The contents of this column reflect the views of the author, who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the American Society for Photogrammetry and Remote Sensing and/or the University of New Orleans.

This month’s topic features the Republic of Uzbekistan, an ancient country (1200 BC) that lies in the heart of Central Asia and is the center of the territory formerly known as Cimmeria, Bactria, and Turkestan. The oasis cities of Samarkand, Tamerlane, and Tashkent served as major cities on the Great Silk Road that connected China with Europe. Uzbekistan is one of the only two doubly landlocked countries in the entire world (the other is Liechtenstein). The Fergana Valley was converted from its millennia-old agricultural tradition of varied crops to only cotton when the Aral Sea dried up. The region was selected as the capital of the newly formed Government General of Turkestan, which at the time comprised the two provinces of Syr Darya and of Semirechinsky. Provinces added later were: Samarkand 1868, Bukhara 1870, Amu Darya 1873, Khokanda 1875, Khiva 1875, Fergana 1876, Turkmenia 1878, and Transcaspia 1888. Colonization and railroad projects required topographic surveys, resulting in the 1867 formation of the Military Topographic Department of Turkestan. The Physical Observatory of Tashkent was officially founded by the Department in 1878.

The first classical triangulation was conducted from 1871-1895 with scale established at the baselines measured at Miny Yuryukh, Tokacha, Samarkand, Chuyum, Nikolskiy, and Visokoye. These baselines were oriented primarily on Miny Yuryukh Datum and later on Tashkent Datum, retaining the astronomic azimuth from the NW to SE end point of the Miny Yuryukh baseline. That orientation was geodetically transferred to the Tashkent Observatory Meridian Circle. Triangulations of 1896-1929 were scaled to baselines measured by invar wires (Joderin base apparatus) at Kazalinsk, Arys, Osh, and Kyzyl Rabat, and oriented on Tashkent Datum, Kazalinsk Datum, and Osh Datum.

Miny Yuryukh 1871 Datum was established at the NW Base Point (M) where: \(\phi = 41^\circ\ 17^\prime\ 47.70^\prime\prime \) North, \(\lambda = 38^\circ\ 57^\prime\ 00.04^\prime\prime \) East of Pulkovo, (where the Pulkovo Observatory is: \(\phi = 56^\circ\ 46^\prime\ 19.56^\prime\prime \) East of Greenwich). Scharnhorst executed the astronomic observations and referenced the datum to the Bessel 1841 ellipsoid of revolution where the semi-major axis is: \(a = 6,377,397.155 \) meters and the reciprocal of flattening \((1/f) = 299.1528128 \). The defining azimuth was determined at the point of origin to the SE Base Point (N): \(\alpha = 114^\circ\ 26^\prime\ 34.6^\prime\prime \). The Russian geodetic surveys were geodetically transferred to the Tashkent Datum of 1875 origin (at the Observatory SW pillar used for the triangulation party of the International Geodetic Union. The expedition was led by Professor Finsterwalder in the early part of the 20th century. The 3-parameter shift from Tashkent Datum of 1875 origin to other horizontal datum origins with trigonometric leveling techniques produced geodetic problems of mind-boggling proportions!

The physical connection between the Tashkent Datum of 1875 and the Indian Datum of 1916 in the Pamir region was made by an exploratory triangulation party of the International Geodetic Union. The expedition was led by Professor Finsterwalder in the early part of the 20th century. The 3-parameter shift from Tashkent to Indian is: \(d\xi = -223.632 \) meters, \(d\eta = -281.310 \) meters, \(d\zeta = +304.059 \) meters. The fit of two points agree to better than a meter.) The Tashkent Datum of 1875 origin (at the Meridian Circle) is: \(\phi = 41^\circ\ 19^\prime\ 30.42^\prime\prime \) North, \(\lambda = 69^\circ\ 17^\prime\ 39.54^\prime\prime \) East of Greenwich. The defining azimuth at the point of origin to the North Stone Pillar (probably the mire) of the Observatory is: \(\alpha = 00^\circ\ 52^\prime\ 08.25^\prime\prime \), and the ellipsoid of reference is the Bessel 1841. The Indian Datum of 1916 origin at Kalianpur Hill Station is: \(\phi = 24^\circ\ 07^\prime\ 11.26^\prime\prime \) North, \(\lambda = 77^\circ\ 39^\prime\ 17.57^\prime\prime \) East of Greenwich. The defining azimuth at the point of origin to station Surantal is: \(\alpha = 190^\circ\ 27^\prime\ 05.10^\prime\prime \). The ellipsoid of reference...
The Kazalinsk Datum of 1891 origin at the finial Cross on the Town Church is: \(\Phi = 45^\circ 45' 46.450'' \) North, \(\lambda = 62^\circ 06' 01.66 \) East of Greenwich. The defining azimuth at the point of origin to station Sulutan is: \(\alpha = 20^\circ 34' 07.34'' \). The ellipsoid of reference again is Bessel 1841. The 3-parameter shift from Kazalinsk 1891 to Tashkent 1895 is: \(dX = +530 \) meters, \(dY = -160 \) meters, \(dZ = -104 \) meters. (The fit of four points agrees to about 20 meters in each geocentric component.)

