithic mound-tombs and henge monuments as well as Bronze Age Beaker culture tools, graves, and the famous Stonehenge monument. Brythonic-speaking Celtic peoples arrived during migrations of the first millennium B.C., according to Webster’s Geographical Dictionary. England has existed as a unified entity since the 10th century. The union between England and Wales was begun in 1284 and formalized in 1536.

United Kingdom

By Clifford J. Mugnier, C.P., C.M.S.

“OS was founded in 1791 by the Master General of Ordnance [equivalent to the Minister of Defense today], Charles Lennox, Duke of Richmond. His Grace had been an outspoken supporter of the American colonists in the House of Lords. In December 1775 he declared that the resistance of the colonists was “neither treason nor rebellion, but it is perfectly justifiable in every possible political and moral sense.” Yet less than 10 years later he was a government minister – I think anywhere else in Europe he would have been executed or exiled! He was succeeded as Master General by Lord Cornwallis, who didn’t appear to have suffered any long-term political damage by that unfortunate incident at Yorktown. An early Director General of OS, William Mudge, had served on Cornwallis’s staff in the southern colonies.”

— Russell Fox, Ordnance Survey
of wrangling over scales. Throughout this period, Victorian reforming zeal was creating an acute need for accurate mapping. The issue was settled piecemeal until, by 1863, scales of six inches and twenty-five inches to the mile had been approved for mountain and moorland, and rural areas respectively. The one-inch map was retained, and detailed plans at as much as ten feet to the mile were introduced for built-up areas.

“By now, Major-General Sir Henry James - perhaps Ordnance Survey’s most eccentric and egotistical Director General - was midway through his twenty-one year term. James quickly saw how maps could be cheaply and quickly enlarged or reduced using the new science of photography, and he designed an elaborate glass studio at Southamptom for processing photographic plates. James planted his name on everything he touched, and later claimed to have invented photo zincography, a photographic method of producing printing plates. In fact, the process had been developed by two of his staff. By 1895 the twenty-five inch survey was complete.

“The twentieth century brought cyclists and motorists swarming onto the roads, and the new Director General, Colonel Charles Close, prepared to exploit this expanding leisure market. But by now, the tide of history was sweeping Ordnance Survey back to its roots. As Britain entered the First World War, surveyors, draughtsmen and printers from Ordnance Survey were posted overseas. Working in appalling conditions alongside the troops, surveyors plotted the lines of trenches and, for the first time, aerial photography was used to capture survey information.

“After the war, Sir Charles, as he now was, returned to his marketing strategy and appointed a professional artist to produce eye-catching covers for the one-inch maps. Ellis Martin’s classic designs boosted sales to record levels, but the war had taken its toll; behind their bright new covers, the maps were increasingly out of date. In an uncanny echo of the mid-nineteenth century, a whole raft of new legislation brought demands for accurate, up-to-date mapping.

“Matters came to a head in 1935, and the Davidson Committee was established to review Ordnance Survey’s future. That same year, a far-sighted new Director General, Major-General Malcolm MacLeod, launched the retriangulation of Great Britain. Surveyors began an Olympian task, building the now familiar concrete triangulation pillars on remote hilltops throughout Britain. Deep foundations were dug by hand, and staff dragged heavy loads of materials over isolated terrain by lorry, packhorse and sheer brute force. The Davidson Committee’s final report set Ordnance Survey on course for the 21st century. The National Grid reference system was introduced, using the metre as its measurement. An experimental new 1:25,000 scale map was launched, leaving only the one-inch unscaled. It was almost forty years before this popular map was superseded by the 1:50,000 scale series, first proposed by William Roy more than two centuries earlier.

“In 1939, war intervened once again. The Royal Artillery was now responsible for its own field surveys, but over a third of Ordnance Survey’s civilian staff were called up, and its printing presses were kept busy with war production. It wasn’t a soft option. Enemy bombing devastated Southampton in November 1940 and destroyed most of Ordnance Survey’s city centre offices. Staff were dispersed to other buildings, and to temporary accommodation at Chessington. But the military appetite remained insatiable – the Normandy landings alone devoured 120 million maps!

“After the war, Ordnance Survey returned to Davidson’s agenda; the retriangulation was completed, and metric maps began to appear along National Grid sheet lines. Aerial survey helped speed up the new continuous revision strategy, and up-to-date drawing and printing techniques were introduced. But the organization was still fragmented, scattered across southern England in a battered collection of worn-out buildings. All that changed in 1969, when Ordnance Survey moved to its present, purpose-built headquarters on the outskirts of Southampton. Four years later, the first computerized large-scale maps appeared; the digital age had begun. Ordnance Survey digitized the last of some 230,000 maps in 1995, making Britain the first country in the world to complete a programme of large-scale electronic mapping. Computers have transformed the map-making process, and electronic data is now routinely available to customers within 24 hours of being surveyed. The public still knows Ordnance Survey for its comprehensive range of printed leisure maps, yet electronic data now accounts for some 80% of Ordnance Survey’s turnover. Independent estimates show that the national mapping agency’s data now underpins up to £136 billion-worth of economic activity in Britain – everything from crime-fighting and conservation to mobile phones.”

The original triangulation of Britain was carried out between 1783 and 1853 and is known as the “Principal Triangulation.” Jesse Ramsden, a gifted but dilatory gentleman, built the theodolite where the overall size of the horizontal circle measured 3 feet in diameter and was divided to a precision of a tenth of an arc second! (That’s the same precision as the Wild Heerbrugg T-4 astronomical theodolite still manufactured as recently as the 1980s). Major General William Roy once wrote, “On one occasion he (Ramsden) attended at Buckingham Palace precisely as he supposed at the time named in the Royal mandate. The King remarked that he was punctual as to the day and hour, while late by a whole year!” The genius responsible for the final adjustment and computation of the Principal Triangulation of 1783-1853 was Colonel Alexander Ross Clarke who also computed the Clarke ellipsoids of 1858, 1866, and 1880. The network selected by Clarke was an interlocking system of well-conditioned triangles. In 1967, the Ordnance Survey wrote, “This network was geometrically of great strength since it involved no fewer than 920 condition equations to find corrections to 1,554 observed directions subsequently used to fix 218 points.” The One-Inch map series referred to a map scale of one inch equals one mile. The One-Inch Scottish projection (1852-1936) was based on the Principal Triangulation and had a central meridian \(\lambda_c = 4^\circ \) W, a latitude of origin \(\phi_o = 57^\circ 304^\prime N \), a scale factor of unity, and with no false Origin. The One-Inch English projection (1919-1936) was also based on the Principal Triangulation and had a central meridian \(\lambda_c = 2^\circ 41^\prime 03^\prime 56^\prime 20^\prime W \), a latitude of origin \(\phi_o = 53^\circ 13^\prime 17^\prime 27^\prime 40^\prime N \), a scale factor of unity, and with no false Origin. The counties of the United Kingdom were based on local Cassini-Soldner projections that had the typical scale factor equal to unity, no false origin, and a single triangulation station as the projection origin. System Ben Auler \((\phi_o = 56^\circ 48^\prime 30^\prime 38^\prime 89^\prime N, \lambda_o = 4^\circ 27^\prime 49^\prime 70^\prime 64^\prime W) \) served the counties Canna, Eigg, Muck, Rhum, Sanna, and Skye of the Inner Hebrides and Inverness of Scotland. System Ben Cleuch \((\phi_o = 56^\circ 48^\prime 38^\prime 83^\prime N, \lambda_o = 3^\circ 46^\prime 05^\prime 27^\prime 65^\prime W) \) served the counties Clackmannon and Perth.
of Scotland. System Ben Clibrig (1839) \((\phi_0 = 58^\circ 14' 07.8780'' \text{N}, \lambda_0 = 4^\circ 24' 35.3627'' \text{W})\) served the county of Sutherland, Scotland. System Black Down (1797, 1840) \((\phi_0 = 50^\circ 41' 10.3186'' \text{N}, \lambda_0 = 2^\circ 32' 52.4856'' \text{W})\) served the counties Dorset and Somerset of England. System Bleasdale \((\phi_0 = 53^\circ 54' 55.351'' \text{N}, \lambda_0 = 2^\circ 37' 20.752'' \text{W})\) served the county of Lancashire, England. System Brandon (1822) \((\phi_0 = 52^\circ 24' 19.820'' \text{N}, \lambda_0 = 0^\circ 37' 21.040'' \text{W})\) served the counties Durham and Northumberland of England. System Broadfield \((\phi_0 = 55^\circ 47' 59.8320'' \text{N}, \lambda_0 = 4^\circ 32' 20.592'' \text{W})\) served