In order to better model the shift and reduce the fit errors, I decided to try a Bursa-Wolfe 7-parameter shift. The results yielded an average fit error in Latitude of 0.48 meters, the error in Longitude was 1.09 meters, and the error in Height was 0.09 meters. The parameters that give this fit are: \(dX = +26.82 \) meters, \(dY = -183.11 \) meters, \(dZ = -186.25 \) meters, \(\text{scale} = \frac{39.25 \times 10^6}{R_z} = -07.79'' \), \(\text{R}_x = +2.48'' \), \(\text{R}_y = +21.49'' \). As a computational “check point,” Point II, Northwest Base on the Tashkent Datum of 1875 has the geodetic coordinates: \(\Phi = 40^\circ 36' 55.740'' \) N, \(\lambda = 72^\circ 56' 22.880'' \) E.

Uzbekistan has only one Grid system, and that is based on the Russia Belts, a series of Gauss-Kruger Transverse Mercator projections that use the exact same rules and parameters as UTM with two exceptions. The Krassovsky 1940 ellipsoid is used everywhere in the former USSR where \(a = 6,378,245.0 \) meters, and \(1/f = 298.3 \). The scale factor at origin is 1.0 rather than the 0.9996 scale factor used for UTM. The single unifying datum used in all of the former USSR is the “Coordinate System 1942,” a consistent marvel that is the largest classical datum in the world! This datum is often improperly referred to after its origin, Pulkovo Observatory, where: \(\Phi = 59^\circ 46' 18.55'' \) North, \(\lambda = 30^\circ 19' 42.09'' \) East of Greenwich. The defining azimuth at the point of origin to Signal A is: \(\alpha = 317^\circ 02' 50.62'' \). The latest 3-parameter shift values published by the National Imagery and Mapping Agency for the vicinity listed as Kazakhstan is from System 42 to WGS84, such that: \(dX = +15 \) meters, \(dY = -130 \) meters, \(dZ = -84 \). The stated accuracy is 25 meters in each component, which is the maximum error useable for 1:50,000 mapping, and that was based on only two points.

CONTINUED FROM PAGE 1151

ence is the Everest 1830, where \(a = 6,377,276.345 \) meters, and \(1/f = 300.8017 \).

The Osh Datum of 1901 origin is defined at Point II, Northwest Base as: \(\Phi = 40^\circ 37' 16.670'' \) North, \(\lambda = 72^\circ 56' 11.175'' \) East of Greenwich. The defining azimuth at the point of origin to Point I, Southeast Base is: \(\alpha = 152^\circ 54' 01.86'' \). The ellipsoid of reference again is Bessel 1841. The 3-parameter shift from Osh 1901 to Tashkent 1895 is: \(dX = -146.633 \) meters, \(dY = +472.553 \) meters, \(dZ = +508.352 \) meters. (The fit of seven points agrees to 4.19 meters in each geocentric component.)

The Osh Datum of 1901 origin is defined at Point II, Northwest Base as: \(\Phi = 40^\circ 37' 16.670'' \) North, \(\lambda = 72^\circ 56' 11.175'' \) East of Greenwich. The defining azimuth at the point of origin to Point I, Southeast Base is: \(\alpha = 152^\circ 54' 01.86'' \). The ellipsoid of reference again is Bessel 1841. The 3-parameter shift from Osh 1901 to Tashkent 1895 is: \(dX = +530 \) meters, \(dY = -160 \) meters, \(dZ = -104 \) meters. (The fit of four points agrees to about 20 meters in each geocentric component.)

In order to better model the shift and reduce the fit errors, I decided to try a Bursa-Wolfe 7-parameter shift. The results yielded an average fit error in Latitude of 0.48 meters, the error in Longitude was 1.09 meters, and the error in Height was 0.09 meters. The parameters that give this fit are: \(dX = +26.82 \) meters, \(dY = -183.11 \) meters, \(dZ = -186.25 \) meters, \(\text{scale} = \frac{39.25 \times 10^6}{R_z} = -07.79'' \), \(\text{R}_x = +2.48'' \), \(\text{R}_y = +21.49'' \). As a computational “check point,” Point II, Northwest Base on the Tashkent Datum of 1875 has the geodetic coordinates: \(\Phi = 40^\circ 36' 55.740'' \) N, \(\lambda = 72^\circ 56' 22.880'' \) E.

Uzbekistan has only one Grid system, and that is based on the Russia Belts, a series of Gauss-Kruger Transverse Mercator projections that use the exact same rules and parameters as UTM with two exceptions. The Krassovsky 1940 ellipsoid is used everywhere in the former USSR where \(a = 6,378,245.0 \) meters, and \(1/f = 298.3 \). The scale factor at origin is 1.0 rather than the 0.9996 scale factor used for UTM. The single unifying datum used in all of the former USSR is the “Coordinate System 1942,” a consistent marvel that is the largest classical datum in the world! This datum is often improperly referred to after its origin, Pulkovo Observatory, where: \(\Phi = 59^\circ 46' 18.55'' \) North, \(\lambda = 30^\circ 19' 42.09'' \) East of Greenwich. The defining azimuth at the point of origin to Signal A is: \(\alpha = 317^\circ 02' 50.62'' \). The latest 3-parameter shift values published by the National Imagery and Mapping Agency for the vicinity listed as Kazakhstan is from System 42 to WGS84, such that: \(dX = +15 \) meters, \(dY = -130 \) meters, \(dZ = -84 \). The stated accuracy is 25 meters in each component, which is the maximum error useable for 1:50,000 mapping, and that was based on only two points.