the counties Durham and Northumberland of England. System Craigowl \((\phi_0 = 56^\circ 32' 52.4204'' \text{N}, \lambda_0 = 3^\circ 00' 48.5178'' \text{W})\) served the county of Angus, Scotland. System Cruach-na-Sleagh \((\phi_0 = 56^\circ 07' 08.9328'' \text{N}, \lambda_0 = 5^\circ 43' 34.1145'' \text{W})\) served the counties Argyyle, Arran, and Bute of Scotland and Coll, Islay, Jura, Mull, and Tiree of the Inner Hebrides. System Cyn-y-Brain (1852, 1853) \((\phi_0 = 53^\circ 02' 16.8715'' \text{N}, \lambda_0 = 3^\circ 10' 22.2907'' \text{W})\) served the counties Denbighshire and Flintshire of Wales. System Danbury (Church) Spire (1844), \((\phi_0 = 51^\circ 42' 57.9220'' \text{N}, \lambda_0 = 0^\circ 34' 32.9299'' \text{E})\) served the counties Cambridgeshire and Isle of Ely, Huntingdonshire, Soke of Peterborough, Norfolk, and Suffolk of England. System Derrington Great Law \((\phi_0 = 55^\circ 26' 08.9646'' \text{N}, \lambda_0 = 2^\circ 26' 34.6838'' \text{W})\) served the county of Berwick, Scotland. System Ditchling (1793, 1845) \((\phi_0 = 50^\circ 54' 04.0149'' \text{N}, \lambda_0 = 0^\circ 06' 21.7531'' \text{W})\) served the county of Sussex, England. System Dunnet Head (1838) \((\phi_0 = 58^\circ 40' 10.1679'' \text{N}, \lambda_0 = 3^\circ 22' 13.4365'' \text{W})\) served the county of Caithness, Scotland. System Dunnoose (1793, 1844) \((\phi_0 = 50^\circ 37' 03.7288'' \text{N}, \lambda_0 = 1^\circ 11' 50.1015'' \text{W})\) served the counties Berkshire, Buckingham, Derby, Hampshire, Isle of Wight, Leicester, Lincoln, Northampton, Nottingham, Oxford, Rutland, Warwick, Wiltshire, Worcester, and Stafford of England. System Dunrig (1816, 1850) \((\phi_0 = 55^\circ 47' 59.832'' \text{N}, \lambda_0 = 4^\circ 32' 20.592'' \text{W})\) served the county of Peeblesshire, Scotland. System Finlay Seat \((\phi_0 = 57^\circ 34' 42.2883'' \text{N}, \lambda_0 = 3^\circ 14' 26.5655'' \text{W})\) served the county of Moray, Scotland. System Forest Hill \((\phi_0 = 54^\circ 25' 30.700'' \text{N}, \lambda_0 = 2^\circ 43' 41.593'' \text{W})\) served the county Westmorland of England. System Foula (1821) \((\phi_0 = 60^\circ 08' 26.2436'' \text{N}, \lambda_0 = 2^\circ 05' 38.4808'' \text{W})\) served the counties Orkney, and Zetland, Scotland. System Hart Fell (1816, 1847) \((\phi_0 = 55^\circ 24' 28.9742'' \text{N}, \lambda_0 = 3^\circ 24' 00.1634'' \text{W})\) served the county of Dumfries, Scotland. System Hensbarrow (1790, 1843) \((\phi_0 = 50^\circ 52' 58.8532'' \text{N}, \lambda_0 = 4^\circ 49' 05.1029'' \text{W})\) served the counties Cornwall, and Isles of Scilly, England. System Highgate \((\phi_0 = 51^\circ 41' \text{N}, \lambda_0 = 4^\circ 50' \text{W})\) served the county of Pembroke, Wales. System High Pike \((\phi_0 = 54^\circ 42' 19.3478'' \text{N}, \lambda_0 = 3^\circ 03' 26.5277'' \text{W})\) served the county of Cumberland, England. System Hollingbourne \((\phi_0 = 51^\circ 16' 10.380'' \text{N}, \lambda_0 = 0^\circ 39' 55.564'' \text{W})\) served the county of Kent, England. System
Lanark Church Spire ($\phi = 55^\circ 40' 40.8037'' N,
$\lambda = 3^\circ 46' 19.8904'' W$) served the counties
Dumbarton, Lanark, Stirling, and Roxburgh of
Scotland. System Leith Hill Tower (1792,
1822, 1824) ($\phi = 51^\circ 10' 32.8895'' N,
$\lambda = 0^\circ 22' 10.9797'' W$) served the county of
Surrey, England. System Llangeinor ($\phi = 53^\circ 57' 43.1879'' N,
$\lambda = 3^\circ 34' 17.0360'' W$) served the counties
Anglesley, Brecknock, Caernarvon, Cardigan, Carmarthen,
Glamorgan, Merioneth, Montgomery, and
Radnor of Wales and Hereford, Monmouth,
and Salop of England. System Nantwich
Church Tower ($\phi = 53^\circ 04' 00.3405'' N,
$\lambda = 2^\circ 31' 09.1414'' W$) served the county of
Cheshire, England. System Rippon Tor ($\phi =
50^\circ 33' 57.0563'' N,
$\lambda = 3^\circ 46' 12.0872'' W$) served the county of Devon, England.
System St. Paul’s (1848) ($\phi = 51^\circ 28' 15.9830'' N,
$\lambda = 0^\circ 22' 47.6011'' W$) served the counties
Bedford, Essex, Hertford, London, and
Middlesex, England. System Sandhope Heights
($\phi = 55^\circ 30' 10.253'' N,
$\lambda = 3^\circ 02' 31.092'' W$) served the county of
Selkirk, Scotland. System Scour-na-Lapach (1846) ($\phi =
57^\circ 22' 10.3885'' N,
$\lambda = 5^\circ 03' 31.5613'' W$) served the counties
Ross and Cromarty, Scotland. System South
Berule (1846) ($\phi = 54^\circ 08' 57.5699'' N,
$\lambda = 4^\circ 40' 05.2960'' W$) served the Isle of Man,
England. System York Minster (1846) ($\phi =
53^\circ 57' 43.1879'' N,
$\lambda = 1^\circ 04' 49.7302'' W$) served the counties York and Yorkshire,
England.

The triangulation of Great Britain was not based on a single origin point. How-
ever, it was not based on any new length measurements, either. The overall size of
the network was constrained to agree with the old 18th century Principal Triangulation
using the old coordinates of 11 primary stations adjusted by Clarke. Therefore, the
Ordnance Survey of Great Britain 1936 da-
tum (OSGB36) does not have a single origin point
origin. The ellipsoid of reference is the Airy
1830 where $a = 6,377,563.396$ m and $b =
6,356,256.910$ m. The overall size of the
OSGB36 is based on the measurement of a single distance between two stations on
Hounsdown Heath in 1784 using 18-foot glass
rods! The error incurred by using this scale
constraint yielded an error in the length of the
etire country of only 20 meters! The
War Office Grid (1927-1950) was based on
the Cassini-Soldner projection and had a cen-
tral meridian $\lambda = 1^\circ 11' 50.1360'' W$, a lati-
tude of origin $\phi = 50^\circ 37' 03.7480'' N$, a scale
factor of unity, False Easting = 500 km, and
False Northing = 100 km. Introduced in 1931,
the English Yard Belt Transverse Mercator
($m_0 = 0.9996$, False Easting and False Nor-
ing = 1,000,000 yds.) was short-lived and
was replaced by a slightly different metric
version in 1945 and it continues to be used.
The current system is the National Grid. Al-
though the equations published appear to
be a Gauss-Krüger expansion to the 5th de-
ivative, they are cast as latitude differences
from the False Northing latitude of true ori-
gin = 49° N. The central meridian = 2° W, and
the scale factor at the central meridian, com-
monly mistaken for that of the TM Yard Grid
and the UTM Grid, is different in that by
definition, $m_0 = 0.9996012717... = \log_{10} m_0
= 1.99982680$, exactly. I would love to find
out where that number came from. The False
Easting is 400 km and the False Northing is –
100 km.

The Ordnance Survey seven-parameter
transformation from OSGB36 to WGS84
modified to the standard American rotation
convention used by the National Geodetic
Survey (NGS) and by the National Imagery and Mapping Agency is $DX = +446.448$ m,
$DY = -125.157$ m, $DZ = +542.060$ m, scale =
$-20.4894 10^{-6}$, $R_x = -0.1502'$, $R_y = -0.2470'$,
and $R_z = -0.8421'$. “OSGB36 is an inhomo-
genous Terrestrial Reference Frame by modern
standards. Do not use this transformation
for applications requiring better than 5 metre
(sic) accuracy in the transformation step, either vertically or horizontally. Do not
use it for points outside Britain.” The above
transformation parameters were extracted from
A Guide to Coordinate Systems in Great
Britain, a “pdf” file downloaded from the Ordi-
Higher accuracy transformations are possible
utilizing the free software available from the
Ordnance Survey in the form of OSTN02, a
bi-linear interpolation package similar in con-
cept to the NADCON package of the NGS.
The British Geoid Model, OSGM02, is avail-
able and is free from the Ordnance Survey.
The stated vertical accuracy is 2 cm in main-
land UK and 4 cm for other areas. I hope that
other nations will follow the example of the
United Kingdom, Australia, Mexico, and the
United States in making critical national geo-
detic transformation models available at no
charge to the public. I am indebted to Russell
Fox, soon to retire from the Ordnance Sur-
vie, and to John W. Hager, now retired from
NIMA, for their patience over the years in
helping me to compile this mass of data on the
UK.

The British Geoid Model, OSGM02,
is available and is free from the Ordnance Survey. The
stated vertical accuracy is 2 cm in mainland
UK and 4 cm for other areas. I hope that
other nations will follow the example of the
United Kingdom, Australia, Mexico, and the
United States in making critical national geo-
detic transformation models available at no
charge to the public. I am indebted to Russell
Fox, soon to retire from the Ordnance Survey,
and to John W. Hager, now retired from
NIMA, for their patience over the years in
helping me to compile this mass of data on the
UK.

The contents of this column reflect the views of the
author, who is responsible for the facts and accuracy of
the data presented herein. The contents do not neces-
sarily reflect the official views or policies of the Ameri-
can Society for Photogrammetry and Remote Sensing
and/or the Louisiana State University Center for GeoInfor-
matics (C4G).

Cliff Mugnier teaches Surveying, Geodesy,
and Photogrammetry at Louisiana State Uni-
versity. He is the Chief of Geodesy at LSU’s
Center for Geoinformatics (Dept. of Civil and
Environmental Engineering), and his geo-
detic research is mainly in the subsidence of
Louisiana and in Grids and Datums of the
world. He is a Board-certified Photogram-
metrer and Mapping Scientist (QGS/LIS), and
he has extensive experience in the practice of
Forensic Photogrammetry.

The contents of this column reflect the views of the
author, who is responsible for the facts and accuracy of
the data presented herein. The contents do not neces-
sarily reflect the official views or policies of the Ameri-
can Society for Photogrammetry and Remote Sensing
and/or the Louisiana State University Center for GeoInfor-
matics (C4G).